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Note: In the upper left hand corner of the first page of your homework set, please
put the class you are taking (CDS 101, CDS 110) and the number of hours that you
spent on this homework set (including reading).

All students should complete the following problems:

1. For each of the following systems, locate the equilibrium points for the system and indicate
whether each is asymptotically stable, stable (but not asymptotically stable), or unstable.
To determine stability, you can either use a phase portrait (if appropriate) or simulate the
system using multiple nearby initial conditions to how the state evolves. (Note: if you know
how to check stability through the linearization, you can also use this approach.)

(a) Nonlinear spring mass. Consider a nonlinear spring mass system,

mẍ = −k(x− ax3)− bẋ,

where m = 1000 kg is the mass, k = 250 kg/sec2 is the nominal spring constant, a = 0.01
represents the nonlinear “softening” of the spring, and b = 100 kg/sec is the damping
coefficient. Note that this is very similar to the spring mass system we have studied in
class, except for the nonlinearity.

(b) Predator prey ODE. Use the ODE model described in class,

ẋ1 = brx1 − ax1x2

ẋ2 = bx1x2 − dfx2,

with the parameters br = 0.7, df = 0.5, a = 0.007, b = 0.0005.

(c) Congestion control of the Internet. A simple model for congestion control between N

computers connected by a router is given by the differential equation

ẋi = −b
x2

i

2
+ (bmax − b)

ḃ =
N∑

i=1

xi − c

where xi ∈ R, i = 1, N are the transmission rates for the sources of data, b ∈ R is the
current buffer size of the router, bmax > 0 is the maximum buffer size, and c > 0 is the
capacity of the link connecting the router to the computers. The ẋi equation represents
the control law that the individual computers use to determine how fast to send data
across the network (this version is motivated by a protocol called “Reno”) and the ḃ

equation represents the rate at which the buffer on the router fills up. Consider the case
where N = 2 (so that we have three states, x1, x2, and b), and take bmax = 1 Mb and
c = 2 Mb/sec.



2. (MATLAB/SIMULINK) Consider the cruise control system from Homework Set #1, problem
1. Set the gains of the system to their default values (Ki = 100, Kp = 500).

(a) Using hw1cruise.mdl from the course home page, plot the step response of the system
(from 55 mph to 65 mph) and measure the rise time, overshoot, settling time, and steady
state error.

(b) Modify the block diagram to allow a sinusoidal reference signal superimposed on top of
a commanded reference (so that you get something that oscillates around the nominal
speed of 55 m/s). Plot the response of the system to a commanded reference speed that
varies sinusoidally between 50 m/s and 60 m/s at a frequency of 1 Hz (about 6 rad/sec).
Measure the relative amplitude and phase of the velocity with respect to the commanded
input. Your answer should be the ratio of the output amplitude to the input amplitude
(after subtracting off the means) and the number of radians of phase “lead” or “lag”
between the sinusoids.

(c) In most real-life systems, inputs magnitudes are limited by the capabilities of the actu-
ator. A modified version of the cruise controller with input saturation is available from
the lecture homepage, with the file name hw1cruise_sat.mdl (you can see the satura-
tion by clicking into the vehicle block). Using this model, show that if we increase the
amplitude of the desired oscillations sufficiently high, that the response of the system is
no longer a pure sinusoid at the desired frequency.

Only CDS 110a students need to complete the following additional problems:

3. Consider a second order system of the form

ÿ + 2ζωnẏ + ω2

ny = u(t)

with initial conditions y(0) = y0, ẏ(0) = ẏ0.

(a) Compute the homogenous solution to this equation (u(t) = 0) with initial condition
y0 = 0, ẏ0 = 1. This is the “impulse response” for this system. Plot the impulse
response as a function of time for ωn = 1, ζ = 0.5.

(b) Compute the response of the system to a sinusoidal input u(t) = A sin(ωt). Your result
should be analytical (a formula, like the ones given in lecture) and you should make sure
to keep the effects of the initial conditions. Now assuming that the initial conditions
have died out (i.e., ignoring the homogeneous part of the solution), plot the “frequency
response” of the system. Your answer should be in the form of two plots: the relative
amplitude and the relative phase of the output compared to the input, both as a function
of frequency. Use a logarithmic scale for the frequency and amplitude, and a linear scale
for the phase. (This type of plot is called a “Bode plot”).

Note: you can find this solution worked out in many textbooks. You are encouraged to
look for the solution, but make sure that you provide a derivation of your results and
that you understand them. (Pretend that this might be the type of thing you were asked
on a closed book section of the midterm.)

(c) Suppose that we now implement a feedback control law of the form

u(t) = k1(y − v(t)) + k2ẏ,
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which is intended to allow us to track a new input v(t) (just like the cruise control
example). Compute the frequency response of the closed loop and show that we can
set the closed loop natural frequency ω′

n and damping ratio ζ ′ to arbitrary values by
adjusting the gains k1 and k2. Give formulas for the gains in terms of the desired ω′

n

and ζ ′.

(d) Optional: Use the results from this problem to design a cruise control law for the system
in problem #2 of last week’s homework that has a settling time of 1 second and no
overshoot.

4. For each of the systems in the table below, defined in more detail in Problem 1, determine if
there exists a Lyapunov function of the given form that proves that the indicated equilibrium
point is asymptotically stable. The parameter α should be taken as a free parameter and
used as needed to satisfy the conditions of the Lyapunov theorem.

You should try to solve the problem for general parameter values if possible, but if you can’t
find a general solution in a reasonable amount of time, then you should use the numerical
values from Problem 1.

Part System/equlibrium point Parameter ranges Lyapunov function candidate

(a) Nonlinear spring mass, m, k, a, c > 0 V = kx2 + αxẋ+mẋ2

xe = (0, 0)

(b) Predator prey ODE, a, b, br, df > 0 V = (x1 − xe,1)
2 + α(x2 − xe,2)

2

xe 6= (0, 0)

(c) Congestion control, N, bmax, c > 0 V = α
∑

(xi − xe,i)
2 + (b− be)

2

xe, be 6= 0

Note: for some of these systems, the equilibrium point may be asymptotically stable but
the Lyapunov function candidate may not allow you to prove stability. This is one of the
limitations of Lyapunov stability: you have to find a Lyapunov function that proves stability
of the system.

Optional: If you are not able to find a Lyapunov function of the given form for an equilibrium
point which you showed in problem 1 is asymptotically stable, try to find a Lyapunov function
of a more general form that works.

Optional: For those systems in which you are able to find a Lyapunov function, determine
whether the given function can also be used to prove whether the system is exponentially
stable and whether the system is globally asymptotically stable.
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