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CDS 101, Lecture 2.1

CDS 101: Lecture 2.1
System Modeling
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Goals:
* Introduce the concepts of state, dynamics, inputs and outputs

* Define what a model is and its use in answering questions about a system
* Provide examples of common modeling techniques: differential equations,

difference equations, finite state automata

Reading:
« Astrdm and Murray, Analysis and Design of Feedback Systems, Ch 2
* Advanced: Lewis, A Mathematical Approach to Classical Control, Ch 1

Review from last week

Control =
Sensing + Computation +

Actuation

Sense

Actuate

Feedback Principles
* Robustness to Uncertainty

* Design of Dynamics

Compute

Many examples of feedback and control in natural & engineered systems
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Model-Based Analysis of Feedback Systems

Analysis and designh based on models Weather Forecasting
* A model provides a prediction of how the
system will behave
* Feedback can give counter-intuitive behavior;
models help sort out what is going on
* For control design, models don’t have to be
exact: feedback provides robustness

Control-oriented models: inputs and outputs . Question 1: how much will it

rain tomorrow?

The model you use depends on the * Question 2: will it rain in the
questions you want to answer next 5-10 days?
* A single system may have many models * Question 3: will we have a

. . . ?
* Time and spatial scale must be chosen to suit drought next summer

the questions you want to answer

. - Diffi t ti
* Formulate questions before building a model rierent questions =

different models
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Example #1: Spring Mass System
u(®) |

Applications
9 * Flexible structures (many apps)

#ﬂ " » Suspension systems (eg, “Bob”)
m
/\MAWW\/./\/VVM * Molecular and quantum dynamics

k, ky ky Questions we want to answer

* How much do masses move as a
function of the forcing frequency?

* What happens if | change the
values of the masses?

* Will Bob fly into the air if | take
that hill at 25 mph?
Modeling assumptions

* Mass, spring, and damper
constants are fixed and known

* Springs satisfy Hooke’s law

* Damper is (linear) viscous force,
proportional to velocity
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Modeling a Spring Mass System

M(t) |

92

q
m m,

ky ky ks

@_g

Model: rigid body physics (Ph 1)
¢ Sum of forces = mass *
acceleration

* Hooke’s law: F = k(x — x,.y)
e Viscous friction: F = b v

mg, = k,(q,-q,)—kgq,
myg, = ky(u—q,)—k, (g, —4,)—bq,

Converting models to state space form r g,
. Construc_:t a vector o_f the variable_s that q p
are required to specify the evolution of 2
the system 4|4 _ k, k,
» Write dynamics as a system of first dt| g, ;(qz ) _qu
order differential equations: ;
A ; Pl gy B -g)- 24,
—=f(x,u) xeR" uelR’ -
dt 9,
v ="h(x) yeR? y= qj “State space form”
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Frequency Response for a Mass Spring System

u(t) |

iu

Magnitude (dB)

Phase (deg)

AR AH

0.1 1 10
Frequency (rad/sec)
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Steady state frequency response
* Force the system with a sinusoid
* Plot the “steady state” response, after
transients have died out

* Plot relative magnitude and phase of
output versus input (more later)

Matlab simulation (see handout)
F(t, v, ..l)
0.00315*cos (omega*t) ;
dydt = [

y(3);

y(4);

- (k1+k2) /ml*y (1) + k2/ml*y(2);

k2/m2*y (1) - (k2+k3)/m2%y(2)

- b/m2*y(4) + k3/m2*u 1;

function dydt =

u =

t,y] = oded5 (dydt, tspan,y0,[],
k2, k3, ml, m2, b, omega);

k1,
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Modeling Terminology
u()

State captures effects of the past
* independent physical quantities that 9

determines future evolution (absent 4.“
Inputs describe external excitation i i .
1 2
¢ Inputs are extrinsic to the system ’
dynamics (externally specified)
b

Dynamics describes state evolution Example: spring mass system

* update rule for system state « State: position and velocities of
« function of current state and any each mass: ¢,-9,-41-9,
external inputs * Input: position of spring at right end
Outputs describe measured of chain: u(7)
quantities * Dynamics: basic mechanics
* Outputs are function of state and * Output: measured positions of the
inputs = not independent variables masses: ¢,,4,

* Qutputs are often subset of state
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Modeling Properties

Choice of state is not unique
» There may be many choices of variables that can act as the state
* Trivial example: different choices of units (scaling factor)
* Less trivial example: sums and differences of the mass positions (HW 2.4)

Choice of inputs and outputs depends on point of view
* Inputs: what factors are external to the model that you are building

= Inputs in one model might be outputs of another model (eg, the output of
a cruise controller provides the input to the vehicle model)

» Qutputs: what physical variables (often states) can you measure

= Choice of outputs depends on what you can sense and what parts of the
component model interact with other component models

Can also have different types of models
* Ordinary differential equations for rigid body mechanics
* Finite state machines for manufacturing, Internet, information flow
* Partial differential equations for fluid flow, solid mechanics, etc
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Differential Equations

Differential equations model continuous evolution of state variables

* Describe the rate of change of the state variables dx
* Both state and time are continuous variables o VACRD)
y=h(x)

Example: electrical power grid

Swing equations
8, +D,8, = @, (P, - Bsin(3, - 8,) + Gcos(J, - J,))
5, +D,5, = @, (P, — Bsin(5, - 8,) + G cos(S, — 3,))

Describe how generator rotor angles ()
interact through the transmission line (G, B)

Stability of these equations determines how
loads on the grid are accommodated

State: rotor angles, velocities (5,.,5',. )

Inputs: power loading on the grid (P, )
Outputs: voltage levels and frequency (based on rotor speed)
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Finite State Machines

Finite state machines model discrete transitions between finite # of states
* Represent each configuration of system as a state
* Model transition between states using a graph
* Inputs force transition between states

Timer

Example: Traffic light logic Car arrives .
. expires

on E-W St

Y

Timer

expires Car arrives

on N-S St

State: current pattern of lights that are on + internal timers
Inputs: presence of car at intersections
Outputs: current pattern of lights that are on
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Difference Equations

Difference eqs model discrete transitions between continuous variables

* “Discrete time” description (clocked transitions) B
* New state is function of current state + inputs Yo = S (1)
» State is represented as a continuous variable Vi = )

Example: CD read/write head controller (implemented on DSP)

howstuffworks.com

Controller operation (every 1/44,100 sec)
Uicissies * Get analog signal from read head

* Determine the data (1/0) plus estimate
the location of the track center

* Update estimate of “wobble”

* Compute where to position disk head for
next read (limited by motor torque)

Disc Drive

Laser
Pickup Assembly

4

“udl

Disc Drive Laser Tracking

Motor Lens /~Motor

Performance specification

State: estimated center, wobble , oo disk head on track center
Inputs: read head signal * Reject disturbances due to disk shape,
Outputs:  commanded motion shaking and bumps, etc
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Example #2: Predator Prey
ﬁ Questions we want to answer

* Given the current population of

W rabbits and foxes, what will it be

next year?

* If we hunt down lots of foxes in a
given year, what will the effect on
the rabbit and fox population be?

* How do long term changes in the
amount of rabbit food available
affect the populations?

160
140
120
100
80
60 .
aof'
20 / . B .

o A * The prey species has an external
1845 1855 1865 1875 1885 1895 1905 1915 1925 1935 .

food supply and no threat to its

Modeling assumptions

* The predator species is totally
dependent on the prey species as
its only food supply.

http://www.math.duke.edu/education/ccp/ growth other than the specific
materials/diffeq/predprey/contents.html predator.
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Example #2: Predator Prey (2/2)

Discrete Lotka-Volterra model Matlab simulation (see handout)
« State ¢ Discrete time model, “.s_imulated”
o R, # of rabbits in period k through repeated addition
u F, # of foxes in period k& ng
* Inputs (optional) 250
o, amount of rabbit food fgﬁ
e Outputs:  # of rabbits and foxes 100
* Dynamics: Lotka-Volterra eqs *

0 1850 1870 1890 1910 1930

R, =R +b(u)R, —aFR,
Fi,=F, —dF +aFR,

Comparison with data

* Parameters/functions :i i . -
ub(u) rabbit birth rate (per year) 3{ » H X H .
(depends on food supply) :1 [Av“'ll 'k hj\& L‘:! A kA A lﬂ&
ad, fox death rate (per year) ;%]'_f «%{i‘\l ,j, P2 Jﬁ Ii\‘-*-/«'ﬁt‘%.,f \ j\:u[}\ J’?
5aq interaction term R R WE e en A W
6 Oct 03 R. M. Murray, Caltech CDS 13

Summary: System Modeling

Model = state, inputs, outputs, dynamics

X = J(xu,)

Principle: Choice of model depends on the questions you want to answer

u(t) | function dydt = f(t,y, k1, k2,
k3, ml, m2, b, omega)
u = 0.00315*cos (omega*t) ;

9,
" m, dydt = [

k v(4);

- (k1+k2) /ml*y (1) +
ﬂ% 2 /iy (2) s
b k2/m2*%y (1) - (k2+k3)/m2*y (2)
- b/m2*y(4) + k3/m2*u ];
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o oe

Spring mass system

e oo oe

oe

Spring mass system parameters

m = 250; ml=m; m2=m; % masses (all equal)
k = 50; kl=k; k2=k; k3=k; % spring constants
b = 10; % damping
A = 0.00315; omega = 0.75; % forcing function

% Call oded45 routine (MATLAB 6 format; help oded45 for details)

tspan=[0 500]; % time range for
simulation

y0 = [0; 0; 0; 017 % initial conditions

[t,y] = oded5(@springmass, tspan, y0, [], k1, k2, k3, ml, m2, b, A, omega);

% Plot the input and outputs over entire period
figure(l); plot(t, A*cos(omega*t), t, y(:,1), t, y(:,2));

% Now plot the data for the final 10% (assuming this is long enough...)
endlen = round(length(t)/10); % last 10% of data record

range = [length(t)-endlen:length(t)]"'; % create vector of indices (note ')
tend = t(range);

figure(2); plot(tend, A*cos(omega*tend), tend, y(range,l), tend, y(range,2));

Compute the relative phase and amplitude of the signals
We make use of the fact that we have a sinusoid in steady state,

as well as its derivative. This allows us to compute the magnitude
of the sinusoid using simple trigonometry ( sin”2 + cos”2 = 1).

dC o d° o de

u = A*cos (omega*tend); udot = -A*omega*sin(omega*tend);
ampu = mean( sqgrt((u .* u) + (udot/omega .* udot/omega)) );
fprintf (1, 'Amplitude = %$0.5e cm', ampu*100);

Predator prey system

dC 0P o

oe

Set up the initial state
R(1) = 20; F(1) = 35;

% For simplicity, keep track of the year as well
year (1) = 1845;

% Set up parameters

br = 0.7; df = 0.5; a = 0.007;
nperiods = 208;

duration=90;

Iterate the model

r k = l:duration*nperiods

b = br; constant food supply
b varying food supply

r

o
S
o
S

= br* (1+0.5*sin (2*pi*k/ (4*nperiods))) ;

R(k+1l) = R(k) + (b*R(k) - a*F(k)*R(k))/nperiods;
F(k+1l) = F(k) + (a*F(k)*R(k) - df*F(k))/nperiods;
year (k+1) = year(k) + 1l/nperiods;

end;

% Plot the populations of rabbits and foxes versus time
figure(3); plot(year, R, year, F);

springmass.m - ODE45 function for a spring mass system
RMM, 6 Oct 03

This file contains the differential equation that describes
the mass spring system used as an example in CDS 101. It
allows individual mass and spring values, plus sinusoidal
forcing.

The state is stored in the vector y. The values for y are

o0 d° d° I dO O° d° O° dO o d° o° d° o

y(1l) = gl, position of first mass
y(2) = g2, position of second mass
y(3) = gldot, velocity of first mass
y(4) = g2dot, velocity of second mass

function dydt = springmass(t, vy, k1, k2, k3, ml, m2, b, A, omega)
% compute the input to drive the system
u = A*cos (omega*t);

% compute the time derivative of the state vector
dydt = [

v(3);

y(4);

- (k1+k2)/ml*y (1) + k2/ml*y(2);

k2/m2*y (1) - (k2+k3)/m2*y(2) - b/m2*y(4) + k3/m2*u
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