Chapter 9

Tradeoffs and Limits of
Performance

9.1 Introduction

Fundamental limits of feedback systems will be investigated in this chapter.
We begin in Section 9.2 by discussing the basic feedback loop and typical
requirements. This includes the ability to follow reference signals, effects
of load disturbances and measurement noise and the effects of process vari-
ations. It turns out that these properties can be captured by a set of six
transfer functions, called the Gang of Six. These transfer functions are in-
troduced in Section 9.3. For systems where the feedback is restricted to
operate on the error signal the properties are characterized by a subset of
four transfer functions, called the Gang of Four. Properties of systems with
error feedback and the more general feedback configuration with two degrees
of freedom are also discussed in Section 9.3. It is shown that it is impor-
tant to consider all transfer functions of the Gang of Six when evaluating a
control system.

Another interesting observation is that for systems with two degrees of
freedom the problem of response to load disturbances can be treated sepa-
rately. This gives a natural separation of the design problem into a design
of a feedback and a feedforward system. The feedback handles process un-
certainties and disturbances and the feedforward gives the desired response
to reference signals.

Attenuation of disturbances are discussed in Section 9.4 where it is
demonstrated that process disturbances can be attenuated by feedback but
that feedback also feeds measurement noise into the system. It turns out
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Figure 9.1: Block diagram of a basic feedback loop.

that the sensitivity function which belongs to the Gang of Four gives a nice
characterization of disturbance attenuation. The effects of process variations
are discussed in Section 9.5. It is shown that their effects are well described
by the sensitivity function and the complementary sensitivity function. The
analysis also gives a good explanation for the fact that control systems can
be designed based on simplified models. When discussing process varia-
tions it is natural to investigate when two processes are similar from the
point of view of control. This important nontrivial problem is discussed
in Section ?7. Section 9.6 is devoted to a detailed treatment of the sen-
sitivity functions. This leads to a deeper understanding of attenuation of
disturbances and effects of process variations. A fundamental result of Bode
which gives insight into fundamental limitations of feedback is also derived.
This result shows that disturbances of some frequencies can be attenuated
only if disturbances of other frequencies are amplified. Tracking of reference
signals are investigated in Section ??. Particular emphasis is given to precise
tracking of low frequency signals. Because of the richness of control systems
the emphasis on different issues varies from field to field. This is illustrated
in Section 7?7 where we discuss the classical problem of design of feedback
amplifiers.

9.2 The Basic Feedback Loop

A block diagram of a basic feedback loop is shown in Figure 9.1. The system
loop is composed of two components, the process P and the controller. The
controller has two blocks the feedback block C' and the feedforward block
F'. There are two disturbances acting on the process, the load disturbance d
and the measurement noise n. The load disturbance represents disturbances
that drive the process away from its desired behavior. The process variable x
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is the real physical variable that we want to control. Control is based on the
measured signal y, where the measurements are corrupted by measurement
noise n. Information about the process variable x is thus distorted by the
measurement noise. The process is influenced by the controller via the
control variable u. The process is thus a system with three inputs and
one output. The inputs are: the control variable u, the load disturbance
d and the measurement noise n. The output is the measured signal. The
controller is a system with two inputs and one output. The inputs are the
measured signal y and the reference signal r and the output is the control
signal u. Note that the control signal v is an input to the process and the
output of the controller and that the measured signal is the output of the
process and an input to the controller. In Figure 9.1 the load disturbance
was assumed to act on the process input. This is a simplification, in reality
the disturbance can enter the process in many different ways. To avoid
making the presentation unnecessarily complicated we will use the simple
representation in Figure 9.1. This captures the essence and it can easily be
modified if it is known precisely how disturbances enter the system.

More Abstract Representations

The block diagrams themselves are substantial abstractions but higher ab-
stractions are sometimes useful. The system in Figure 9.1 can be represented
by only two blocks as shown in Figure 9.2. There are two types of inputs,
the control u, which can be manipulated and the disturbances w = (r, d, n),
which represents external influences on the closed loop systems. The out-
puts are also of two types the measured signal y and other interesting signals
z = (e, v, x). The representation in Figure 9.2 allows many control vari-
ables and many measured variables, but it shows less of the system structure
than Figure 9.1. This representation can be used even when there are many
input signals and many output signals. Representation with a higher level
of abstraction are useful for the development of theory because they make
it possible to focus on fundamentals and to solve general problems with a
wide range of applications. Care must, however, be exercised to maintain
the coupling to the real world control problems we intend to solve.

Disturbances

Attenuation of load disturbances is often a primary goal for control. This
is particularly the case when controlling processes that run in steady state.
Load disturbances are typically dominated by low frequencies. Consider
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Figure 9.2: An abstract representation of the system in Figure 9.1. The
input u represents the control signal and the input w represents the reference
r, the load disturbance d and the measurement noise n. The output y is the
measured variables and z are internal variables that are of interest.

for example the cruise control system for a car, where the disturbances
are the gravity forces caused by changes of the slope of the road. These
disturbances vary slowly because the slope changes slowly when you drive
along a road. Step signals or ramp signals are commonly used as prototypes
for load disturbances disturbances.

Measurement noise corrupts the information about the process variable
that the sensors delivers. Measurement noise typically has high frequencies.
The average value of the noise is typically zero. If this was not the case the
sensor will give very misleading information about the process and it would
not be possible to control it well. There may also be dynamics in the sensor.
Several sensors are often used. A common situation is that very accurate
values may be obtained with sensors with slow dynamics and that rapid but
less accurate information can be obtained from other sensors.

Actuation

The process is influenced by actuators which typically are valves, motors,
that are driven electrically, pneumatically, or hydraulically. There are often
local feedback loops and the control signals can also be the reference vari-
ables for these loops. A typical case is a flow loop where a valve is controlled
by measuring the flow. If the feedback loop for controlling the flow is fast
we can consider the set point of this loop which is the flow as the control
variable. In such cases the use of local feedback loops can thus simplify the
system significantly. When the dynamics of the actuators is significant it is
convenient to lump them with the dynamics of the process. There are cases
where the dynamics of the actuator dominates process dynamics.
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Design Issues

Many issues have to be considered in analysis and design of control systems.
Basic requirements are

e Stability

Ability to follow reference signals

Reduction of effects of load disturbances

Reduction of effects of measurement noise

Reduction of effects of model uncertainties

The possibility of instabilities is the primary drawback of feedback. Avoid-
ing instability is thus a primary goal. It is also desirable that the process
variable follows the reference signal faithfully. The system should also be
able to reduce the effect of load disturbances. Measurement noise is injected
into the system by the feedback. This is unavoidable but it is essential that
not too much noise is injected. It must also be considered that the models
used to design the control systems are inaccurate. The properties of the
process may also change. The control system should be able to cope with
moderate changes. The focus on different abilities vary with the application.
In process control the major emphasis is often on attenuation of load distur-
bances, while the ability to follow reference signals is the primary concern
in motion control systems.

9.3 The Gang of Six

The feedback loop in Figure 9.1 is influenced by three external signals, the
reference 7, the load disturbance d and the measurement noise n. There
are at least three signals xz, y and u that are of great interest for control.
This means that there are nine relations between the input and the output
signals. Since the system is linear these relations can be expressed in terms
of the transfer functions. Let X, Y, U, D, N R be the Laplace transforms
of x, y, u, d, n r, respectively. The following relations are obtained from the
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block diagram in Figure 9.1
P pPC PCF

X=1vpc? 13PN 1y pct
P 1 PCF
_ 9.1
Y 1+PC’D+1+PC’N+1+PCR (0-1)
PC C CF
U_71+PC 71+PCN+1+PC’R'

To simplify notations we have dropped the arguments of all Laplace trans-
forms. There are several interesting conclusions we can draw from these
equations. First we can observe that several transfer functions are the same
and that all relations are given by the following set of six transfer functions
which we call the Gang of Six.

PCF PC P

1+ PC 1+ PC 1+ PC (9.2)
CF C 1

1+ PC 1+ PC 1+ PC’

The transfer functions in the first column give the response of process vari-
able and control signal to the set point. The second column gives the same
signals in the case of pure error feedback when F' = 1. The transfer function
P/(1 + PC) in the third column tells how the process variable reacts to
load disturbances the transfer function C'/(1 + PC) gives the response of
the control signal to measurement noise.

Notice that only four transfer functions are required to describe how
the system reacts to load disturbance and the measurement noise and that
two additional transfer functions are required to describe how the system
responds to set point changes.

The special case when F' = 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedback from the error
only. In this case the system is completely characterized by four transfer
functions, namely the four rightmost transfer functions in (9.2), i.e.

PC

1+ PC’
P

1+ PC’
C

1+ PC’
1

1+ PC’

the complementary sensitivity function

the load disturbance sensitivity function
(9.3)

the noise sensitivity function

the sensitivity function
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These transfer functions and their equivalent systems are called the Gang
of Four. The transfer functions have many interesting properties that will
be discussed in the following. A good insight into these properties are essen-
tial for understanding feedback systems. The load disturbance sensitivity
function is sometimes called the input sensitivity function and the noise
sensitivity function is sometimes called the output sensitivity function.

Systems with Two Degrees of Freedom

The controller in Figure 9.1 is said to have two degrees of freedom because
the controller has two blocks, the feedback block C which is part of the
closed loop and the feedforward block F which is outside the loop. Using
such a controller gives a very nice separation of the control problem because
the feedback controller can be designed to deal with disturbances and pro-
cess uncertainties and the feedforward will handle the response to reference
signals. Design of the feedback only considers the gang of four and the feed-
forward deals with the two remaining transfer functions in the gang of six.
For a system with error feedback it is necessary to make a compromise. The
controller C' thus has to deal with all aspects of the problem.

To describe the system properly it is thus necessary to show the response
of all six transfer functions. The transfer functions can be represented in dif-
ferent ways, by their step responses and frequency responses, see Figures 9.3
and 9.4. Figures 9.3 and 9.4 give useful insight into the properties of the
closed loop system. The time responses in Figure 9.3 show that the feedfor-
ward gives a substantial improvement of the response speed. The settling
time is substantially shorter, 4 s versus 25 s, and there is no overshoot. This
is also reflected in the frequency responses in Figure 9.4 which shows that
the transfer function with feedforward has higher bandwidth and that it has
no resonance peak.

The transfer functions CF/(1 + PC) and —C/(1 + PC) represent the
signal transmission from reference to control and from measurement noise
to control. The time responses in Figure 9.3 show that the reduction in
response time by feedforward requires a substantial control effort. The initial
value of the control signal is out of scale in Figure 9.3 but the frequency
response in 9.4 shows that the high frequency gain of PCF/(1 + PC) is
16, which can be compared with the value 0.78 for the transfer function
C/(1 + PC). The fast response thus requires significantly larger control
signals.

There are many other interesting conclusions that can be drawn from
Figures 9.3 and 9.4. Consider for example the response of the output to load
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Figure 9.3: Step responses of the Gang of Six for PI control k£ = 0.775,
T; = 2.05 of the process P(s) = (s+ 1)~*. The feedforward is designed to
give the transfer function (0.5s + 1)~* from reference 7 to output y.
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Figure 9.4: Gain curves of frequency responses of the Gang of Six for PI
control k = 0.775, T; = 2.05 of the process P(s) = (s + 1)~* where the

feedforward has been designed to give the transfer function (0.5s + 1)~

from reference to output.
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Figure 9.5: Representation of properties of a basic feedback loop by step
responses in the reference at time 0, and at the process input at time 30.
The dashed full lines show the response for a system with error feedback
F =1, and the dashed lines show responses for a system having two degrees
of freedom.

disturbances expressed by the transfer function P/(1+ PC'). The frequency
response has a pronounced peak 1.22 at wy,q, = 0.5 the corresponding time
function has its maximum 0.59 at ¢,,4: = 5.2. Notice that the peaks are of
the same magnitude and that the product of weztmar = 2.6.

The step responses can also be represented by two simulations of the
process. The complete system is first simulated with the full two-degree-of-
freedom structure. The simulation begins with a step in the reference signal,
when the system has settled to equilibrium a step in the load disturbance is
then given. The process output and the control signals are recorded. The
simulation is then repeated with a system without feedforward, i.e. F = 1.
The response to the reference signal will be different but the response to the
load disturbance will be the same as in the first simulation. The procedure
is illustrated in Figure 9.5.

A Remark

The fact that 6 relations are required to capture properties of the basic
feedback loop is often neglected in literature. Most papers on control only
show the response of the process variable to set point changes. Such a curve
gives only partial information about the behavior of the system. To get
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Figure 9.6: Response of output y and control u to a step in reference r.

a more complete representation of the system all six responses should be
given. We illustrate the importance of this by an example.

Ezxample 31 (Assessment of a Control System). A process with the transfer

function .

PO = G+ 002

is controlled using error feedback with a controller having the transfer func-
tion

_503+1_

.02
C(s) = 1+%

50s S

The loop transfer function is

1
L(s) = ——
() s(s+1)
Figure 9.6 shows that the responses to a reference signal look quite reason-
able. Based on these responses we could be tempted to conclude that the
closed loop system is well designed. The step response settles in about 10 s
and the overshoot is moderate.
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To explore the system further we will calculate the transfer functions of
the Gang of Six, we have

pPCc 1 P S

1+PC  s2+s+1 1+PC  (s+0.02)(s2+s+1)
C  (s+0.02)(s+1) I s(s+1)

1+PC  s2+s+1 1+PC s24s+1

The responses of y and u to the reference r are given by

1
s24+s54+1

54 1)(s +0.02)
s24+s54+1

Y(s) = R(s), U(s)= ( R(s)

and the responses of y and u to the load disturbance d are given by

s 1
D S
(s+0.02)(s2+s+1) (), Uls) s2+s+1

Y(s) = D(s)
Notice that the process pole s = 0.02 is cancelled by a controller zero. This
implies that the loop transfer function is of second order even if the closed
loop system itself is of third order. The characteristic equation of the closed
loop system is

(s +0.02)(s>+s+1)=0

where the the pole s = —0.02 corresponds the process pole that is canceled
by the controller zero. The presence of the slow pole s = —0.02 which
appears in the response to load disturbances implies that the output decays
very slowly, at the rate of e99%t, The controller will not respond to the
signal e~902 hecause the zero s = —0.02 will block the transmission of this
signal. This is clearly seen in Figure 9.7, which shows the response of the
output and the control signals to a step change in the load disturbance.
Notice that it takes about 200 s for the disturbance to settle. This can be
compared with the step response in Figure 9.6 which settles in about 10s.

Having understood what happens it is straight forward to modify the
controller. With the controller

C(s):l—i-?

the response to a step in the load disturbance is as shown in the dashed
curves in Figure 9.7. Notice that drastic improvements in the response to
load disturbance are obtained with only moderate changes in the control
signal. This is a nice illustration of the importance of timing to achieve
good control.
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Figure 9.7: Response of output y and control uw to a step in the load dis-
turbance. Notice the very slow decay of the mode e~%9%  The control
signal does not respond to this mode because the controller has a zero
s = —0.02. The dashed curves show the results when the controller is
modified to C(s) =1+ 0.2/s.

The behavior illustrated in the example is typical when there are can-
cellations of poles and zeros in the transfer functions of the process and the
controller. The canceled factors do not appear in the loop transfer function
and the sensitivity functions. The canceled modes are not visible unless they
are excited. The effects are even more drastic than shown in the example
if the canceled modes are unstable. This has been known among control
engineers for a long time and a good design rule that cancellation of slow or
unstable process poles by zeros in the controller give very poor attenuation
of load disturbances. Another view of cancellations is given in Section 77.

9.4 Disturbance Attenuation

The attenuation of disturbances will now be discussed. For that purpose we
will compare an open loop system and a closed loop system subject to the
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Figure 9.8: Open and closed loop systems subject to the same disturbances.

disturbances as is illustrated in Figure 9.8. Let the transfer function of the
process be P(s) and let the Laplace transforms of the load disturbance and
the measurement noise be D(s) and N(s) respectively. The output of the
open loop system is

Yor = P(s)D(s) + N(s) (9-4)

and the output of the closed loop system is

P(s)D(s) + N(s)

Y = 00

= S(s)(P(s)D(s) + N(s)) (9.5)

where S(s) is the sensitivity function, which belongs to the Gang of Four.
We thus obtain the following interesting result

Ya(s) = S(s)Yor(s) (9.6)

The sensitivity function will thus directly show the effect of feedback on
the output. The disturbance attenuation can be visualized graphically by
the gain curve of the Bode plot of S(s). The lowest frequency where the
sensitivity function has the magnitude 1 is called the sensitivity crossover
frequency and denoted by ws.. The maximum sensitivity

1
1+ P(iw)C(iw)

M = max |S(iw)| = max (9.7)

is an important variable which gives the largest amplification of the distur-
bances. The maximum occurs at the frequency wys.
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Figure 9.9: Gain curve of the sensitivity function for PI control (k = 0.8,
ki = 0.4) of process with the transfer function P(s) = (s + 1)~%. The sen-
sitivity crossover frequency is indicated by + and the maximum sensitivity
by o.

A quick overview of how disturbances are influenced by feedback is ob-
tained from the gain curve of the Bode plot of the sensitivity function.
An example is given in Figure 9.9. The figure shows that the sensitivity
crossover frequency is 0.32 and that the maximum sensitivity 2.1 occurs at
wms = 0.56. Feedback will thus reduce disturbances with frequencies less
than 0.32 rad/s, but it will amplify disturbances with higher frequencies.
The largest amplification is 2.1.

If a record of the disturbance is available and a controller has been
designed the output obtained under closed loop with the same disturbance
can be visualized by sending the recorded output through a filter with the
transfer function S(s). Figure 9.10 shows the output of the system with and
without control. The sensitivity function can be written as

1 1

S8) =17 P(s)C(s)  1+L(s)

(9.8)

Since it only depends on the loop transfer function it can be visualized
graphically in the Nyquist plot of the loop transfer function. This is illus-
trated in Figure 9.11. The complex number 1+ L(iw) can be represented as
the vector from the point —1 to the point L(iw) on the Nyquist curve. The
sensitivity is thus less than one for all points outside a circle with radius 1
and center at —1. Disturbances of these frequencies are attenuated by the
feedback. If a control system has been designed based on a given model it is
straight forward to estimated the potential disturbance reduction simply by
recording a typical output and filtering it through the sensitivity function.
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Figure 9.10: Outputs of process with control (full line) and without control
(dashed line).

Variations in the Process Variable

So far we have discussed variations in the output. For the process variable
we have

_ P(s)
1+ P(s5)C(s)

P(s)C(s)

X(s) 1+ P()0()

D(s) N(s) = 5(s)D(s) = T(s)N(s)
The first term represents the effect of the load disturbance and the second
term the effect of measurement noise. Load disturbance are thus attenuated
but measurement noise is injected because of the feedback.

9.5 Process Variations

Control systems are designed based on simplified models of the processes.
Process dynamics will often change during operation. The sensitivity of a
closed loop system to variations in process dynamics is therefore a funda-
mental issue.

Risk for Instability

Instability is the main drawback of feedback. It is therefore of interest
to investigate if process variations can cause instability. The sensitivity
functions give a useful insight. Figure 9.11 shows that the largest sensitivity
is the inverse of the shortest distance from the point —1 to the Nyquist
curve.

The complementary sensitivity function also gives insight into allowable
process variations. Consider a feedback system with a process P and a
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- ~~

Figure 9.11: Nyquist curve of loop transfer function showing graphical in-
terpretation of maximum sensitivity. The sensitivity crossover frequency
wse and the frequency w,,s where the sensitivity has its largest value are
indicated in the figure. All points inside the dashed circle have sensitivities
greater than 1.

controller C'. We will investigate how much the process can be perturbed
without causing instability. The Nyquist curve of the loop transfer function
is shown in Figure 9.12. If the process is changed from P to P 4+ AP the
loop transfer function changes from PC to PC' + CAP as illustrated in the
figure. The distance from the critical point —1 to the point L is |1+ L|. This
means that the perturbed Nyquist curve will not reach the critical point —1
provided that

|CAP| < |1+ L]
which implies
1+ PC(i

C

This condition must be valid for all points on the Nyquist curve, i.e pointwise
for all frequencies. The condition for stability can be written as

AP(iw) ‘ < 1
P(iw) |T(iw)|
A technical condition, namely that the perturbation AP is a stable transfer

function, must also be required. If this does not hold the encirclement con-
dition required by Nyquist’s stability condition is not satisfied. Also notice

IAP| < ‘ (9.9)

(9.10)
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Figure 9.12: Nyquist curve of a nominal loop transfer function and its un-
certainty caused by process variations AP.

that the condition (9.10) is conservative because it follows from Figure 9.12
that the critical perturbation is in the direction towards the critical point
—1. Larger perturbations can be permitted in the other directions.

This formula (9.10) is one of the reasons why feedback systems work so
well in practice. The mathematical models used to design control system
are often strongly simplified. There may be model errors and the properties
of a process may change during operation. Equation (9.10) implies that the
closed loop system will at least be stable for substantial variations in the
process dynamics.

It follows from (9.10) that the variations can be large for those frequen-
cies where T' is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations
that will not cause instability is given by

AP (iw) ‘

P(iw)

<1
M,

where M; is the largest value of the complementary sensitivity

P(iw)C (iw)
1+ P(iw)C(iw)

M; = max |T (iw)| = max (9.11)
w w

The value of M; is influenced by the design of the controller. For example

if M; = 2 pure gain variations of 50% or pure phase variations of 30° are

permitted without making the closed loop system unstable. The fact that
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the closed loop system is robust to process variations is one of the reason
why control has been so successful and that control systems for complex
processes can indeed be designed using simple models. This is illustrated by
an example.

Ezxample 32 (Model Uncertainty). Consider a process with the transfer func-

tion .

P(s) = —

(s) (s+1)%

A PI controller with the parameters k = 0.775 and T; = 2.05 gives a closed
loop system with M = 2.00 and My = 1.35. The complementary sensitivity
has its maximum for wy,; = 0.46. Figure 9.13 shows the Nyquist curve of the
transfer function of the process and the uncertainty bounds AP = |P|/|T|
for a few frequencies. The figure shows that

e Large uncertainties are permitted for low frequencies, 7'(0) = 1.
e The smallest relative error |AP/P| occurs for w = 0.46.

e For w = 1 we have |T(iw)| = 0.26 which means that the stability
requirement is |[AP/P| < 3.8

e For w = 2 we have |T'(iw)| = 0.032 which means that the stability
requirement is |AP/P| < 31

The situation illustrated in the figure is typical for many processes, mod-
erately small uncertainties are only required around the gain crossover fre-
quencies, but large uncertainties can be permitted at higher and lower fre-
quencies. A consequence of this is also that a simple model that describes
the process dynamics well around the crossover frequency is sufficient for
design. Systems with many resonance peaks are an exception to this rule
because the process transfer function for such systems may have large gains
also for higher frequencies.

Small Gain Theorem

The robustness result given by Equation (9.10) can be given another inter-
pretation. This is illustrated in Figure 9.14 which shows a block diagram
of the closed loop system with the perturbed process in A. Another repre-
sentation of the system is given in B. This representation is obtatined by
combining two of the blocks. The loop transfer function of the system in
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Figure 9.13: Nyquist curve of a nominal process transfer function P(s) =
(s41)~* shown in full lines. The circles show the uncertainty regions |AP| =
1/|T| obtained for a PI controller with k£ = 0.775 and T; = 2.05 for w = 0,
0.46 and 1.

Figure 9.14B is
PC

= AP
1+ PC

L(s)

Equation 9.10 thus simply implies that the largest loop gain is less than one.
Since both blocks are stable it follows from Nyquists stability theorem that
the closed loop is stable. This result which holds under much more general
assumptions is called the small gain theorem.

P ()

___PC
—-C 1+PC

Figure 9.14: Illustration of robustness to process perturbations.



162 CHAPTER 9. TRADEOFFS AND LIMITS OF PERFORMANCE

Variations in Closed Loop Transfer Function

So far we have investigated the risk for instability. The effects of small
variation in process dynamics on the closed loop transfer function will now
be investigated. To do this we will analyze the system in Figure 9.1. For
simplicity we will assume that F' = 1 and that the disturbances d and n are
zero. The transfer function from reference to output is given by

Y PC

R _ 1+PC

(9.12)

Compare with (9.2). The transfer function 7" which belongs to the Gang of
Four is called the complementary sensitivity function. Differentiating (9.12)
we get

ar C B PC _ T
dP  (1+PC)? (1+PC)1+PC)P " P
Hence dlogT dT P
og _ a5
dlogP dPT (9.13)

This equation is the reason for calling S the sensitivity function. The relative
error in the closed loop transfer function 7" will thus be small if the sensitivity
is small. This is one of the very useful properties of feedback. For example
this property was exploited by Black at Bell labs to build the feedback
amplifiers that made it possible to use telephones over large distances.

A small value of the sensitivity function thus means that disturbances are
attenuated and that the effect of process perturbations also are negligible.
A plot of the magnitude of the complementary sensitivity function as in
Figure 9.9 is a good way to determine the frequencies where model precision
is essential.

Constraints on Design

Constraints on the maximum sensitivities My and M; are important to en-
sure that closed loop system is insensitive to process variations. Typical
constraints are that the sensitivities are in the range of 1.1 to 2. This has
implications for design of control systems which are illustrated by an exam-
ple.

Ezample 33 (Sensitivities Constrain Closed Loop Poles). PI control of a
first order system was discussed in Section 7?7 where it was shown that the
closed loop system was of second order and that the closed loop poles could
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be placed arbitrarily by proper choice of the controller parameters. The
process and the controller are characterized by

b

Y(s) = s aU(s)

U(s) = kY () + 2 (R(s) = ¥ (5)

where U, Y and R are the Laplace transforms of the process input, output
and the reference signal. The closed loop characteristic polynomial is

5% + (a + bk)s + bk;
requiring this to be equal to
5% 4+ 2Cwos + Wi (9.14)

where ¢ < 1, we find that the controller parameters are given by

2Cwg — a
k= —7—
b
2
W
ky = =2
b

and there are no apparent constraints on the choice of parameters ¢ and wy.
Calculating the sensitivity functions we get

B s(s+a)
S(s) = s + 2Cwos + wd
T(s) = (2Cwo — a)s + w%

$2 + 2Cwos + w3

Figure 9.15 shows clearly that the sensitivities will be large if the parameter

wp is chosen smaller than a. The equation for controller gain also gives an
indication that small values of wy are not desirable because proportional
gain then becomes negative which means that the feedback is positive.

We can thus conclude that if a closed loop characteristic polynomial of
the form (9.14) with ¢ < 1 is chosen it is necessary to have wy > a/(2(¢)
in order to have a system with reasonable robustness. The response time
of the closed loop system thus must be sufficiently fast. It is however pos-
sible to obtain closed loop system with slower response time by choosing a
closed loop characteristic polynomial with real roots. Let the characteristic
polynomial be

(s +p1)(s+p2)



164 CHAPTER 9. TRADEOFFS AND LIMITS OF PERFORMANCE

OU [ - = =
=
3
N
=
©n .,
AT i
10’4 I I I
107 10" 10° 10 10°
w
10"
10° E— —= 3
3 S
S0t - E
107L T~
10’3 I Ll I
107 10" 10° 10" 10°
w

Figure 9.15: Magnitude curve for Bode plots of the sensitivity function S
(above) and the complementary sensitivity function 7' (below) for ¢ = 0.7,
a =1 and wp/a = 0.1 (dashed), 1 (solid) and 10 (dotted).

The controller parameters then becomes

pL+p2—a
k=——-—"
b
p1p2
k;, = —=
b

The is positive if one of the closed loop poles is chosen to be equal to or less
than a. The sensitivity functions then becomes

S(s) = s(s+a)
(s +p1)(s+ p2)
T(s) = (p1 + p2)s + p1p2
(s +p1)(s+p2)
To guarantee that the sensitivity function is not too large one of the closed

loop poles should be close to a. The complementary sensitivity function has
a zero at

p1p2
z1 =
p1+ P2
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If P, < ps it follows that

05< L=
P1 P1+ D2
This implies that |T'(iw)|j2. We can thus conclude that if it is desired to
have a closed loop system with slower response time one of the closed loop
poles should be chosen close to the process pole a. This is another example
of the fact that it is important to choose the closed loop poles carefully when
using pole placement design.

<1

Sensitivities and Relative Damping

For simple low order control systems we have based design criteria on the
patterns of the poles and zeros of the complementary transfer function.
To relate the general results on robustness to the analysis of the simple
controllers it is of interest to find the relations between the sensitivities and
relative damping. The complementary sensitivity function for a standard
second order system is given by

2
“o

T2+ 2¢wos + w3

T(s)

This implies that the sensitivity function is given by

2
S(s) =1-T(s) = ﬁsgzrw(]iwi)wg

Straight forward but tedious calculations give

Ao BT+ VEE 4T
’ 8CZ4 1+ (4¢2—1)\/8C2+1
1+ +/8¢C%+ 1W0

2
1/(2¢y/1—¢2) if ¢ <V2/2 (9.15)
1 if ¢ >V2/2

~Jwo/1—2¢2 i ¢ <V2/2
“mt =10 it ¢ > v2/2

Wms =

M, =

The relation between the sensitivities and relative damping are shown in
Figure 9.16. The values ¢ = 0.3, 0.5 and 0.7 correspond to the maximum
sensitivities My = 1.99, 1.47 and 1.28 respectively.



166 ~CHAPTER 9. TRADEOFFS AND LIMITS OF PERFORMANCE

M,, M,

Figure 9.16: Maximum sensitivities M (full line) and M; (dashed line)
2

as functions of relative damping for T'(s) M‘;ﬁ and S(s) =
0
s(s+2¢wo)
s2+2Cwos+w8 '

9.6 The Sensitivity Functions

We have seen that the sensitivity function S and the complementary sensi-
tivity function T tell much about the feedback loop. We have also seen from
Equations (9.6) and (9.13) that it is advantageous to have a small value of
the sensitivity function and it follows from (9.10) that a small value of the
complementary sensitivity allows large process uncertainty. Since

1 P(s)C(s)

= TS P00 PE)00) and T'(s) =

5(s) T 1+ P(s)C(s)

it follows that
S(s)+T(s)=1 (9.16)

This means that S and T cannot be made small simultaneously. The loop
transfer function L is typically large for small values of s and it goes to zero
as s goes to infinity. This means that S is typically small for small s and
close to 1 for large. The complementary sensitivity function is close to 1 for
small s and it goes to 0 as s goes to infinity.

A basic problem is to investigate if S can be made small over a large
frequency range. We will start by investigating an example.

Ezample 34 (System that Admits Small Sensitivities). Consider a closed loop
system consisting of a first order process and a proportional controller. Let
the loop transfer function
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where parameter k is the controller gain. The sensitivity function is

s+1

S(s):s+1+k;

and we have

) 14+ w?
[S(w)] = \/1+2k+/€2+w2

This implies that |S(iw)| < 1 for all finite frequencies and that the sensitivity
can be made arbitrary small for any finite frequency by making k sufficiently
large.

The system in Example 34 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process lies in the fourth
quadrant. Systems whose Nyquist curves are in the first and fourth quadrant
are called positive real. For such systems the Nyquist curve never enters the
region shown in Figure 9.11 where the sensitivity is greater than one.

For typical control systems there are unfortunately severe constraints on
the sensitivity function. Bode has shown that if the loop transfer has poles
pr in the right half plane and if it goes to zero faster than 1/s for large s
the sensitivity function satisfies the following integral

o0 o0 1
log |S(iw)|dw —/ log————dw=m Re pyg 9.17
[, toslsttds = | ow e =53 40

This equation shows that if the sensitivity function is made smaller for
some frequencies it must increase at other frequencies. This means that if
disturbance attenuation is improved in one frequency range it will be worse
in other. This has been been called the water bed effect.

Equation (9.17) implies that there are fundamental limitations to what
can be achieved by control and that control design can be viewed as a
redistribution of disturbance attenuation over different frequencies.

For a loop transfer function without poles in the right half plane (9.17)
reduces to

/ log |S(iw)|dw =0
0

This formula can be given a nice geometric interpretation as shown in Fig-
ure 9.17 which shows log|S(iw)| as a function of w. The area over the
horizontal axis must be equal to the area under the axis.
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Figure 9.18: Contour used to prove Bode’s theorem.

Derivation of Bode’s Formula*

This is a technical section which requires some knowledge of the theory of
complex variables, in particular contour integration. Assume that the loop
transfer function has distinct poles at s = pg, in the right half plane and that
L(s) goes to zero faster than 1/s for large values of s.

Consider the integral of the logarithm of the sensitivity function S(s) =
1/(14L(s)) over the contour shown in Figure 9.18. The contour encloses the
right half plane except the points s = p, where the loop transfer function
L(s) = P(s)C(s) has poles and the sensitivity function S(s) has zeros. The
direction of the contour is counter clockwise.

The integral of the log of the sensitivity function around this contour is
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given by

/Flog(S(s))ds:/m log(S(s))ds—i—/Rlog(S(s))ds+Zk:fylog(S(s))ds

=hL++13=0

where R is a large semi circle on the right and v is the contour starting on
the imaginary axis at s = Im p; and a small circle enclosing the pole pi. The
integral is zero because the function log S(s) is regular inside the contour.
We have

iR iR

I = z/ log(S(iw))dw = Qi/ log(|S(iw)])dw
—iR 0

because the real part of log S(iw) is an even function and the imaginary part

is an odd function. Furthermore we have

I = /R log(S(s))ds = /R log(1 + L(s))ds ~ / L(s)ds

R

Since L(s) goes to zero faster than 1/s for large s the integral goes to
zero when the radius of the circle goes to infinity. Next we consider the
integral I3, for this purpose we split the contour into three parts X, v and
X_ as indicated in Figure 9.18. We have

LlogS(s)ds:/)(+logS(s)ds+LlogS(s)ds+/ log S(s)ds

The contour ~ is a small circle with radius r around the pole pi. The
magnitude of the integrand is of the order log r and the length of the path is
2mrr. The integral thus goes to zero as the radius r goes to zero. Furthermore
we have

/X+ 10gS(s)ds—|—/ log S(s)ds

= / (log S(s) —log S(s — 2mi)ds = 2mpy,
Xt

Letting the small circles go to zero and the large circle go to infinity and
adding the contributions from all right half plane poles pj gives

iR
L+L+13= —22'/ log | S (iw)|dw + ZQka =0.
0 K

which is Bode’s formula (9.17).
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9.7 Fundamental Limitations*

It is important to be aware of fundamental limitations. In this section we
will discuss these for the simple feedback loop. We will discuss how quickly
a system can respond to changes in the reference signal. Some of the factors
that limit the performance are

e Measurement noise
e Actuator saturation

e Process dynamics

Measurement Noise and Saturations

It seems intuitively reasonable that fast response requires a controller with
high gain which gives a fast closed loop system. When the controller has
high gain measurement noise is also amplified and fed into the system. This
will result in variations in the control signal and in the process variable. It is
essential that the fluctuations in the control signal are not so large that they
cause the actuator to saturate. Since measurement noise typically has high
frequencies the high frequency gain M, of the controller is thus an important
quantity. Measurement noise and actuator saturation thus gives a bound on
the high frequency gain of the controller and therefore also on the response
speed.

There are many sources of measurement noise, it can caused by the
physics of the sensor, in can be electronic. In computer controlled systems
it is also caused by the resolution of the analog to digital converter. Consider
for example a computer controlled system with 12 bit AD and DA converters.
Since 12 bits correspond to 4096 it follows that if the high frequency gain of
the controller is M, = 4096 one bit conversion error will make the control
signal change over the full range. To have a reasonable system we may
require that the fluctuations in the control signal due to measurement noise
cannot be larger than 5% of the signal span. This means that the high
frequency gain of the controller must be restricted to 200.

Dynamics Limitations

The limitations caused by noise and saturations seem quite obvious. It turns
out that there may also be severe limitations due to the dynamical proper-
ties of the system. This means that there are systems that are inherently
difficult or even impossible to control. Designers of any system should be
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aware of this. Since systems are often designed from static considerations
the difficulties caused by dynamics do not show up. We have already en-
countered this in Section 7?7 where we found that it was necessary to choose
the dominant pole so that wy is larger than the fastest unstable pole but
smaller than the slowest zero. It seems intuitively reasonable that a fast
closed loop system is required to stabilize an unstable pole and that the
response speed should be matched to the unstable pole. In the same way it
seems reasonable that it is not possible to get a very rapid response for a
system with a time delay. Since a right half plane zero s = z is similar to a
time delay T' = 1/2z it then follows that a right half plane zero limits the
achievable response time.

To give quantitative results we will characterize the closed loop system
by the gain crossover frequency wgy.. This is the smallest frequency where the
loop transfer function has unit magnitude, i.e. |L(iwgy.)|. This parameter is
approximately inversely proportional to the response time of a system. The
dynamic elements that cause limitations are time delays and poles and zeros
in the right half plane. The key observations are:

e A time delay Ty limits the response speed. A simple rule of thumb is

wgcly < 0.7 (9.18)

e A right half plane zero z,p, limits the response speed. A simple rule
of thumb is
Wye < 0.52pp (9.19)

Slow RHP zeros are thus particularly bad. Notice that if a time delay
is approximated by a zero in the right half plane we can apply the rule
for right half plane zeros to get wy.Ty < 1.

e A right half plane pole p,p;, requires high gain crossover frequency. A
simple rule of thumb is
Wye > 2p1”hp (920)

Fast unstable poles require a high crossover frequency.

e Systems with a right half plane pole p and a right half plane zero z
cannot be controlled unless the pole and the zero are well separated.
A simple rule of thumb is

DPrhp > 62rhp (921)
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e A system with a a right half plane pole and a time delay Ty cannot
be controlled unless the product p,p,Ty is sufficiently small. A simple
rule of thumb is

Pripla < 0.16 (9.22)

A detailed discussion will be given in Chapter 77. We illustrate with a few
examples.

Ezample 35 (Balancing an Inverted Pendulum). Consider the situation when
we attempt to balance a pole manually. An inverted pendulum is an example
of an unstable system. With manual balancing there is a neural delay which
is about Ty = 0.04 s. The transfer function from horizontal position of the
pivot to the angle is

where g = 9.8 m/s?is the acceleration of gravity and £ is the length of the
pendulum. The system has a pole p = y/g/¢. The inequality (9.22) gives

0.04v/g/¢ = 0.16

Hence, ¢ = 0.6 m. Investigate the shortest pole you can balance.

Ezxample 36 (Bicycle with rear wheel steering). The dynamics of a bicycle
was derived in Section ?7?. To obtain the model for a bicycle with rear wheel
steering we can simply change the sign of the velocity. It then follows from
(??) that the transfer function from steering angle [ to tilt angle 6 is

mVpl Js?> — mgl

P(s) =
(5) b —as+ VW

Notice that the transfer function depends strongly on the forward velocity
of the bicycle. The system thus has a right half plane pole at p = \/mgl/J
and a right half plane zero at z = Vj/a, and it can be suspected that the
system is difficult to control. The location of the pole does not depend on
velocity but the the position of the zero changes significantly with velocity.
At low velocities the zero is at the origin. For Vi = a\/mgf/J the pole and
the zero are at the same location and for higher velocities the zero is to the
right of the pole. To draw some quantitative conclusions we introduce the
numerical values m = 70 kg, £ = 1.2 m, a = 0.7, J = 120 kgm? and V =5
m/s, give z = V/a = 7.14 rad /s and p = wp = 2.6 rad/s we find that p = 2.6.
With Vp =5 m/s we get z = 7.1, and p/z = 2.7. To have a situation where
the system can be controlled it follows from (9.21) that to have z/p = 6
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the velocity must be increased to 11 m/s. We can thus conclude that if the
speed of the bicycle can be increased to about 10 m/s so rapidly that we do
not loose balance it can indeed be ridden.

The bicycle example illustrates clearly that it is useful to assess the
fundamental dynamical limitations of a system at an early stage in the
design. If this had been done the it could quickly have been concluded that
the study of rear wheel steered motor bikes in 7?7 was not necessary.

Remedies

Having understood factors that cause fundamental limitations it is interest-
ing to know how they should be overcome. Here are a few suggestions.

Problems with sensor noise are best approached by finding the roots
of the noise and trying to eliminate them. Increasing the resolution of a
converter is one example. Actuation problems can be dealt with in a similar
manner. Limitations caused by rate saturation can be reduced by replacing
the actuator.

Problems that are caused by time delays and RHP zeros can be ap-
proached by moving sensors to different places. It can also be beneficial to
add sensors. Recall that the zeros depend on how inputs and outputs are
coupled to the states of a system. A system where all states are measured
has no zeros.

Poles are inherent properties of a system, they can only be modified by
redesign of the system.

Redesign of the process is the final remedy. Since static analysis can
never reveal the fundamental limitations it is very important to make an
assessment of the dynamics of a system at an early stage of the design. This
is one of the main reasons why all system designers should have a basic
knowledge of control.

9.8 Summary

Having got insight into some fundamental properties of the feedback loop we
are in a position to discuss how to formulate specifications on a control sys-
tem. It was mentioned in Section 9.2 that requirements on a control system
should include stability of the closed loop system, robustness to model un-
certainty, attenuation of measurement noise, injection of measurement noise
ability to follow reference signals. From the results given in this section we
also know that these properties are captured by six transfer functions called
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the Gang of Six. The specifications can thus be expressed in terms of these
transfer functions.

Stability and robustness to process uncertainties can be expressed by the
sensitivity function and the complementary sensitivity function

1 PC
S_1+PC’ T_1+PC‘

Load disturbance attenuation is described by the transfer function from load
disturbances to process output

P

:1+PC:PS'

Gya

The effect of measurement noise is be captured by the transfer function

—_— C —_—
1+ PC

_Gun 057
which describes how measurement noise influences the control signal. The
response to set point changes is described by the transfer functions

FPC FC

— — FT =
) ur 1—|—PC

=11 pC =FCS

Compare with (9.1). A significant advantage with controller structure with
two degrees of freedom is that the problem of set point response can be
decoupled from the response to load disturbances and measurement noise.
The design procedure can then be divided into two independent steps.

e First design the feedback controller C' that reduces the effects of load
disturbances and the sensitivity to process variations without intro-
ducing too much measurement noise into the system

e Then design the feedforward F' to give the desired response to set
points.

9.9 Further Reading





