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CDS 101: Lecture 7.1
Loop Analysis of Feedback Systems

Richard M. Murray
11 November 2002

* Show how to compute closed loop stability from open loop properties

Reading:
* Astrom, Section 3.5
* Optional: Packard, Poola and Horowitz, Chapter 30-31

* Advanced: Lewis, Chapter 7

Goals:
¢ Describe the Nyquist stability criterion for stability of feedback systems
¢ Define gain and phase margin and determine it from Nyquist and Bode plots

Review from Last Week
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Additional info from last week’s lecture

Decibel (dB)
* Logarithmic scale used to define ratio between amplitudes (gain)
* 20 decibel (dB) = factor of 10 in gain: plot 20*log, ,(gain)

P(s)C(s)
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Frequency (rad/sec)
History and background
* 1 bel = logarithm of the ratio of power. Decibel = 1/10 bel.

* Since power goes as the square of the amplitude, we use 20*log(gain) for ratio of
amplitudes (power goes as the square of the amplitude in electrical circuits)
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Closed Loop Stability

d
Q: how do open loop dynamics affect the
.
- e ) u P(s) close.d loop stability? A
- * Given open loop transfer function C(s)P(s)

determine when system is stable

* Useful for design since we specify C(s)

Brute force answer: compute poles closed loop transfer function

_ rC _ 1, * Poles of H, = zeros of 1 + PC
" 1+PC d,d +nn, « Easy to compute, but not so good for design

Alternative: look for conditions on PC
that lead to instability
* Example: if PC(s) = -1 for some s =j o,
then system is not asymptotically stable

¢ Condition on PC is much nicer because
we can design PC(s) by choice of C(s)

Phase (deg) Magnitude (dB)

* However, checking PC(s) = -1 is not
enough; need more sophisticated check

1
Frequency (rad/sec)
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Game Plan: Frequency Domain Design

Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable + good performance

PC * Poles of H, = zeros of 1 + PC
H = . .
1+ PC * Would also like to “shape” H, to specify
performance at differenct frequencies
v ‘ ‘ ‘ ‘ * Low frequency range:
| PC>1 PC - ch
g . PC>1 = ~1
1+ PC
] ol (good tracking)
B * Bandwidth: as high as
! possible, but stay stable
ol | e Idea: use C(s) to shape PC
3 s ] (under certain constraints)
"ol — | * Need tools to analyze stability
=T ' and performance for closed
! "’ s Gan i ! loop given PC
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Nyquist Criterion
Imag
d . A * Nyquist “D”
+jOO hRNY
N contour
r 5 ) %}i P(s) y RN  Take limit as
Z \‘ r—+0,R— oo
/ i * Trace from —oco
r'\r ! Real 15 +00 along
Can determine stability from (open) imaginary axis
loop transfer function, L(s) = P(s)C(s).
* Use “principle of the argument” from .
. . -joo |----
complex variable theory (see reading)

Trace frequen-

Thm (Nyquist). Consider the Nyquist cy response
plot for loop transfer function L(s). Let along the Ny-
P #RHP poles of L(s) quist D

. . . contour
N # clockwise encirclements of -1 « Count net # of
Z  #RHP zeros of 1 + L(s) clockwise
Then encirclements
of the -1 point
Z=N+P
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Simple Interpretation of Nyquist

d Basic idea: avoid positive feedback
e % u ¢ If L(s) has 180° phase (or greater) and
r )= G P(s) Y gain greater than 1, then signals are

amplified around the loop

* Use when phase is monotonic
* General case requires Nyquist

Can generate Nyquist plot from the Bode plot + reflection around real axis

Bode Diagrams Nyquist Diagrams
From: U(1

From: L

Phase (deg): Magnitude (dB)
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Frequency (rad/sec) Real Axis

bode(sys) nyquist(sys)
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Example: Proportional + Integral* cruise control system
d

_,.-—:;‘{RT e % u
koot - r C(s) P(s) y
§

Nyquist Diagrams

o0 ‘ ‘ F'orr‘\ u() ‘ ‘ ‘ P(S) _ 1/77’}’[ . r
s+b/m s+a
1500
K.
1000 | 1 C(S):Kp'f“ .
. B | s+0.01
£ Remarks
E 500 | 1 'NZO,P:0:>Z:O(Stable)
1000 - | 1 * Need to zoom in to make sure
- there are no net encirclements
* Note that we don’t have to

500 0 500 1000 1500 2000 2500 Compute closed lOOp response
Real Axis

* slightly modified; more on the design of this compensator in next week’s lecture
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More complicated systems

What happens when open loop plant has RHP poles?

¢ 1 + PC has singularities inside D countour = these must be taken into account

Pole-zero map Nyquist Diagrams
From: U(1)

< 2
E g
% 3
E
Real Axis
s+0.9 1 : : TRETIET
L(s) = ST :
s—=0.5 s"+s+1 Real Axis
N=-1,P=1=Z=N+P =0 (stable)
unstable pole
1 s+1

= v
1+L  (s+0.35)(s+0.07+1.2/)(s+0.07—1.2)

11 Nov 02 R. M. Murray, Caltech CDS

Comments and cautions

Why is the Nyquist plot useful?

¢ Old answer: easy way to compute stability (before computers and MATLAB)
* Real answer: gives insight into stability and robustness; very useful for proofs

Nyquist plots for systems with poles on the j® axis

* chose contour to
' avoid poles on axis
* need to carefully

P : compute Nyquist
/ plot at these points
. 4 * evaluate H(e+0j) to
’ determine direction

Cautions with using MATLAB

* MATLAB doesn’t generate portion of plot corresponding to poles on imaginary axis
* These must be drawn in by hand (make sure to get the orientation right!)
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Robust stability: gain and phase margins

Nyquist Diagram

Nyquist plot tells us if closed loop is stable,
but not how stable

Gain margin 1
* How much we can modify the loop gain o
and still have the system be stable

* Determined by the location where the loop
transfer function crosses 180° phase 2

Phase margin _
* How much we can add phase delay and pote Diagrem

still have the system be stable

Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853 rad/sec)
5¢

0 GM

* Determined by the phase at which the loop
transfer function has unity gain

Bode plot interpretation

Phase (deg); Magnitude (dB)
=]

* Look for unity gain & 180° phase crossings
* MATLAB: margin(sys) 20 ’

i
>
=

10° 0 0
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Example: cruise control

d
) P(s)= Um r
_'_,_?,{y; e u s+b/m s+a

) ,-r,f,f r C(s) X % =1 P(s) y Cs)=K K

ros - s)=K, +—!
1A i )=k, 5+0.01

G(s) G(s) = 10
Effect of additional sensor dynamics s+10

* New speedometer has pole at s = 10 (very fast); problems develop in the field
* What’s the problem? A: insufficient phase margin in original control design (not robust)

Bode Diagram

Nyquist plots

10 10 10 10° 10
Frequency (radisec)
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Preview: control design
d 1/m r

R P(s)= .
""_?,{i e % u s+b/m s+a
A~ r C(s) P(s) K
x [:ruﬁ

Y
- C(s K + :
- (v){a:é , s+0.01]

G(s) Gls) = 10
Approach: Increase phase margin s+10

[
e
~1 &

* Increase phase margin by reducing gain = can accommodate new sensor dynamics
¢ Tradeoff: lower gain at low frequencies = less bandwidth, larger steady state error

Bode Diagram

o x Nyquist plots
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Summary: Loop Analysis of Feedback Systems

Bode Diagram

d 5, Gm=7.005 B (at 0.34641 rad/sco), Pm=18.754 deg. ( 0.26853 radisee)
e u g 0 Gt
r Cls) "é_' P(s) Y 3
! E
g
2 o
g
2 0
* Nyquist criteria for loop stability g
o PM
* Gain, phase margin for robustness o
0 10' 16 10
ool "7 .
7 Thm (Nyquist).

R \ P # RHP poles of L(s)
\ N # CW encirclements
? Z # RHP zeros

¢ Z=N+P

oo [----

N -1 05 0 0.5 1 15

11 Nov 02 R. M. Murray, Caltech CDS 14

11/11/2002 7



