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CDS 101: Lecture 7.1
Loop Analysis of Feedback Systems

Richard M. Murray
11 November 2002

Goals:
Show how to compute closed loop stability from open loop properties
Describe the Nyquist stability criterion for stability of feedback systems
Define gain and phase margin and determine it from Nyquist and Bode plots

Reading: 
Astrom, Section 3.5
Optional: Packard, Poola and Horowitz, Chapter 30-31
Advanced: Lewis, Chapter 7
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Week 6: Frequency Response & Transfer Functions

(0) 0

x Ax Bu
y Cx Du

x

= +
= +

=

1( ) ( )H s C sI A B D−= − +

sin( )u A tω=

( )
ss ( )

sin ( )

y H j A

t H j

ω

ω ω

= ⋅

+∠

2 1 2 2 1 1

1 2

1 2
y u y u y u

n nH H H
d d

= =

1
s

k

x y
Σ

f

-
1
s

b

-

x x1
m C(s) P(s)++

-

d

r y
e u

Review from Last Week 



CDS 101, Lecture 7.1

11/11/2002

R. M. Murray, Caltech

2

11 Nov 02 R. M. Murray, Caltech CDS 3

Additional info from last week’s lecture

Decibel (dB)
Logarithmic scale used to define ratio between amplitudes (gain)
20 decibel (dB) = factor of 10 in gain: plot 20*log10(gain)

History and background
1 bel = logarithm of the ratio of power.  Decibel = 1/10 bel.
Since power goes as the square of the amplitude, we use 20*log(gain) for ratio of 
amplitudes (power goes as the square of the amplitude in electrical circuits)
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Closed Loop Stability

Q: how do open loop dynamics affect the 
closed loop stability?

Given open loop transfer function C(s)P(s) 
determine when system is stable
Useful for design since we specify C(s)

Brute force answer: compute poles closed loop transfer function

Alternative: look for conditions on PC 
that lead to instability

Example: if PC(s) = -1 for some s = jω, 
then system is not asymptotically stable
Condition on PC is much nicer because
we can design PC(s) by choice of C(s)
However, checking PC(s) = -1 is not 
enough; need more sophisticated check
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• Poles of Hyr = zeros of 1 + PC 
• Easy to compute, but not so good for design
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Game Plan: Frequency Domain Design

Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable + good performance

Low frequency range:

(good tracking)
Bandwidth: as high as 
possible, but stay stable
Idea: use C(s) to shape PC
(under certain constraints)
Need tools to analyze stability 
and performance for closed 
loop given PC

1yr
PCH

PC
=

+

• Poles of Hyr = zeros of 1 + PC 
• Would also like to “shape” Hyr to specify

performance at differenct frequencies
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Nyquist Criterion

Can determine stability from (open) 
loop transfer function, L(s) = P(s)C(s). 

Use “principle of the argument” from 
complex variable theory (see reading)

Thm (Nyquist). Consider the Nyquist 
plot for loop transfer function L(s).  Let

P # RHP poles of L(s)
N # clockwise encirclements of -1
Z # RHP zeros of 1 + L(s)

Then
Z = N + P
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• Nyquist “D” 
contour

• Take limit as 
r → 0, R →∞

• Trace from −∞
to +∞ along 
imaginary axis

• Trace frequen-
cy response 
along the Ny-
quist “D” 
contour

• Count net # of 
clockwise 
encirclements 
of the -1 point
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Simple Interpretation of Nyquist

Basic idea: avoid positive feedback
If L(s) has 180˚ phase (or greater) and 
gain greater than 1, then signals are 
amplified around the loop
Use when phase is monotonic
General case requires Nyquist
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Example: Proportional + Integral* cruise control system

C(s) ++
-
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P(s)

* slightly modified; more on the design of this compensator in next week’s lecture
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Remarks
N = 0, P = 0 ⇒ Z = 0 (stable)
Need to zoom in to make sure 
there are no net encirclements
Note that we don’t have to 
compute closed loop response
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More complicated systems

What happens when open loop plant has RHP poles?
1 + PC has singularities inside D countour ⇒ these must be taken into account
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Comments and cautions

Why is the Nyquist plot useful?
Old answer: easy way to compute stability (before computers and MATLAB)
Real answer: gives insight into stability and robustness; very useful for proofs

Nyquist plots for systems with poles on the jω axis

Cautions with using MATLAB
MATLAB doesn’t generate portion of plot corresponding to poles on imaginary axis
These must be drawn in by hand (make sure to get the orientation right!)

• chose contour to 
avoid poles on axis

• need to carefully 
compute Nyquist 
plot at these points

• evaluate H(ε+0j) to
determine direction
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Robust stability: gain and phase margins

Nyquist plot tells us if closed loop is stable, 
but not how stable

Gain margin
How much we can modify the loop gain 
and still have the system be stable
Determined by the location where the loop 
transfer function crosses 180˚ phase

Phase margin
How much we can add phase delay and 
still have the system be stable
Determined by the phase at which the loop 
transfer function has unity gain

Bode plot interpretation
Look for unity gain & 180˚ phase crossings
MATLAB: margin(sys)
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Example: cruise control

Effect of additional sensor dynamics
New speedometer has pole at s = 10 (very fast); problems develop in the field
What’s the problem?  A: insufficient phase margin in original control design (not robust)
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Preview: control design

Approach: Increase phase margin
Increase phase margin by reducing gain ⇒ can accommodate new sensor dynamics
Tradeoff: lower gain at low frequencies ⇒ less bandwidth, larger steady state error
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Summary: Loop Analysis of Feedback Systems

Nyquist criteria for loop stability
Gain, phase margin for robustness

C(s) ++
-

d

r ye u
P(s)

r

R

-j∞

+j∞ Nyquist Diagram

-1.5 -1 -0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

1
GM

PM

Frequency (rad/sec)

Ph
as

e 
(d

eg
); 

M
ag

ni
tu

de
 (d

B)

Bode Diagram

-100

-50

0

50

10-2 10-1 100 101
-300

-200

-100

0

PM

GM

Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853 rad/sec)

Thm (Nyquist). 
P # RHP poles of L(s)
N # CW encirclements
Z # RHP zeros

Z = N + P


