CDS 101: Lecture 6.1
 Transfer Functions

Richard M. Murray and Hideo Mabuchi
 3 November 2003

Goals:

- Motivate and define the input/output transfer function of a linear system
- Understand the relationships among frequency response (Bode plot), transfer function, and state-space model
- Introduce block diagram algebra for transfer functions of interconnected systems

Reading:

- Packard, Poola, Horowitz, Chapters 5-6
- Optional: Astrom, Section 5.1-5.3
- Advanced: Lewis, Chapters 3-4

Review: Frequency Response and Bode Plots

Defn. The frequency response of a linear system is the relationship between the gain and phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.

Bode plot (1940; Henrik Bode)

- Plot gain and phase vs input frequency
- Gain is plotting using log-log plot
- Phase is plotting with log-linear plot
- Can read off the system response to a sinusoid - in the lab or in simulations
- Linearity \Rightarrow can construct response to any input (via Fourier decomposition)

RMM and HM, Caltech CDS
1

Transfer Functions

"Defn." The transfer function for a linear system $\Sigma=(A, B, C, D)$ is a function $H(s), s \in \mathcal{C}$ such that $H(j \omega)$ gives the gain and phase of the response to a sinusoid at frequency ω :

$$
H(j \omega)=\alpha+j \beta \quad|H(j \omega)|=\sqrt{\alpha^{2}+\beta^{2}} \quad \measuredangle \mathrm{H}(\mathrm{j} \omega)=\tan ^{-1}(\beta / \alpha)
$$

Example: single "integrator"

$$
\begin{aligned}
& u=A \sin (\omega t) \\
& \dot{x}=u \\
& y=x \\
& y=(A / \omega) \sin \left(\omega t-\frac{\pi}{2}\right) \\
& |H(j \omega)|=1 / \omega \\
& y=x \\
& " y=H(s) u " \\
& \measuredangle H(j \omega)=-\pi / 2
\end{aligned}
$$

Transfer functions and frequency response

$H(j \omega)$ is like a complex function representation of the Bode plot...

One way to determine the transfer function of a given system is to fit the frequency response by a (rational) complex function. This works well in practice for so-called "minimum phase" systems, but otherwise can be tricky...

Transfer functions from state-space models

Thm. The transfer function for a linear system $\Sigma=(A, B, C, D)$ is given by

$$
H(s)=C(s I-A)^{-1} B+D \quad s \in \mathbb{C}
$$

Thm. The transfer function $H(s)$ corresponding to $\Sigma=(A, B, C, D)$ has the following properties:

- $H(s)$ is a ratio of polynomials $n(s) / d(s)$ where $d(s)$ is the characteristic equation for the matrix A and $n(s)$ has order less than or equal to $d(s)$.
- The zero initial state frequency response of Σ has gain $|H(j \omega)|$ and phase $\measuredangle H(j \omega)$:

$$
\begin{aligned}
& u=A \sin (\omega t) \\
& y=|H(j \omega)| A \sin (\omega t+\measuredangle H(j \omega))
\end{aligned}
$$

Remarks

- Formally, can show that $H(s)$ is the Laplace transform of the impulse response of Σ
- " $y=H(s) u$ " is formally $Y(s)=H(s) U(s)$ where $Y(s)$ and $U(s)$ are the Laplace transforms of $y(t)$ and $u(t)$. (Multiplication in the Laplace domain corresponds to convolution.)

Series Interconnections

Q: what happens when we connect two systems together in series?

A: Transfer functions multiply

- Gains multiply
- Phases add
- Generally: transfer functions well formulated for frequency domain interconnections

Feedback Interconnection

State space derivation

$$
\begin{aligned}
& \dot{x}=u=r-a y=-a x+r \\
& y=x
\end{aligned}
$$

Frequency response $\quad r=A \sin (\omega t)$

$$
y=\left|\frac{1}{\sqrt{a^{2}+\omega^{2}}}\right| \sin \left(\omega t-\tan ^{-1}\left(\frac{\omega}{a}\right)\right)
$$

Transfer function derivation

$$
\begin{aligned}
& y=\frac{u}{s}=\frac{r-a y}{s} \\
& y=\frac{r}{s+a}=H(s) r
\end{aligned}
$$

Frequency response

$$
y=|H(j \omega)| \sin (\omega t+\angle H(j \omega))
$$

Example: mass spring system

Rewrite in terms of "block diagram"

- Represent integration using $1 / s$
- Include spring and damping through feedback terms
- Determine the transfer function through algebraic manipulation

$$
y=\frac{1}{m} \cdot \frac{1}{s} \cdot \frac{1}{s}(f-b \dot{x}-k x)=\frac{1}{m s^{2}} f-\frac{b}{m s} y-\frac{k}{m s^{2}} y
$$

$$
\left(1+\frac{b}{m s}+\frac{k}{m s^{2}}\right) y=\frac{1}{m s^{2}} f
$$

- Claim: resulting transfer function captures the frequency response

$$
\begin{gathered}
y=\frac{1}{m s^{2}+b s+k} f \\
H(s)=\frac{1}{m s^{2}+b s+k}
\end{gathered}
$$

Poles and Zeros

$$
\begin{array}{lll}
\dot{x}=A x+B u & H(s)=\frac{n(s)}{d(s)} & \text { - Roots of } d(s) \text { are called poles of } H(s) \\
y=C x+D u & d(s)=\operatorname{det}(s I-A) & \text { - Roots of } n(s) \text { are called zeros of } H(s)
\end{array}
$$

Poles of $\boldsymbol{H}(s)$ determine the stability of the (closed loop) system

- Denominator of transfer function = characteristic polynomial of state space system
- Provides easy method for computing stability of systems
- Right half plane (RHP) poles $(\operatorname{Re}>0)$ correspond to unstable systems

Zeros of $\boldsymbol{H}(\boldsymbol{s})$ related to frequency ranges with limited transmission

- A pure imaginary zero at $s=j \omega_{z}$ blocks any output at that frequency $\left(H\left(j \omega_{z}\right)=0\right)$
- Zeros provide limits on performance, especially RHP zeros (more on this later)

$$
H(s)=k \frac{s^{2}+b_{1} s+b_{2}}{s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}} \quad \xrightarrow{\text { pzmap }}
$$

Control Analysis and Design Using Transfer Functions

Transfer functions provide a method for "block diagram algebra"

- Easy to compute transfer functions between various inputs and outputs
- $H_{e r}(s)$ is the transfer function between the reference and the error
- $H_{e d}(s)$ is the transfer function between the disturbance and the error

Transfer functions provide a method for performance specification

- Since transfer functions provide frequency response directly, it is convenient to work in the "frequency domain"
- $H_{e r}(s)$ should be small in the frequency range 0 to 10 Hz (good tracking)

Block Diagram Algebra

Basic idea: treat transfer functions as multiplication, write down equations

$$
\begin{aligned}
& y=P(s) u \\
& u=d+C(s) e \\
& e=r-y
\end{aligned}
$$

Manipulate equations to compute desired signals

$$
\begin{aligned}
e & =r-y \\
& =r-P(s) u \\
& =r-P(s)(d+C(s) e)
\end{aligned} \quad e=\underbrace{\frac{1}{1+P(s) C(s)}}_{H_{e r}} r-\underbrace{\frac{P(s)}{1+P(s) C(s)}}_{H_{e d}} d \quad \text { a } \quad \text { a } \quad \begin{aligned}
& \text { Note: linearity } \\
& \text { gives super- } \\
& \text { position of terms }
\end{aligned}
$$

Algebra works because we are working in frequency domain

- Time domain (ODE) representations are not as easy to work with
- Formally, all of this works because of Laplace transforms (ACM 95/100)

Block Diagram Algebra

Type	Diagram	Transfer function
Series		$H_{y_{2} u_{1}}=H_{y_{2} u_{2}} H_{y_{1} u_{1}}=\frac{n_{1} n_{2}}{d_{1} d_{2}}$
Parallel		$H_{y_{3} u_{1}}=H_{y_{2} u_{1}}+H_{y_{1} u_{1}}=\frac{n_{1} d_{2}+n_{2} d_{1}}{d_{1} d_{2}}$
Feedback		$H_{y_{1} r}=\frac{H_{y_{1} u_{1}}}{1+H_{y_{1} u_{1}} H_{y_{2} u_{2}}}=\frac{n_{1} d_{2}}{n_{1} n_{2}+d_{1} d_{2}}$

- These are the basic manipulations needed; some others are possible
- Formally, could work all of this out using the original ODEs (\Rightarrow nothing really new)

MATLAB manipulation of transfer functions

Creating transfer functions

- [num, den] = ss2tf(A, B, C, D)
- sys = tf(num, den)
- num, den $=[1 \mathrm{a} \mathrm{b}] \rightarrow s^{2}+a s+b$

"t tf(sys)
Transfer function:
1
-------------1
$s^{\wedge} 2+0.2 \mathrm{~s}+1$

Interconnecting blocks

- sys= series(sys1, sys2), parallel, feedback

Computing poles and zeros

- pole(sys), zero(sys)

- pzmap(sys)

I/O response

- step(sys), bode(sys)

