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CDS 101: Lecture 7.1
Loop Analysis of Feedback Systems

Richard M. Murray
10 November 2003

Goals:
Show how to compute closed loop stability from open loop properties
Describe the Nyquist stability criterion for stability of feedback systems
Define gain and phase margin and determine it from Nyquist and Bode plots

Reading: 
Åström and Murray, Analysis and Design of Feedback Systems, Ch 7
Advanced: Lewis, Chapter 7

11 Nov 02 R. M. Murray, Caltech CDS 23 Nov 03 RMM and HM, Caltech CDS 0

Lecture 6.1: Transfer Functions
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Closed Loop Stability

Q: how do open loop dynamics affect 
the closed loop stability?

Given open loop transfer function 
C(s)P(s) determine when system is 
stable

Brute force answer: compute poles closed loop transfer function

Alternative: look for conditions on PC 
that lead to instability

Example: if PC(s) = -1 for some s = jω, 
then system is not asymptotically stable
Condition on PC is much nicer because
we can design PC(s) by choice of C(s)
However, checking PC(s) = -1 is not 
enough; need more sophisticated check
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• Poles of Hyr = zeros of 1 + PC 
• Easy to compute, but not so good for design
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Game Plan: Frequency Domain Design

Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get 
good performance

Low frequency range:

(good tracking)
Bandwidth: frequency at 
which closed loop gain = ½
⇒ open loop gain ≈ 1
Idea: use C(s) to shape PC
(under certain constraints)
Need tools to analyze 
stability and performance 
for closed loop given PC

1yr
PCH

PC
=

+

• Poles of Hyr = zeros of 1 + PC 
• Would also like to “shape” Hyr to specify

performance at differenct frequencies
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Nyquist Criterion

Determine stability from (open) loop 
transfer function, L(s) = P(s)C(s).

Use “principle of the argument” from 
complex variable theory (see 
reading)

Thm (Nyquist). Consider the Nyquist 
plot for loop transfer function L(s).  Let

P # RHP poles of L(s)
N # clockwise encirclements of -1
Z # RHP zeros of 1 + L(s)

Then
Z = N + P
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• Nyquist “D” 
contour

• Take limit as 
r → 0, R →∞

• Trace from 
−∞ to +∞
along 
imaginary axis

• Trace 
frequency 
response for 
L(s) along the 
Nyquist “D” 
contour

• Count net # of 
clockwise 
encirclements 
of the -1 point
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Simple Interpretation of Nyquist

Basic idea: avoid positive feedback
If L(s) has 180˚ phase (or greater) 
and gain greater than 1, then 
signals are amplified around loop
Use when phase is monotonic
General case requires Nyquist

C(s) ++
-

d

r ye u
P(s)

bode(sys) nyquist(sys)

Can generate Nyquist plot from Bode plot  + reflection around real axis
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Example: Proportional + Integral* speed controller

C(s) ++
-
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P(s)

* slightly modified; more on the design of this compensator in next week’s lecture
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Remarks
N = 0, P = 0 ⇒ Z = 0 (stable)
Need to zoom in to make sure 
there are no net encirclements
Note that we don’t have to 
compute closed loop response
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More complicated systems

What happens when open loop plant has RHP poles?
1 + PC has singularities inside D countour ⇒ these must be taken into 
account

Real Axis

Im
ag

A
xi

s

Pole-zero map

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y 
A

xi
s

Nyquist Diagrams

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
-1.5

-1

-0.5

0

0.5

1

1.5
From: U(1)

To
: Y

(1
)

2
1( )

0. 1
1
5

sL s
s s s

+
= ⋅

− + +

1 1
1 ( 0.35)( 0.07 1.2 )( 0.07 1.2 )

s
L s s j s j

+
=

+ + + + + −

N = -1, P = 1 ⇒ Z = N+P = 0 (stable)
unstable pole



CDS 101, Lecture 7.1

10 November 2003

R. M. Murray, Caltech

5

11 Nov 02 R. M. Murray, Caltech CDS 9

Comments and cautions

Why is the Nyquist plot useful?
Old answer: easy way to compute stability (before computers and MATLAB)
Real answer: gives insight into stability and robustness; very useful for 
reasoning about stability

Nyquist plots for systems with poles on the jω axis

Cautions with using MATLAB
MATLAB doesn’t generate portion of plot for poles on imaginary axis
These must be drawn in by hand (make sure to get the orientation right!)

• chose contour to 
avoid poles on axis

• need to carefully 
compute Nyquist 
plot at these points

• evaluate H(ε+0j) to
determine direction
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Relative stability: gain and phase margins

Nyquist plot tells us if closed loop is 
stable, but not how stable

Gain margin
How much we can modify the loop gain 
and still have the system be stable
Determined by the location where the 
loop transfer function crosses 180˚
phase

Phase margin
How much we can add “phase delay”
and still have the system be stable
Determined by the phase at which the 
loop transfer function has unity gain

Bode plot interpretation
Look for gain = 1, 180˚ phase crossings
MATLAB: margin(sys)
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Example: cruise control

Effect of additional sensor dynamics
New speedometer has pole at s = 10 (very fast); problems develop in the field
What’s the problem?  A: insufficient phase margin in original design (not robust)
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Preview: control design

Approach: Increase phase margin
Increase phase margin by reducing gain ⇒ can accommodate new sensor dynamics
Tradeoff: lower gain at low frequencies ⇒ less bandwidth, larger steady state error
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Summary: Loop Analysis of Feedback Systems

Nyquist criteria for loop stability
Gain, phase margin for robustness
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Thm (Nyquist). 
P # RHP poles of L(s)
N # CW encirclements
Z # RHP zeros

Z = N + P
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What’s Next

Homework problems
Nyquist plots; gain, phase margins
Cruise control design
CDS 110: PI control + time delay

Wednesday
Nyquist analysis 
Control of second order systems 
Time delays 

Friday
Hideo Mabuchi, Closed-loop atomic 
magnetometry (quantum control)
Friday, 2 pm, 74 JRG

Next week: PID Control
Design of controllers using PID
Relative stability and performance

Don’t forget to fill out MUD CARDS
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Lecture 8.1: Frequency Domain Design

Loop Shaping for Stability and Performance
Steady state error, bandwidth, tracking

Main ideas
Performance specifications give 
bounds on loop transfer function
Use controller to shape response
Gain/phase relationships 
constrain design approach
Standard compensators: 
proportional, lead, PI
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