Review from last Dickinson lecture......

two wings:
(di-ptera)

specialized
“power”
muscles

ACTUATORS

neural
superposition

SENSORS

hind wing
gyroscopes
(halteres)

~500,000 neurons oY



Control Theory Approaches to Biological Sensors

Sensory systems of interest to students of control theory because:

1) Sensory cells dominate most 2) Animals make great sensors. 3) Sensory process extremely
nervous systems. amenable to control theory.

eg. insect eyes operates over
8 orders of magnitudes, compared to
a “good” 12 bit CCD
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y = H(s) u, where H(s)
1s transfer function.

we can treat sensory system
as transfer function:
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3) Sensory process extremely amenable to control theory:
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y = H(s) u, where H(s)
1s transfer function.

we can treat sensory system as transfer function:
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Sensory neurons transform energy in the external world into neuronal output.



Consider ‘basic’ neuron....
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Basic Neural Information Flow (output)

* neuron receives chemical transmitter from pre-synaptic cell
* synaptic input alters DC potential in dendrties

* DC potential in dendrites alters spike rate in axon

» spike rate alters release of chemical transmitter in terminals
« transmitter alters DC potential of post-synaptic cell



Consider sensory neuron....
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sensory process broken into three steps:
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1. Coupling

Coupling is performed by non-neuronal accessory structures, e.g. vertebrate inner ear.....

Yestibule
: Dura Mater
i RS subarachnoid

~, 4

Cershrospinal

Fluid
Peribmphatic
Cruct
cochlea
Fourier
e decomposition
Tak
Crval Wind o - Scala Yestibuli
ear ossicles Raund Window Scala Media
match air-to-water Scala Tympani

impedance



Cristae Ampullares basilar

membrane
/M acula of Utricle

Macula of Daccule

/

Coupling,
cont.

s00oa

Fooo

rgan of ot

frequency response varies base-to-tip:

Fabia Matmmana




2. Transduction

One at dendrite, energy must activate ion channel to change current flow across membrane....

Adapted from electron-scanning

micrograph at 16,800x . A. J. Hudspeth,

R. Jacobs, Science News, Oct 20, 1984. In general, 2 kinds of transduction processes:

direct: 27d messenger mediated: @
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3. Encoding

Spike encoding is need for long distance transmission phasic response

Problem with encoding is limited dynamic range.
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Encoding, cont...

How do neurons actually encode information?

1) rate code 1) temporal code

spike. N7 N N code 00000100100000110000010100000010000010100010010

rate
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magnitude of stimulus encoded temporal features of simulus encodes by precise
by spike frequency position of spikes

Who/what decides whether a cell is using a rate code vs. a temporal code?



Systems Indentification

How do we characterize sensory cells? — or any ‘unknown system for that matter?

employ “Systems Indentification”:
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instead of designing a transfer function, simply measure it: response

create Bode Plot
for unknown system
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fit measured response to particular model, e.g.
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solve for m,b,k via least squares

is “clipped”

in practice cells respond like this:/
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This cascade describes many sensory cells.




Identification methods using noise....

Systems ID leads to interesting trick with sensory cells....

‘white’ noise contains all frequencies

Sine wave analysis takes time, a shortcut is to use noise: with gaussian amplitudes

input output
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How do you extract H(s)?
If input, u(t) is noise, then system, h(t) may be found by:

h(f) - j y(t)u(t —T)df = cross correlation

of input and output

If input, output, y(t) is spike train, such that y(t) = 1 during spike, 0 elsewhere, then:
] K ol r
_ = S1gnal average o 1nput
h('Z') — PT 2 , l/l(t o T)A (4 preceding each spike!

thus, system equals input “most likely to succeed”
= reverse correlation technique



Noise Approach Example
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