
29 Root Locus

Given two polynomials N and D, the goal of the Root Locus method (developed
by W.R. Evans, in 1948-1954) is to accurately sketch the roots of the polynomial

kN(s) +D(s) = 0

as k varies from 0→∞. This is to be done under the following assumptions:

• N and D are polynomials with real-valued coefficients with leading coeffi-
cients equal to 1

• The roots of N and D are individually known. Moreover, since N and D
have real coefficients, we know that the roots of N and D are real and/or
come in complex-conjugate pairs.

• D and N have no common roots

• n := ord(D) ≥ ord(N) =: m

Note, if N and D do have a common root (or common roots), at say α, then there
exist polynomials Ñ and D̃ such that

N(s) = (s− α) Ñ(s), D(s) = (s− α) D̃(s)

Hence, for every k, we have

kN(s) +D(s) = (s− α)
[

kÑ(s) + D̃(s)
]

Therefore, the roots of kN(s)+D(s) = 0 are simply α (regardless of k) along with
the roots of kÑ(s)+D̃(s) = 0. In this manner, you can pre-factor out any common
roots, until you obtain an N̂ and D̂ that have no common roots, and proceed using
the method described below.

29.1 Motivation

Suppose that L is a linear system, with transfer function

L(s) =
N(s)

D(s)
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Consider the feedback system, with proportional feedback

The closed-loop characteristic equation is kN(s) + D(s) = 0. Hence, in order to
choose an appropriate value for k, it would be useful to know how the roots of
kN(s) +D(s) = 0 are functions of the parameter k.

This is the canonical example. For this reason, when explaining the Root Locus
method, it is common to refer to the roots of N as the “zeros,” while the roots of
D are referred to as the “poles.”

The canonical example seems to be of very limited usefulness. It only concerns
the stability of a system with proportional gain feedback, and only considers the
variations in the closed-loop poles as functions of the proportional gain value. But,
in fact, many problems which appear to be more complicated can ultimately be
cast in this manner.

Recall for a linear system, stability is a property of the system, and that we had two
essentially equivalent definitions – either that all bounded inputs produce bounded
outputs, or that under no input, all initial conditions decay exponentially to zero.
Hence in a block diagram, the stability is determined by the feedback loops, not
the exogenous inputs that enter through summing junctions.

Fact: Any block diagram connection of linear systems, summing junctions, and a
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single real parameter

can be massaged into the following diagram

where all of the external inputs are ignored (ie., set to zero). Here −L is simply
the overall transfer function that the parameter interacts with in feedback. The
stability of the original diagram can be determined from studying the stability of
L is negative feedback with the parameter ρ.

29.1.1 Examples

• KP or KI or KD in a PID controller

• A parameter in the plant state equations

• The stiffness, kL of the flexible cord in the 2-mass experimental setup.

29.2 Rules for Constructing Root Locus

Given N and D, the main theorem is as follows:

Theorem: Suppose k is real, and s0 ∈ C. Then s0 is a root of the equation

kN(s) +D(s) = 0

if and only if N(s0) 6= 0 and either

• k = 0 and D(s0) = 0, or
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• k 6= 0, and D(s0) 6= 0, the quotient
D(s0)

N(s0)
is real, and

−D(s0)

N(s0)
= k

Proof:

⇒ Suppose N(s0) = 0. Then, since N and D have no common roots, it mus be
that D(s0) 6= 0, and hence kN(s0) + D(s0) = D(s0) 6= 0. If k = 0, then
since D(s0) = −kN(s0) = 0. If k 6= 0, then since N(s0) 6= 0, it follows that

D(s0) 6= 0 either. Dividing out gives that k = −D(s0)
N(s0)

as desired.

⇐ If k = 0 and D(s0) = 0, then since N(s0) is just some finite number, we

have kN(s0) + D(s0) = 0. If k 6= 0 and D(s0) 6= 0 and k = −D(s0)
N(s0)

, then

multiplying out gives kN(s0) +D(s0) = 0 as desired. ]

So, in order to draw the root locus, without directly calculating any roots of
kN +D, you “simply” do the following:

1. For every complex number λ, check to see if either D(λ) = 0, or if N(λ)
D(λ)

is
real.

2. If D(λ) = 0, then λ is a root of kN(s) + D(s) for k = 0. In this case, λ is
said to “be on the root locus of the pair (N,D).”

3. If D(λ) 6= 0, but N(λ)
D(λ)

is real, then λ is a root of kN(s)+D(s) for a real-valued

k, namely k := −D(λ)
N(λ)

. In this case:

• If k > 0, then λ is said to be on the Positive Root Locus of the pair
(N,D).

• If k < 0, then λ is on the Negative Root Locus of the pair (N,D).

4. If N(λ)
D(λ)

is not real, then λ is not a root of kN(s)+D(s) = 0 for any real value

of k. In this case, λ is not on the root locus of the pair (N,D).

Of course, you can’t actually do this at every complex number - “so many complex
numbers, so little time.” But, there are a few basic rules that can be used to
accurately get a good idea of what the roots, as functions of k, look like. The first
rule follows from the reasoning above:

Basic Rule 1: For any complex number s0 ∈ C, it is either not on the root locus
of (N,D), or it is on the root locus for one, and only one value of k. Put another
way, if k1 and k2 are different real numbers, then it is impossible for a complex
number s0 to be a root of both k1N(s) +D(s) = 0 and k2N(s) +D(s) = 0. This
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fact greatly limits the complexity of the root locus diagram. This simple fact is
not explicitly stated in most textbooks, and as such, causes students much grief
the first few times sketching root locus plots.

Next, we recall a few basic facts from arithmetic:

1. if q and p are integers, then q−p is odd if and only if q+p is odd. Obviously
then, q − p is even if and only if q + p is even.

2. If A and B are complex, then 6 (AB) = 6 A+ 6 B

3. If A is complex, A 6= 0, then 6 1
A
= − 6 A

4. If A is complex, A 6= 0, then A is real if and only if 6 A is an integer multiple
of π. Moreover,

• A > 0 iff 1
A
> 0 iff 6 A is an even multiple of π

• A < 0 iff 1
A
< 0 iff 6 A is an odd multiple of π

5. The n roots of −1 are ejπ(2q+1)/n, for q = 0, 1, . . . n− 1.

6. The n roots of 1 are ejπ2q/n, for q = 0, 1, . . . n− 1.

Now, let {p1, p2, · · · , pn} be the roots of D(s) = 0. Since we assume that the
leading coefficient of D is one, it follows tha D can be factored as

D(s) = (s− p1) (s− p2) · · · (s− pn)

Similarly, let {z1, z2, · · · , zm} be the roots of N(s) = 0. Hence, N can be factored
as

N(s) = (s− z1) (s− z2) · · · (s− zm)
This yields the 2nd basic rule:

Basic Rule 2: A complex number s0 is on the root locus of (N,D) if and only if
for some integer q

6
N(s0)

D(s0)
= qπ

Depending on whether q is even or odd determines whether the point s0 is on the
Positive or Negative Root Locus. Note that

6 N(s0)
D(s0)

= [ 6 (s0 − z1) + 6 (s0 − z2) + · · ·+ 6 (s0 − zm)]

− [ 6 (s0 − p1) + 6 (s0 − p2) + · · ·+ 6 (s0 − pn)]

Moreover, since for any point on the root locus, the corresponding value of k is
−D

N
, it is easy to see that λ is on the Positive Root Locus if and only if

(2q + 1)π = [ 6 (s0 − z1) + 6 (s0 − z2) + · · ·+ 6 (s0 − zm)]

− [ 6 (s0 − p1) + 6 (s0 − p2) + · · ·+ 6 (s0 − pn)]
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for some integer q. Similarly, λ is on the Negative Root Locus if and only if

2qπ = [ 6 (s0 − z1) + 6 (s0 − z2) + · · ·+ 6 (s0 − zm)]

− [ 6 (s0 − p1) + 6 (s0 − p2) + · · ·+ 6 (s0 − pn)]

for some integer q.

29.2.1 Number of Roots

Since n ≥ m, for K ≥ 0, the polynomial is always n’th order, hence there must
always be n roots.

Special Case: When n = m, and K = −1, the polynomial is no longer n’th order.
What happens is that as k → −1 (from either side), at least one of the roots goes
to ∞. For example, try the case N(s) = s2 and D(s) = s2 + s+ 1.

29.2.2 Roots when K = 0

With K = 0, the polynomial becomes simply D(s) = 0. Hence, the roots are
located at the roots of D.

29.2.3 Roots on real axis

Take any point λ ∈ R, with λ not a root of N or D. Let #zR be the number of
real zeros (from the list of z1, z2, . . . , zm) that are to the right of λ. Also, let #pR

be the number of real poles (from the list of p1, p2, . . . , pn) that are to the right of
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λ. From the picture below,

it follows that

[ 6 (s0 − z1) + 6 (s0 − z2) + · · ·+ 6 (s0 − zm)]

− [ 6 (s0 − p1) + 6 (s0 − p2) + · · ·+ 6 (s0 − pn)] = π (#zR −#pR)

This is always an integer multiple of π, hence every point on the real axis is part of
the root locus of the pair (N,D). We can determine whether it is on the Positive
or Negative root locus as follows:

• λ is on the Positive Root Locus iff #zR −#pR is odd iff #zR +#pR is odd

• λ is on the Negative Root Locus iff #zR −#pR is even iff #zR +#pR is even

29.2.4 Behavior as K →∞

Here, it is best to consider first a simple example: N(s) = s+2, D(s) = s2+5s+1.
Now, by quadratic formula, we have that the roots of kN(s) +D(s) = 0 are

−(5 + k)±
√

(5 + k)2 − 4(1 + 2k)

2

Completing the square inside the square root gives that the roots are at

−(5 + k)±
√

(1 + k)2 + 20

2

For very large values of k the roots are near

−(5 + k) + (1 + k)

2
,
−(5 + k)− (1 + k)

2
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which are at −2 and −3−k. Hence, as k →∞, one root goes to 2, while the other
goes to −∞.

This can be generalized to higher order N and D. First note that for large values
of k, but finite values of s0,

kN(s) +D(s) ≈ kN(s)

Hence, as k → ±∞, m of the roots of kN(s) +D(s) = 0 approach the m roots of
N(s) = 0. The remaining n −m roots get large as k gets large, in a predictable
fashion. First, multiply out N and D and write them as

D(s) = sn + a1s
n−1 + · · ·+ an−1s+ an

and
N(s) = sm + b1s

m−1 + · · ·+ bm−1s+ bm

Note that in doing so, it is easy to see that

a1 =
n∑

i=1

−pi = −
n∑

i=1

pi, b1 =
m∑

j=1

−zj = −
m∑

j=1

zj

(you can prove this by induction...). Also, since the collections {pi}ni=1 and {zj}
m
j=1

appear in complex-conjugate pairs, only the real parts matter in the sums,

a1 = −
n∑

i=1

Re(pi), b1 = −
m∑

j=1

Re(zj) (95)

Now, suppose N(λ) 6= 0, dividing gives

−k =
D(λ)

N(λ)

≈ λn−m

[

1 +
a1 − b1
λ

+ · · ·
]

Therefore,

(−k)
1

n−m ≈ λ

[

1 +
a1 − b1
λ

] 1
n−m

≈ λ

[

1 +
a1 − b1
λ(n−m)

]

= λ+
a1 − b1
n−m

(to see these, note that a first-order Taylor’s series of (1 + x)r around x = 0 is
1 + rx). Take the Positive Root Locus (so k > 0). Using the expression for the
roots of −1 gives that

λ+
a1 − b1
n−m = k

1
n−m e

jπ
n−m

(2q+1)
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for q = 0, 1, . . . , n−m− 1. Solving for λ gives

λ = k
1

n−m e
jπ

n−m
(2q+1) − a1 − b1

n−m

Note that for a given θ and real number α, the quantity rejθ +α = (α+ r cos θ) +
jr sin θ, and as r goes from 0→∞ looks like

Hence, as k →∞, n−m of the roots of kN(s)+D(s) = 0 go to∞ in the complex
plane, along lines radiating from a common point, − a1−b1

n−m
, called the centroid, at

angles π(2q+1)
n−m

for q = 0, 1, . . . , n−m− 1.

A similar argument shows that as k → −∞, n−m of the roots of kN(s)+D(s) = 0
go to ∞ in the complex plane, along lines radiating from the same centroid, at
angles π(2q)

n−m
for q = 0, 1, . . . , n−m− 1.

The last thing to notice is that the centroid can also be written in terms of the
zeros of N and D. Using equation 95, we see that the centroid is at

centroid = −a1 − b1
n−m

=

∑n
i=1Re(pi) −

∑m
j=1Re(zj)

n−m

Summarizing: As k → ±∞, m of the root loci tend toward the zeros of N ,
namely the {z1, z2, . . . , zm}. The other n −m roots go to ∞ along determinable
asymptotes. There are n−m asymptotes for k →∞. There are n−m asymptotes
for k → −∞. The centroid of all of the asymptotes is at

∑n
i=1Re(pi) −

∑m
j=1Re(zj)

n−m
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The angles of the asymptotes are

PositiveRootLocus θ =
(2q + 1)π

n−m , q = 0, 1, . . . , n−m− 1

and

NegativeRootLocus θ =
(2q)π

n−m, q = 0, 1, . . . , n−m− 1

29.2.5 Angle of Departure from Pole

At k = 0 all of the roots of kN(s)+D(s) are at the roots ofD, namely p1, p2, . . . , pn.
As k increases, the roots migrate away from each pi. We can check the points very
close to a pi to see at what angle the root departs from pi. Take λ = p1 + εejθd

where ε is small, and we want to determine θd so that λ is on the root loci. Note
that

N(λ)

D(λ)
=

(λ− z1)(λ− z2) · ·(λ− zm)
(λ− p1) (λ− p2) · · · (λ− pn)

=
(p1 + εejθd − z1)(p1 + εejθd − z2) · · · (p1 + εejθd − zm)
(p1 + εejθd − p1)(p1 + εejθd − p2) · · · (p1 + εejθd − pn)

≈ (p1 − z1)(p1 − z2) · · · (p1 − zm)
εejθd(p1 − p2) · · · (p1 − pn)

In order for λ to be on the Positive Root Loci, we need this to be any odd multiple
of π, giving

(2q + 1)π = [ 6 (p1 − z1) + 6 (p1 − z2) + · · ·+ 6 (p1 − zm)]

− [θd + 6 (p1 − p2) + · · ·+ 6 (p1 − pn)]

Solve for θd as

θd = [ 6 (p1 − z1) + 6 (p1 − z2) + · · ·+ 6 (p1 − zm)]

− [ 6 (p1 − p2) + · · ·+ 6 (p1 − pn)]− (2q + 1)π

for any integer q. Note that regardless of what integer we chose, we just get a
additive factor of 2π, which as an angle of departure, plays no role. Hence, for a
simple way to remember the formula, chose q = −1, giving

θd = π + [ 6 (p1 − z1) + 6 (p1 − z2) + · · ·+ 6 (p1 − zm)]

− [ 6 (p1 − p2) + · · ·+ 6 (p1 − pn)]
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This holds for the Positive Root Locus.

For the Negative Root Locus, we use an even multiple of π which yields a similar
formula, without the last term,

θd = [ 6 (p1 − z1) + 6 (p1 − z2) + · · ·+ 6 (p1 − zm)]

− [ 6 (p1 − p2) + · · ·+ 6 (p1 − pn)]

This is for the Negative Root Locus.

29.2.6 Angle of Arrival to Zero

As k → ±∞, m of the loci approach the m zeros of N , namely {z1, z2, . . . , zm}.
The angle at which they arrive to the zero can be calculated in an identical manner
as we used to determine the angle of departure from a pole. We can check the
points very close to a zj to see at what angle the root loci arrives at zj. Take
λ = z1 + εejθa where ε is small, and we want to determine θa so that λ is on the
root loci. Mimicing the technique for departure, we get

• For the Positive Root Locus, the angle of arrival at a zero (in this case, z1)
is

θa = π + [ 6 (z1 − p1) + 6 (z1 − p2) + · · ·+ 6 (z1 − pn)]

− [ 6 (z1 − z2) + · · ·+ 6 (z1 − zm)]

• For the Negative Root Locus, the angle of arrival at the zero z1 is

θa = [ 6 (z1 − p1) + 6 (z1 − p2) + · · ·+ 6 (z1 − pn)]

− [ 6 (z1 − z2) + · · ·+ 6 (z1 − zm)]

29.2.7 Imaginary Axis Crossings

If we plot a Bode plot of N(jω)
D(jω)

versus ω, we can easily determine values of ω for

which N/D is real. The values of ω such that N/D is negative correspond to points

on the Positive root locus, achieved with k = D(jω)
N(jω)

.

Note: This is really the brute-force methodology described in section 29.2, but
applied only to purely imaginary values of s0.

On problems with small n (say n ≤ 5), a direct approach is sometimes successful.
Separate the equation

kN(jω) +D(jω) = 0
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into real and imaginary parts, giving two real equations in two real unknowns (k
and ω). Since the coefficients of N and D are real, the real-part equation will
involve even powers of ω, while the imaginary-part will involve odd power of ω.
Exploit the fact that not all powers of ω appear in each equation, and use the
quadratic formula to get two expressions of ω in terms of k. In some cases, these
can be solved analytically by hand.

29.2.8 Symmetry of Root Loci

Since kN(s)+D(s) is a polynomial with real coefficients, the roots are real and/or
come in complex-conjugate pairs. This implies that the root locus plot is symmet-
rical about the real axis.

29.2.9 Breakaway Points/Multiple Roots

As k varies, it is possible that a real-valued root turns into a complex-valued root.
For example, consider the roots of s2 + 4s + k. For k < 1, the roots are real,
but for k > 1 the roots are complex. The polynomial has real coefficients, so the
roots, when complex, come in complex-conjugate pairs. Since complex-conjugate
roots must have equal real parts, and since the roots change continuously with the
parameter k, it must be that there are two identical roots at k = 1, the transition
point. Indeed, at k = 1, the polynomial has two real roots, both at s = −2.

Also, from Basic Rule 1, we know that any fixed value s0 ∈ C can be on the root
locus for atmost one value of k. Hence, if two real roots approach each other as k
varies, they must split into complex-conjugate pairs at the value of k which makes
the roots equal. This occurance is called a breakaway point.

More generally, since the polynomial kN(s) +D(s) has real coefficients, the roots
are real and/or come in complex-conjugate pairs. This means that if a real-root
becomes complex, it’s complex conjugate must also appear at the same real value
(but with an oppositely signed imaginary part). Hence at the value of k where the
real root becomes complex, there must in fact be two identical real roots.

A polynomial p(s) with root at s = s0 actually has more than one root at s = s0
if and only if

p(s0) = 0, and
dp

ds

∣
∣
∣
∣
∣
s=s0

= 0

Hence, for s0 to be on the root locus of (N,D), it must be that

N(s0)

D(s0)
∈ R (96)
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is real. Denote k0 := −D(s0)
N(s0)

. For s0 to be a multiple root, we also need that

d

ds
[k0N(s) +D(s)]

∣
∣
∣
∣
∣
s=s0

= 0

Carrying out the differentiation, and using what k0 is, we have that at a multiple
root, in addition to equation (96), it must be that

−D(s0)
dN

ds
(s0) +N(s0)

dD

ds
(s0) = 0 (97)

So, to find multiple-roots (and root crossings, often called “breakaway points”) we
simply need to determine if any of the roots of

−D(s)
dN

ds
(s) +N(s)

dD

ds
(s) = 0

also satisfy N(s)
D(s)
∈ R (ie., are actually on the root locus).

29.3 Modern Root Locus Methods

Most good computer-aided control system design packages have a root locus com-
mand (in the MatLab control toolbox, the command is rlocus). These work purely
by brute force, direct calculation of the roots of the kN(s) +D(s) = 0 as k varies.
The computer uses speed, and well-developed, polynomial root finding algorithms
to quickly make accurate sketches of the dependencies of the roots on k.
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