
Chapter 5

State Feedback

5.1 Introduction

The state of a dynamical system is a collection of variables that permits
prediction of the future development of a system. It is therefore very natural
to base control on the state. This will be explored in this chapter. It
will be assumed that the system to be controlled is described by a state
model. Furthermore it is assumed that the system has one control variable.
The technique which will be developed may be viewed as a prototype of
an analytical design method. The feedback control will be developed step
by step using one single idea, the positioning of closed loop eigenvalues in
desired locations.

The case when all the state variables are measured is first discussed in
Section 5.3. It is shown that if the system is reachable then it is always
possible to find a feedback so that the closed loop system has prescribed
eigenvalues.

In Section 5.4 we consider the problem of determining the states from
observations of inputs and outputs. Conditions for doing this are established
and practical ways to do this are also developed. In particular it is shown
that the state can be generated from a dynamical system driven by the
inputs and outputs of the process. Such a system is called an state estimator
or observer. The observer can be constructed in such a way that its state
approaches the true states with dynamics having prescribed eigenvalues. It
will also be shown that the problem of finding an observer with prescribed
dynamics is mathematically equivalent to the problem of finding a state
feedback.

In Section 5.5 it is shown that the results of Sections 5.3 and 5.4 can
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be combined to give a controller based on measurements of the process out-
put only. The conditions required are simply that the system is reachable
and observable. This result is important because the controller has a very
interesting structure. The controller contains a mathematical model of the
system to be controlled. This is called the internal model principle. The so-
lution to the eigenvalue assignment problem also illustrates that the notions
of reachability and observability are essential. The result gives a good inter-
pretation of dynamic feedback. It shows that the dynamics of the controller
arises from the need to reconstruct the state of the system.

Finally in Section ?? we give an example that illustrates the design
technique.

The details of the analysis and designs in this chapter are carried out
for systems with one input and one output. It turns out that the structure
of the controller and the forms of the equations are exactly the same for
systems with many inputs and many outputs. There are also many other
design techniques that give controllers with the same structure. A charac-
teristic feature of a controller with state feedback and an observer is that
the complexity of the controller is given by the complexity of the system to
be controlled. The controller actually contains a model of the system, the
internal model principle.

5.2 Reachability

We begin by disregard the output masurements and focus on the evolution
of the state which is given by

dx

dt
= Ax+Bu, (5.1)

where the system is assumed to be of order n. A fundamental question is if
it is possible to find control signals so that any point in the state space can
be reached. For simplicity we assume that the initial state of the system is
zero.

We will first provide an heuristic argument based on formal calculations
with delta functions. When the initial state is zero The response of the state
to a unit step in the input is given by

x(t) =

∫ t

0
eA(t−τ)Bdτ = A−1(eAt − I)B (5.2)

The derivative of a unit step function is the delta function δ(t) which may
be regarded as a function which is zero everywhere except at the origin with
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the property that
∫

∞

∞

δ(t)dt = 1

The response of the system to a delta function is thus given by the derivative
of (5.2)

dx

dt
= eAtB

The response to the derivative of a delta function is thus

dx

dt
= AeAtB

The input

u(t) = α1δ(t) + α2δ̇(t) + αdδ̇
2(t) + · · ·+ αnδ

n−1(t)

thus gives the state

x(t) = α1e
AtB + α2Ae

AtB + α3A
2eAtB + · · ·+ αnA

n−1eAtB

Hence

x(0+) = α1B + α2AB + α3A
2B + · · ·+ αnA

n−1B

The right hand is a linear combination of the columns of the matrix.

Wr = B AB . . . An−1B (5.3)

To reach an arbitrary point in the state space it must thus be required that
there are n linear independent columns of the matrix Wc. The matrix is
therefor called the reachability matrix.

An input consisting of a sum of delta functions and their inputs is a very
violent signal. To see that an arbitrary point can be reached with smoother
signals we can also argue as follow. Assuming that the initial condition is
zero the state of the system is given by

x(t) =

∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0
eA(τ)Bu(t− τ)dτ

It follows from the theory of matrix functions that

eAτ = Iα0(s) +Aα1(s) + . . .+An−1αn−1(s)
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and we find that

x(t) = B

∫ t

0
α0(τ)u(t− τ)dτ +AB

∫ t

0
α1(τ)u(t− τ)dτ+

. . .+An−1B

∫ t

0
αn−1(τ)u(t− τ)dτ

Again we observe that the right hand side is a linear combination of the
columns of the reachability matrix Wr given by (5.3).

We illustrate by two examples.

Example 9 (Reachability of the Inverted Pendulum). The linearized model
of the inverted pendulum is derived in Example ??. The dynamics matrix
and the control matrix are

A =
0 1
1 0

, B =
0
1

The reachability matrix is

Wr =
0 1
1 0

(5.4)

This matrix has full rank and we can conclude that the system is reachable.

Example 10 (System in Reachable Canonical Form). Next we will consider
a system by in reachable canonical form:

dz

dt
=

−a1 −a2 . . . an−1 −an
1 0 0 0
0 1 0 0
...
0 0 1 0

z +

1
0
0
...
0

u = Ãz + B̃u

The inverse of the reachability matrix is

W̃−1
r =

1 a1 a2 . . . an
0 1 a1 . . . an−1
...
0 0 0 . . . 1

(5.5)

To show this we consider the product

B̃ ÃB̃ · · · Ãn−1BW−1
r = w0 w1 · · · wn−1
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Figure 5.1: A non-reachable system.

where

w0 = B̃

w1 = a1B̃ + ÃB̃

...

wn−1 = an−1B + an−2ÃB + · · ·+ Ãn−1B

The vectors wk satisfy the relation

wk = ak + w̃k−1

Iterating this relation we find that

w0 w1 · · · wn−1 =

1 0 0 . . . 0
0 1 0 . . . 0
...
0 0 0 . . . 1

which shows that the matrix (5.5) is indeed the inverse of W̃r.

Systems That are Not Reachable

It is useful of have an intuitive understanding of the mechanisms that make
a system unreachable. An example of such a system is given in Figure 5.1.
The system consists of two identical systems with the same input. The
intuition can also be demonstrated analytically. We demonstrate this by a
simple example.
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Example 11 (Non-reachable System). Assume that the systems in Figure 5.1
are of first order. The complete system is then described by

dx1

dt
= −x1 + u

dx2

dt
= −x2 + u

The reachability matrix is

Wr =
1 −1
1 −1

This matrix is singular and the system is not reachable.

Coordinate Changes

It is interesting to investigate how the reachability matrix transforms when
the coordinates are changed. Consider the system in (5.1). Assume that the
coordinates are changed to z = Tx. It follows from linear algebra that the
dynamics matrix and the control matrix for the transformed system are

Ã = TAT−1

B̃ = TB

The reachability matrix for the transformed system then becomes

W̃r = B̃ ÃB̃ . . . Ãn−1B̃ =

We have

ÃB̃ = TAT−1TB = TAB

Ã2B̃ = (TAT−1)2TB = TAT−1TAT−1TB = TA2B

...

ÃnB̃ = TAnB

and we find that the reachability matrix for the transformed system has the
property

W̃r = B̃ ÃB̃ . . . Ãn−1B̃ = TB AB . . . An−1B = TWr (5.6)

This formula is very useful for finding the transformation matrix T .
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Figure 5.2: Block diagram of the process described by the state model in
Equation (5.7).

5.3 State Feedback

Consider a system described by the linear differential equation

dx

dt
= Ax+Bu

y = Cx
(5.7)

A block diagram of the system is shown in Figure 5.2. The output is the
variable that we are interested in controlling. To begin with it is assumed
that all components of the state vector are measured. Since the state at
time t contains all information necessary to predict the future behavior of
the system, the most general time invariant control law is function of the
state, i.e.

u(t) = f(x)

If the feedback is restricted to be a linear, it can be written as

u = −Kx+Krr (5.8)

where r is the reference value. The negative sign is simply a convention
to indicate that negative feedback is the normal situation. The closed loop
system obtained when the feedback (5.7) is applied to the system (5.8) is
given by

dx

dt
= (A−BK)x+BKrr (5.9)

It will be attempted to determine the feedback gain K so that the closed
loop system has the characteristic polynomial

p(s) = sn + p1s
n−1 + . . .+ pn−1s+ pn (5.10)

This control problem is called the eigenvalue assignment problem or the pole
placement problem (we will define “poles” more formally in a later chapter).
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Examples

We will start by considering a few examples that give insight into the nature
of the problem.

Example 12 (The Double Integrator). The double integrator is described by

dx

dt
=

0 1
0 0

x+
0
1
u

y = 1 0x

Introducing the feedback

u = −k1x1 − k2x2 +Krr

the closed loop system becomes

dx

dt
=

0 1
−k1 −k2

x+
0
Kr
r

y = 1 0x

(5.11)

The closed loop system has the characteristic polynomial

det
s −1
k1 s+ k2

= s2 + k2s+ k1

Assume it is desired to have a feedback that gives a closed loop system with
the characteristic polynomial

p(s) = s2 + 2ζω0s+ ω2
0

Comparing this with the characteristic polynomial of the closed loop system
we find find that the feedback gains should be chosen as

k1 = ω2
0, k2 = 2ζω0

To have unit steady state gain the parameter Kr must be equal to k1 =
ω2

0. The control law can thus be written as

u = k1(r − x1)− k2x2 = ω2
0(r − x1)− 2ζ0ω0x2

In the next example we will encounter some difficulties.
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Example 13 (An Unreachable System). Consider the system

dx

dt
=

0 1
0 0

x+
1
0
u

y = Cx = 1 0x

with the control law

u = −k1x1 − k2x2 +Krr

The closed loop system is

dx

dt
=
−k1 1− k2

0 0
x+

Kr

0
r

This system has the characteristic polynomial

det
s+ k1 −1 + k2

0 s
= s2 + k1s = s(s+ k1)

This polynomial has zeros at s = 0 and s = −k1. One closed loop pole
is thus always equal to s = 0 and it is not possible to obtain an arbitrary
characteristic polynomial.

This example shows that the pole placement problem cannot be solved.
An analysis of the equation describing the system shows that the state x2

is not reachable. It is thus clear that some conditions on the system are
required. The reachable canonical form has the property that the parameters
of the system are the coefficients of the characteristic equation. It is therefore
natural to consider systems on this form when solving the pole placement
problem. In the next example we investigate the case when the system is in
reachable canonical form.

Example 14 (System in Reachable Canonical Form). Consider a system in
reachable canonical form, i.e,

dz

dt
= Ãz + B̃u =

−a1 −a2 . . . −an−1 −an
1 0 . . . 0 0
0 1 . . . 0 0
...
0 0 . . . 1 0

z +

1
0
0
...
0

u

y = C̃z = b1 b2 · · · bnz

(5.12)
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The open loop system has the characteristic polynomial

Dn(s) = det

s+ a1 a2 . . . an−1 an
−1 s 0 0
0 −1 0 0
...
0 0 −1 s

Expanding the determinant by the last row we find that the following re-
cursive equation for the determinant.

Dn(s) = sDn−1(s) + an

It follows from this equation that

Dn(s) = sn + a1s
n−1 + . . .+ an−1s+ an

A useful property of the system described by (5.12) is thus that the coef-
ficients of the characteristic polynomial appear in the first row. Since the
all elements of the B-matrix except the first row are zero it follows that the
state feedback only changes the first row of the A-matrix. It is thus straight
forward to see how the closed loop poles are changed by the feedback. In-
troduce the control law

u = −L̃z +Krr = −k̃1z1 − k̃2z2 − . . .− k̃nzn +Krr (5.13)

The closed loop system then becomes

dz

dt
=

−a1 − k̃1 −a2 − k̃2 . . . −an−1 − k̃n−1 −an − k̃n
1 0 0 0
0 1 0 0
...
0 0 1 0

z +

Kr

0
0
...
0

r

y = b1 b2 · · · bnz

(5.14)

The feedback thus changes the elements of the first row of the A matrix,
which corresponds to the parameters of the characteristic equation. The
closed loop system thus has the characteristic polynomial

sn + (al + k̃1)s
n−1 + (a2 + k̃2)s

n−2 + . . .+ (an−1 + k̃n−1)s+ an + k̃n
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Requiring this polynomial to be equal to the desired closed loop polynomial
(5.10) we find that the controller gains should be chosen as

k̃1 = p1 − a1

k̃2 = p2 − a2

...

k̃n = pn − an

This feedback simply replace the parameters ai in the system (5.14) by pi.
The feedback gain for a system in reachable canonical form is thus

L̃ = p1 − a1 p2 − a2 · · · pn − an (5.15)

To have unit steady state gain the parameter Kr should be chosen as

Kr =
an + k̃n
bn

=
pn
bn

(5.16)

Notice that it is essential to know the precise values of parameters an and
bn in order to obtain the correct steady state gain. The steady state gain is
thus obtained by precise calibration. This is very different from obtaining
the correct steady state value by integral action, which we shall see in later
chapters. We thus find that it is easy to solve the pole placement problem
when the system has the structure given by (5.12).

The General Case

To solve the problem in the general case, we simply change coordinates so
that the system is in reachable canonical form. Consider the system (5.7).
Change the coordinates by a linear transformation

z = Tx

so that the transformed system is in reachable canonical form (5.12). For
such a system the feedback is given by (5.13) where the coefficients are given
by (5.15). Transforming back to the original coordinates gives the feedback

u = −L̃z +Krr = −L̃Tx+Krr

It now remains to find the transformation. To do this we observe that the
reachability matrices have the property

W̃r = B̃ ÃB̃ . . . Ãn−1B̃ = TB AB . . . An−1B = TWr
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The transformation matrix is thus given by

T = W̃rW
−1
r (5.17)

and the feedback gain can be written as

L = L̃T = L̃W̃rW
−1
r (5.18)

Notice that the matrix W̃r is given by (5.5). The feedforward gain Kr is
given by Equation (5.16).

The results obtained can be summarized as follows.

Theorem 4 (Pole-placement by State Feedback). Consider the system given
by Equation (5.7)

dx

dt
= Ax+Bu

y = Cx

with one input and one output. If the system is reachable there exits a
feedback

u = −Lx+Krr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + . . .+ pn−1s+ pn

The feedback gain is given by

L = L̃T = p1 − a1 p2 − a2 . . . pn − anW̃rW
−1
r

Kr =
pn
an

where ai are the coefficients of the characteristic polynomial of the matrix
A and the matrices Wr and W̃r are given by

Wr = B AB . . . An−1

W̃r =

1 a1 a2 . . . an−1

0 1 a1 . . . an−2
...
0 0 0 . . . 1

−1

Remark 1 (A mathematical interpretation). Notice that the pole-placement
problem can be formulated abstractly as the following algebraic problem.
Given an n×n matrix A and an n× 1 matrix B, find a 1×n matrix L such
that the matrix A−BL has prescribed eigenvalues.
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Computing the Feedback Gain

We have thus obtained a solution to the problem and the feedback has been
described by a closed form solution.

For simple problems is is easy to solve the problem by the following
simple procedure: Introduce the elements ki of K as unknown variables.
Compute the characteristic polynomial

det(sI −A+BK)

Equate coefficients of equal powers of s to the coefficients of the desired
characteristic polynomial

p(s) = sn + p1s
n−1 + . . .+ pn−1 + pn

This gives a system of linear equations to determine ki. The equations
can always be solved if the system is observable. Example 12 is typical
illustrations.

For systems of higher order it is more convenient to use Equation 5.18,
this can also be used for numeric computations. However, for large systems
this is not sound numerically, because it involves computation of the charac-
teristic polynomial of a matrix and computations of high powers of matrices.
Both operations lead to loss of numerical accuracy. For this reason there
are other methods that are better numerically. In Matlab the state feedback
can be computed by the procedures acker or place.

Summary

It has been found that the control problem is simple if all states are mea-
sured. The most general feedback is a static function from the state space
to space of controls. A particularly simple case is when the feedback is
restricted to be linear, because it can then be described as a matrix or a
vector in the case of systems with only one control variable. A method of
determining the feedback gain in such a way that the closed loop system has
prescribed poles has been given. This can always be done if the system is
reachable.

5.4 Observers
Advanced

In Section 5.3 it was shown that the pole it was possible to find a feedback
that gives desired closed loop poles provided that the system is reachable
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and that all states were measured. It is highly unrealistic to assume that all
states are measured. In this section we will investigate how the state can
be estimated by using the mathematical model and a few measurements. It
will be shown that the computation of the states can be done by dynamical
systems. Such systems will be called observers.

Consider a system described by

dx

dt
= Ax+Bu

y = Cx
(5.19)

where x is the state, u the input, and y the measured output. The problem
of determining the state of the system from its inputs and outputs will be
considered. It will be assumed that there is only one measured signal, i.e.
that the signal y is a scalar and that C is a vector.

Observability

When discussing reachability we neglected the output and focused on the
state. We will now discuss a related problem where we will neglect the input
and instead focus on the output. Consider the system

dx

dt
= Ax

y = Cx
(5.20)

We will now investigate if it is possible to determine the state from observa-
tions of the output. This is clearly a problem of significant practical interest,
because it will tell if the sensors are sufficient.

The output itself gives the projection of the state on vectors that are
rows of the matrix C. The problem can clearly be solved if the matrix C
is invertible. If the matrix is not invertible we can take derivatives of the
output to obtain.

dy

dt
= C

dx

dt
= CAx

From the derivative of the output we thus get the projections of the state
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on vectors which are rows of the matrix CA. Proceeding in this way we get

y
dy

dt
d2y

dt2
...

dn−1y

dtn−1

=

C
CA
CA2

...
CAn−1

x

We thus find that the state can be determined if the matrix

Wo =

C
CA
CA2

...
CAn−1

(5.21)

has n independent rows. Notice that because of the Cayley-Hamilton equa-
tion it is not worth while to continue and take derivatives of order higher
than n − 1. The matrix Wo is called the observability matrix. A system
is called observable if the observability matrix has full rank. We illustrate
with an example.

Example 15 (Observability of the Inverted Pendulum). The linearized model
of inverted pendulum around the upright position is described by (??). The
matrices A and C are

A =
0 1
1 0

, C = 1 0

The observability matrix is

Wo =
1 0
0 1

which has full rank. It is thus possible to compute the state from a mea-
surement of the angle.

A Non-observable System

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 5.3. Next we will consider
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Figure 5.3: A non-observable system.

the system in observable canonical form, i.e.

dz

dt
=

−a1 1 0 . . . 0
−a2 0 1 0
...

−an−1 0 0 1
−an 0 0 0

z +

b1
b2
...

bn−1

bn

u

y = 1 0 0 . . . 0z +Du

A straight forward but tedious calculation shows that the inverse of the
observability matrix has a simple form. It is given by

W−1
o =

1 0 0 . . . 0
a1 1 0 . . . 0
a2 a1 1 . . . 0
...

an−1 an−2 an−3 . . . 1

This matrix is always invertible. The system is composed of two identical
systems whose outputs are added. It seems intuitively clear that it is not
possible to deduce the states from the output. This can also be seen formally.

Coordinate Changes

It is interesting to investigate how the observability matrix transforms when
the coordinates are changed. Consider the system in equation (5.20). As-
sume that the coordinates are changed to z = Tx. It follows from linear
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algebra that the dynamics matrix and the output matrix are given by

Ã = TAT−1

C̃ = CT−1.

The observability matrix for the transformed system then becomes

W̃o =

C̃

C̃Ã

C̃Ã2

...

C̃Ãn−1

We have

C̃Ã = CT−1TAT−1 = CAT−1

C̃Ã2 = CT−1(TAT−1)2 = CT−1TAT−1TAT−1 = CA2T−1

...

C̃Ãn = CAnT−1

and we find that the observability matrix for the transformed system has
the property

W̃o =

C̃

C̃Ã

C̃Ã2

...

C̃Ãn−1

T−1 =WoT
−1 (5.22)

This formula is very useful for finding the transformation matrix T .

Observers Based on Differentiation

An observer based on differentiation will first be given. The construction is
an extension of the derivation of the criterion for observability given above.

First observe that the output equation

y = Cx

gives the projection of the state on the vector C. Differentiation of this
equation gives

dy

dt
= C

dx

dt
= CAx+ CBu
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The derivative of the output together with CBu thus gives the projection
of the state vector on the vector CA. Proceeding in this way and taking
higher derivatives give the projections of the state vector on the vectors
C,CA, . . . , CAn−1. If these vectors are linearly independent, the projections
of the state on n linearly independent vectors are obtained and the state can
thus be determined. Carrying out the details, we get

y = Cx

dy

dt
= Cdxdt = CAx+ CBu

d2y

dt2
= CA

dx

dt
+ CB

du

dt
= CA2x+ CABu+ CB

du

dt
...

dn−1y

dtn−1
= CAn−1x+ CAn−2Bu+ CAn−3B

du

dt
+ . . .+ CB

dn−2u

dtn−2

This equation can be written in matrix form as

C
CA
...

CAn−1

x =

y
dy
dt − CBu

...
dn−1y
dtn−1 − CA

n−2Bu− CAn−3B du
dt − . . .− CB

dn−2u
dtn−2

Notice that the matrix on the left-hand side is the observability matrix Wo.
If the system is observable, the equation can be solved to give

x =W−1
o

y
dy
dt
...

dn−1

dtn−1

−W−1
o

0 0 · · · 0
CB 0 · · · 0
...

CAn−2B CAn−3B · · · CB

u
du
dt
...

dn−2

dtn−2

(5.23)

This is an exact expression for the state. The state is obtained by differ-
entiating inputs and outputs. Notice that it has been derived under the
assumption that there is no measurement noise. Differentiation can give
very large errors when there is measurement noise and the method is there-
fore not very practical particularly when derivatives of high order appear.

Using a Dynamical System to Observe the State

For a system governed by Equation (5.19), it can be attempted to determine
the state simply by simulating the equations with the correct input. An
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estimate of the state is then given by

dx̂

dt
= Ax̂+Bu (5.24)

To find the properties of this estimate, introduce the estimation error

x̃ = x− x̂

It follows from (5.19) and (5.24) that

dx̃

dt
= Ax̃

If matrix A has all its eigenvalues in the left half plane, the error x̃ will
thus go to zero. Equation (5.24) is thus a dynamical system whose output
converges to the state of the system (5.19).

The observer given by (5.24) uses only the process input u, the measured
signal does not appear in the equation. It must also be required that the
system is stable. We will therefore attempt to modify the observer so that
the output is used and that it will work for unstable systems. Consider the
following

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) (5.25)

observer. This can be considered as a generalization of (5.24). Feedback
from the measured output is provided by adding the term L(y−Cx̂). Notice
that Cx̂ = ŷ is the output that is predicted by the observer. To investigate
the observer (5.25), form the error

x̃ = x− x̂

It follows from (5.19) and (5.25) that

dx̃

dt
= (A− LC)x̃

If the matrix L can be chosen in such a way that the matrix A − LC has
eigenvalues with negative real parts, error x̃ will go to zero. The convergence
rate is determined by an appropriate selection of the eigenvalues.

The problem of determining the matrix L such that A − LC has pre-
scribed eigenvalues is very similar to the pole placement problem that was
solved above. In fact, if we observe that the eigenvalues of the matrix and its
transpose are the same, we find that could determine L such that AT−CTLT
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has given eigenvalues. First we notice that the problem can be solved if the
matrix

CT ATCT . . . A(n−1)TCT

is invertible. Notice that this matrix is the transpose of the observability
matrix for the system (5.19).

Wo =

C
CA
...

CAn−1

of the system. Assume it is desired that the characteristic polynomial of the
matrix A− LC is

p(s) = sn + p1s
n−1 + . . .+ pn

It follows from Remark 1 of Theorem 4 that the solution is given by

LT = p1 − a1 p2 − a2 . . . pn − anW̃
T
o W

−T
o

where Wo is the observability matrix and W̃o is the observability matrix of
the system of the system

dz

dt
=

−a1 1 0 . . . 0
−a2 0 1 . . . 0
...

−an−1 0 0 . . . 1
−an 0 0 . . . 0

z +

b1
b2
...

bn−1

bn

u

y = 1 0 0 . . . 0

which is the observable canonical form of the system (5.19). Transposing
the formula for K we obtain

K =W−1
o W̃o

p1 − a1

p2 − a2
...

pn − an

The result is summarized by the following theorem.
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Theorem 5 (Observer design by pole placement). Consider the system given
by

dx

dt
= Ax+Bu

y = Cx

where output y is a scalar. Assume that the system is observable. The
dynamical system

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂)

with K chosen as

L =W−1
o W̃o

p1 − a1

p2 − a2
...

pn − an

(5.26)

where the matrices Wo and W̃o are given by

Wo =

C
CA
...

CAn−1

, W̃−1
o =

1 0 0 . . . 0
a1 1 0 . . . 0
a2 a1 1 . . . 0
...

an−1 an−2 an−3 . . . 1

Then the observer error x̃ = x − x̂ is governed by a differential equation
having the characteristic polynomial

p(s) = sn + p1s
n−1 + . . .+ pn

Remark 2. The dynamical system (5.25) is called an observer for (the states
of the) system (5.19) because it will generate an approximation of the states
of the system from its inputs and outputs.

Remark 3. The theorem can be derived by transforming the system to ob-
servable canonical form and solving the problem for a system in this form.

Remark 4. Notice that we have given two observers, one based on pure dif-
ferentiation (5.23) and another described by the differential equation (5.25).
There are also other forms of observers.
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Figure 5.4: Block diagram of the observer. Notice that the observer contains
a copy of the process.

Interpretation of the Observer

The observer is a dynamical system whose inputs are process input u and
process output y. The rate of change of the estimate is composed of two
terms. One term Ax̂ + Bu is the rate of change computed from the model
with x̂ substituted for x. The other term K(y − ŷ) is proportional to the
difference e = y − ŷ between measured output y and its estimate ŷ = Cx̂.
The estimator gain L is a matrix that tells how the error e is weighted and
distributed among the states. The observer thus combines measurements
with a dynamical model of the system. A block diagram of the observer is
shown in Figure 5.4.

Duality

Notice the similarity between the problems of finding a state feedback and
finding the observer. The key is that both of these problems are equivalent
to the same algebraic problem. In pole placement it is attempted to find K
so that A−BK has given eigenvalues. For the observer design it is instead
attempted to find L so that A − LC has given eigenvalues. The following
equivalence can be established between the problems

A↔ AT

B ↔ CT

K ↔ LT

Wr ↔W T
o
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The similarity between design of state feedback and observers also means
that the same computer code can be used for both problems.

Computing the Observer Gain

The observer gain can be computed in several different ways. For simple
problems it is convenient to introduce the elements of L as unknown param-
eters, determine the characteristic polynomial of the observer det (A− LC)
and identify it with the desired characteristic polynomial. Another alterna-
tive is to use the fact that the observer gain can be obtained by inspection
if the system is in observable canonical form. In the general case the ob-
server gain is then obtained by transformation to the canonical form. There
are also reliable numerical algorithms. They are identical to the algorithms
for computing the state feedback. The procedures are illustrated by a few
examples.

Example 16 (The Double Integrator). The double integrator is described by

dx

dt
=

0 1
0 0

x+
0
1
u

y = 1 0

The observability matrix is

Wo =
1 0
0 1

i.e. the identity matrix. The system is thus observable and the problem can
be solved. We have

A− LC =
−l1 1
−l2 0

It has the characteristic polynomial

detA− LC = det
s+ l1 −1
−l2 s

= s2 + l1s+ l2

Assume that it is desired to have an observer with the characteristic poly-
nomial

s2 + p1s+ p2 = s2 + 2ζωs+ ω2

The observer gains should be chosen as

l1 = p1 = 2ζω

l2 = p2 = ω2
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The observer is then

dx̂

dt
=

0 1
0 0

x̂+
0
1
u+

l1
l2
(y − x̂1)

5.5 Output Feedback

In this section we will consider the same system as in the previous sections,
i.e. the nth order system described by

dx

dt
= Ax+Bu

y = Cx
(5.27)

where only the output is measured. As before it will be assumed that u and
y are scalars. It is also assumed that the system is reachable and observable.
In Section 5.3 we had found a feedback

u = −Kx+Krr

for the case that all states could be measured and in Section 5.4 we have
presented developed an observer that can generate estimates of the state x̂
based on inputs and outputs. In this section we will combine the ideas of
these sections to find an feedback which gives desired closed loop poles for
systems where only outputs are available for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u = −Kx̂+Krr (5.28)

where x̂ is the output of an observer of the state (5.25) ,i.e.

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) (5.29)

Since the system (5.27) and the observer (5.29) both are of order n, the
closed loop system is thus of order 2n. The states of the system are x and
x̂. The evolution of the states is described by equations (5.27), (5.28)(5.29).
To analyze the closed loop system, the state variable x̂ is replace by

x̃ = x− x̂ (5.30)

Subtraction of (5.27) from (5.27) gives

dx̃

dt
= Ax−Ax̂−K(y − Cx̂) = Ax̃−KCx̃ = (A− LC)x̃
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Introducing u from (5.28) into this equation and using (5.30) to eliminate x̂
gives

dx

dt
= Ax+Bu = Ax−BKx̂+BKrr = Ax−BK(x− x̃) +BKrr

= (A−BK)x+BKx̃+BKrr

The closed loop system is thus governed by

d

dt

x
x̃
=
A−BK BK

0 A− LC
x
x̃
+
BKr

0
r (5.31)

Since the matrix on the right-hand side is block diagonal, we find that the
characteristic polynomial of the closed loop system is

det (sI −A+BK) det (sI −A+ LC)

This polynomial is a product of two terms, where the first is the charac-
teristic polynomial of the closed loop system obtained with state feedback
and the other is the characteristic polynomial of the observer error. The
feedback (5.28) that was motivated heuristically thus provides a very neat
solution to the pole placement problem. The result is summarized as follows.

Theorem 6 (Pole placement by output feedback). Consider the system

dx

dt
= Ax+Bu

y = Cx

The controller described by

u = −Kx̂+Krr

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂)

gives a closed loop system with the characteristic polynomial

det (sI −A+BK) det (sI −A+ LC)

This polynomial can be assigned arbitrary roots if the system is observable
and reachable.

Remark 5. Notice that the characteristic polynomial is of order 2n and
that it can naturally be separated into two factors, one det (sI −A+BK)
associated with the state feedback and the other det (sI −A+ LC) with the
observer.

Remark 6. The controller has a strong intuitive appeal. It can be thought
of as composed of two parts, one state feedback and one observer. The
feedback gain L can be computed as if all state variables can be measured.
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Figure 5.5: Block diagram of a controller which combines state feedback
with an observer.

The Internal Model Principle

A block diagram of the controller is shown in Figure 5.5. Notice that the
controller contains a dynamical model of the plant. This is called the internal
model principle. Notice that the dynamics of the controller is due to the
observer. The controller can be viewed as a dynamical system with input y
and output u.

dx̂

dt
= (A−BK − LC)x̂+Ky

u = −Lx̂+Krr

The controller has the transfer function

C(s) = L[sI −A+BK + LC]−1K (5.32)

5.6 Summary

In this chapter we have presented a systematic method for design of a con-
troller. The controller has an interesting structure, it can be thought of
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as composed of three subsystems: a system that generates the desired out-
put and a feedforward signals from the reference value, an estimator and a
feedback from estimated states. This structure has the property that the
response to reference signals can be decoupled from the response to distur-
bances. The details are carried out only for systems with one input and
one output but it turns out that the structure of the controller is the same
for systems with many inputs and many outputs. The equations for the
controller have the same form, the only difference is that the feedback gain
L and the observer gain K are matrices instead of vectors for the single-
input single-output case. There are also many other design methods that
give controllers with the same structure but the gains K and L are com-
puted differently. The analysis also gives an interesting interpretation of
integral action as a disturbance estimator. This admits generalizations to
many other types of disturbances.
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