Review from last Dickinson lecture.....

Control Theory Approaches to Biological Sensors

Sensory systems of interest to students of control theory because:

1) Sensory cells dominate most nervous systems.

2) Animals make great sensors.

eg. insect eyes operates over <u>8</u> orders of magnitudes, compared to a "good" 12 bit CCD

Silk moth malecan detect single molecule.

3) Sensory process extremely amenable to control theory.

y = H(s) u, where H(s) is transfer function.

we can treat sensory system as transfer function:

Sensory neurons transform energy in the external world into neuronal output. 3) Sensory process extremely amenable to control theory:

y = H(s) u, where H(s) is transfer function.

we can treat sensory system as transfer function:

Sensory neurons transform energy in the external world into neuronal output.

Consider 'basic' neuron....

- spike rate alters release of chemical transmitter in terminals
- transmitter alters DC potential of post-synaptic cell

Consider sensory neuron....

trans-membrane potential

energy at dendrite

output

spike rate

1. Coupling

Coupling is performed by non-neuronal accessory structures, e.g. vertebrate inner ear.....

2. Transduction

One at dendrite, energy must activate ion channel to change current flow across membrane....

Adapted from electron-scanning micrograph at 16,800x . A. J. Hudspeth, R. Jacobs, Science News, Oct 20, 1984.

In general, 2 kinds of transduction processes:

3. Encoding

Problem with encoding is limited dynamic range.

max. sensitivity

Encoding, cont...

How do neurons actually encode information?

1) temporal code

magnitude of stimulus encoded by spike frequency

spikes stimulus

temporal features of simulus encodes by precise position of spikes

Who/what decides whether a cell is using a rate code vs. a temporal code?

Systems Indentification

How do we characterize sensory cells? - or any 'unknown system for that matter?

employ "Systems Indentification":

fit measured response to particular model, e.g.

$$H(s) = \frac{1}{ms^2 + bs + k}$$

solve for m,b,k via least squares

This cascade describes many sensory cells.

H(s)

Identification methods using noise....

Systems ID leads to interesting trick with sensory cells....

Sine wave analysis takes time, a shortcut is to use noise:

'white' noise contains all frequencies with gaussian amplitudes

How do you extract H(s)? If input, u(t) is noise, then system, h(t) may be found by:

$$h(\tau) = \frac{1}{PT} \int_{0}^{\infty} y(t) u(t - \tau) d\tau \begin{cases} = \text{ cross correlation} \\ \text{ of input and output} \end{cases}$$

If input, output, y(t) is spike train, such that y(t) = 1 during spike, 0 elsewhere, then:

$$h(\tau) = \frac{1}{PT} \sum_{k=1}^{K} u(t-\tau) \Delta \tau \qquad = \text{signal average of input} \text{ preceding each spike!}$$

thus, system equals input "most likely to succeed" = reverse correlation technique

