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CDS 101: Lecture 5.1 f
Reachability and State Space Feedback

Richard M. Murray
27 October 2003

Goals:
* Define reachability of a control system
* Give tests for reachability of linear systems and apply to examples
 Describe the design of state feedback controllers for linear systems

Reading:
« Astrébm and Murray, Analysis and Design of Feedback Systems, Ch 5
* Packard, Poola and Horowitz, Dynamic Systems and Feedback, Section 25

¢ Advanced: A. D. Lewis, A Mathematical Introduction to Feedback Control,
Chapter 2 (available on web page)

Review from Last Week
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Control Design Concepts
System description: single input, single output system (MIMO also OK)
x=f(x,u) xel",x(0) given
y=h(x,u) uell,yel

Stability: stabilize the system around an equilibrium point
* Given equilibrium point x, € R, find control “law” u=a(x)
such that
limx(¢) = x, for allx(0) el "

>0

Reachability: steer the system between two points
* Given x,, x; € R”, find an input u(f) such that

x = f(x,u(?)) takes x(#,) = x, > x(T) = x,

Tracking: track a given output trajectory W)
* Given y (f)e R, find u=a(x,t) such that
1im( v -y, (t)) =0 for all x(0) e[ " ya) ‘
>0
27 Oct 03 R. M. Murray, Caltech CDS 3

Reachability of Input/Output Systems

x=f(x,u)  xel",x(0) given
v =h(x,u) uell,yell

Defn An input/output system is reachable if for any x,, x. € R" and any time 7>
0 there exists an input #:[0,7]— R such that the solution of the dynamics

starting from x(0)=x, and applying input u(/) gives x(T)=x,.

Remarks
* In the definition, x, and x, do not have to be equilibrium points = we don’t
necessarily stay at x, after time T.
* Reachability is defined in terms of states = doesn’t depend on output

* For linear systems, can characterize reachability by looking at the general
solution:

%= Ax+Bu t
x(T)=e""x, + J. e" " Bu(r)dr

=0
@ * If integral is “surjective” (as a linear operator), then we can find an input to
achieve any desired final state.

y=Cx+Du
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Tests for Reachability

; . T
X =Ax+ Bu ell”,x(0) given _r
* X0 ¢ x(T)=e""x,+ J. e " Bu(r)dr

y=Cx+Du uell,yell o

Thm A linear system is reachable if and only if the n x n reachability matrix
(B 4B 4B - A4"'B]
is full rank.

Remarks
* Very simple test to apply. In MATLAB, use ctrb(A,B) and check rank w/ det()
« If this test is satisfied, we say “the pair (A,B) is reachable”
* Some insight into the proof can be seen by expanding the matrix exponential

"B :(I+A(T—r)+;A2(T—r)2 +-~~+%A”’1(T—r)"’l +---jB

=(B+AB(T—r)+;A2B(T—r)2 +--~+%A”’IB(T—T)”’1 +j
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Example #1: Linearized pendulum on a cart

m Question: can we locally control the
2] position of the cart by proper choice of
Ly input?

Approach: look at the linearization
around the upright position (good

X approximation to the full dynamics if &
remains small)

F”LQLQJ
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 Simplify by settingb =0

* Full rank as long as
constants are such that
columns 1 and 3 are not
multiples of each other

* = reachable as long as
gM+m) =1

* = can “steer” lineariza-
tion between points by
proper choice of input

Example #1, con’t: Linearized pendulum on a cart
m
4, 0 0 1 0
21 |0 0 0 0
alol _ o m2g12 —(J AP o
da | & q z
* 4 o mgl(M + m) —1y
u .| q q
O% a=J(M+m) + Mmi?
Reachability matrix
0 J 4+ mi? 0 mi(J —I; mi2) ]
q q
0 ml 0 w12gl2(]\2/[ + m)
M. = q q
) J 4+ mi? ml(J 4+ mi?)
2 0
q q
mi m2gl2(M + m)
pidis == 0
q q
B AB A’B A’B
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y =h(x,u)

Control Design Concepts

xell",x(0) given

uell,yell

System description: single input, single output system (MIMO also OK)
x=f(x,u)

Stability: stabilize the system around an equilibrium point

* Given equilibrium point xe 2 Rn, find control “law” u=co.(x)
such that
limx(¢) = x, for allx(0) el "

>0

\/ Reachability: steer the system between two points
* Given x,, x; € R», find an input u(t) such that
x = f(x,u(?)) takes x(¢,) = x, > x(¢,) = x,

Tracking: track a given output trajectory
* Given y (1) € R, find u=ou(x,f) such that
lim(y(t) - yd(t)) =0 for all x(0) el "
>0
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State space controller design for linear systems

, . T
X = Ax+ Bu ell”,x(0) given _r
* X0 ¢ x(T)=e""x,+ f e " Bu(r)dr

y=Cx+Du uell,yel 2

Goal: find a linear control law u=Kx such that the closed loop system
X =Ax+ BKx =(A+ BK)x

is stable at x,=0.

Remarks
« Stability based on eigenvalues = use K to make eigenvalues of (4+BK) stable
* Can also link eigenvalues to performance (eg, initial condition response)
* Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4+BK) can be set to arbitrary values if and only if
the pair (4,B) is reachable.

MATLAB: K = place(A, B, eigs)
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Example #2: Predator prey

Natural dynamics
X, =bx —axx,

X, =ax,x, —d x,

Controlled dynamics: modulate food supply

X, =b,(1+u)x, —axx, 200

X, =ax,x, —d x, 180
160

Q1: can we move from some initial population '*

of foxes and rabbits to a specified one in time 120
T by modulation if the food supply? %100

Q2: can we stabilize the population around 8

the desired equilibrum point &
40

Approach: try to answer this question locally, ,,
around the natural equilibrium point

50 100 150 200
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Example #2:

Equilibrium point calculation
X, =b.(1+u)x, —axx,

X, =ax,x, —d x,
* x, = (50, 35)

Linearization

* Compute linearization around equil.
point, x,:

4=

A
ox

Ou

(X, ott,)

(xestte )

Problem setup

% Compute the equil point

predprey.m contains dynamics
f = inline('predprey(0,x)");
[50,50]);

xeq fsolve (£,

% Compute linearization

A = [
br - a*xeq(2) - a*xeq(l);
a*xeq(2), -df + a*xeq(l)
17
B = [br*xeq(l); 0];

* Redefine local variables: z=x-x, v=u-u,

2 [ )

» Reachable? YES, if b, a # 0 (check [B AB]) = can locally steer to any point

4
dt

b, —ax,, z bx,

0

Z —axlﬁe |

z, ax,, -d,+ax,, || z,
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Example #2: Stabilization via eigenvalue assignment

4
di

zZ, ax, .

e

v=—Kz=-K(x-x,)

u=u,+v=u,—K(x—x,)

Z

Control design:

Place poles at stable values
* Choose 1=-1, -2
* K = place(A, B, [-1; -2]);

Modify dynamics to include control

X =b.(1-K(x-x,))x —axx,

X, =ax,x, —d x,

27 Oct 03
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—ax,, Z brxl,e

0

I

—df +ax,, zz}{ }v

27 October 2003



CDS 101, Lecture 5.1 R. M. Murray, Caltech

Implementation Details

Eigenvalues determine performance Pole-zero map Step Response
rom
¢ For each eigenvalue A=0; + jw, get 03
: ) g i~ 0; TJ®, 9 0 W, ) <—>| T=27/ w,
contribution of the form z ? . 4
ot . g o _E: 0.1
y,(t)=e " (asin(er) + beos(awr))  E ge
0.0
* Repeated eigenvalues can give addi- G5 0 5 0 5 % 5 10 15 20 25 30
tional terms of the form eo+je Real Axis Time (sec.)

Use estimator to determine the current state if you can’t measure it

h% » Estimator looks at inputs and outputs of
plant and estimates the current state
y=Cx+Du  Can show that if a system is observable
then you can construct and estimator

L * Use the estimated state as the feedback

u X = Ax+ Bu

Estimator [— 3 u=Kx

* Kalman filter is an example of an estimator
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Summary: Reachability and State Space Feedback

X=Ax+ Bu
y=Cx+Du

201
Key concepts 5

* Reachability: find 14
us.t x,—> x; 144

* Reachability rank 129
test for linear 109
systems &

» State feedback to
assign eigen-
values

407
207
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