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CDS 101: Lecture 6.1
Transfer Functions

Richard M. Murray and Hideo Mabuchi
3 November 2003

Goals:
Motivate and define the input/output transfer function of a linear system
Understand the relationships among frequency response (Bode plot), transfer 
function, and state-space model
Introduce block diagram algebra for transfer functions of interconnected systems

Reading: 
Packard, Poola, Horowitz, Chapters 5-6
Optional: Astrom, Section 5.1-5.3
Advanced: Lewis, Chapters 3-4
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Review: Frequency Response and Bode Plots

Defn.  The frequency response of a linear system is the relationship between the gain 
and phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.

Bode plot (1940; Henrik Bode)
Plot gain and phase vs input frequency
Gain is plotting using log-log plot
Phase is plotting with log-linear plot
Can read off the system response to a 
sinusoid – in the lab or in simulations
Linearity ⇒ can construct response to 
any input (via Fourier decomposition)
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Transfer Functions

Example: single “integrator”

( )H s

sin( )u A tω=
0 5 10

-1

0

1

0 5 10
-1

0

1

2 2( ) | ( ) |H j j H jω α β ω α β= + = +

x u
y x
=
=

&

2

sin( )

( / )sin( )

u A t

y A t π

ω

ω ω

=

= −

↓

| ( ) | 1/H jω ω=
1
s

u y

'' ( ) ''y H s u=

y = |H(jω)|A sin(ωt + ]H(jω))

]H(jω) = -π/2

] H(jω) = tan-1(β/α) 

3 Nov 03 RMM and HM, Caltech CDS 3

Transfer functions and frequency response

H(jω) is like a complex function representation of the Bode plot…
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One way to determine the transfer function of a given system is to fit the frequency 
response by a (rational) complex function. This works well in practice for so-called 
“minimum phase” systems, but otherwise can be tricky…
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Transfer functions from state-space models

Thm.  The transfer function for a linear system Σ=(A,B,C,D) is given by

Thm. The transfer function H(s) corresponding to Σ=(A,B,C,D) has the following 
properties:

H(s) is a ratio of polynomials n(s)/d(s) where d(s) is the characteristic equation for 
the matrix A and n(s) has order less than or equal to d(s).
The zero initial state frequency response of Σ has gain |H(jω)| and phase H(jω):

Remarks
Formally, can show that H(s) is the Laplace transform of the impulse response of Σ
“y=H(s)u” is formally Y(s)=H(s)U(s) where Y(s) and U(s) are the Laplace transforms 
of y(t) and u(t).  (Multiplication in the Laplace domain corresponds to convolution.)
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Series Interconnections
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2yA: Transfer functions multiply 
Gains multiply
Phases add
Generally: transfer functions well 
formulated for frequency domain 
interconnections
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Q: what happens when we connect two systems together in series?
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Feedback Interconnection

State space derivation

Frequency response

Transfer function derivation

Frequency response
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Example: mass spring system

Rewrite in terms of “block diagram”
Represent integration using 1/s
Include spring and damping through 
feedback terms
Determine the transfer function 
through algebraic manipulation
Claim: resulting transfer function 
captures the frequency response
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Poles and Zeros

Poles of H(s) determine the stability of the (closed loop) system
Denominator of transfer function = characteristic polynomial of state space system
Provides easy method for computing stability of systems
Right half plane (RHP) poles (Re > 0) correspond to unstable systems

Zeros of H(s) related to frequency ranges with limited transmission
A pure imaginary zero at s=jωz blocks any output at that frequency (H(jωz) = 0)
Zeros provide limits on performance, especially RHP zeros (more on this later)
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Example: Coupled Masses

Poles (Hq1f  and Hq2f )
-0.0200 ± 0.7743j
-0.0200 ± 0.4468j

Zeros (Hq2f )
-0.0200 ± 0.6321j

Interpretation
Zeros in Hq2f  give low 
response at  ω ≈ 0.6321
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Control Analysis and Design Using Transfer Functions

Control System++
-

disturbance

ref C(s) P(s)++
-

d

r ye u

Transfer functions provide a method for “block diagram algebra”
Easy to compute transfer functions between various inputs and outputs

Her(s) is the transfer function between the reference and the error
Hed(s) is the transfer function between the disturbance and the error

Transfer functions provide a method for performance specification
Since transfer functions provide frequency response directly, it is convenient to 
work in the “frequency domain”

Her(s) should be small in the frequency range 0 to 10 Hz (good tracking)
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Block Diagram Algebra

Basic idea: treat transfer functions as multiplication, write down equations

Manipulate equations to compute desired signals

Algebra works because we are working in frequency domain
Time domain (ODE) representations are not as easy to work with
Formally, all of this works because of Laplace transforms (ACM 95/100)
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Block Diagram Algebra

Feedback
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These are the basic manipulations needed; some others are possible
Formally, could work all of this out using the original ODEs (⇒ nothing really new)
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MATLAB manipulation of transfer functions

Creating transfer functions
[num, den] = ss2tf(A, B, C, D)
sys = tf(num, den)
num, den = [1 a b] → s2 + as + b

Interconnecting blocks
sys= series(sys1, sys2), parallel, feedback

Computing poles and zeros
pole(sys), zero(sys)
pzmap(sys)

I/O response
step(sys), bode(sys) A
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Example: Engine Control of a GM Astro
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Summary: Frequency Response & Transfer Functions
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