Stabilizing the power of a laser beam via feedback/forward

Loop-shaping: put gain where you need it & close carefully

- Higher gain at acoustic, seismic frequencies
- Try not to close in a noise bump with inadequate phase margin

Filter sensor noise and limit gain to SNR bandwidth

Signal diagram for "general" scenario

Conclusions

- It's as important to characterize your noise as to characterize your plant
- Plenty of room for theory to help with optimizing and compromising

Measuring optical phase

Adaptive homodyne measurement

Adaptive homodyne feedback algorithms

(D. W. Berry and H. M. Wiseman, PRA 63, 013813 (2000))

Local oscillator phase:
$$\Phi(v) = \hat{\varphi}(v) + \frac{\pi}{2}$$
 $\hat{\varphi}(v) = \arg(A_v)$

Mark I: estimate = arg(A); Mark II: estimate = arg(C)

$$A_{v} = \int_{0}^{v} I(u)e^{i\Phi(u)}du \qquad B_{v} = -\int_{0}^{v} e^{2i\Phi(u)}du \qquad C_{v} = A_{v}v + B_{v}A_{v}^{*}$$

technical effects?

Technical challenges - laser noise

Technical challenges - loop delay

Experimental implementation

Closing the loop...

M. Armen, J. Au, J. Stockton, ... PRL 89, 133602 (2002)

The power of quantum feedback

Feedback control of quantum dynamics

optical coupling to internal and/or center-of-mass atomic dynamics

Cavity QED with cold atoms

Single-atom spatial trajectories (with J. Ye and H. J. Kimble)

Intra-cavity atom traps

Real-time 'quantum feedback' control

- quantum-limited broadband measurement + low latency signal processing (HW)
- synthesis (bilinear/stochastic/Hamiltonian) & identification methodology (SW)
- explore "applications" with demonstrable, unique benefits of real-time QFB

Loading cold atoms into a surface-MOT, MST (B. Lev)

http://minty.caltech.edu/MabuchiLab/