

$\dot{x} = Ax + Bu \qquad x \in \mathbb{R}^n, x(0) \text{ given} \\ y = Cx + Du \qquad u \in \mathbb{R}, y \in \mathbb{R}$ Defn A linear system is *controllable* if for any $x_0, x_f \in \mathbb{R}^n$ and any time T > 0 there exists an input $u:[0,T] \to \mathbb{R}$ such that the solution of the dynamics starting from $x(0)=x_0$ and applying input u(t) gives $x(T)=x_f$. Remarks • In the definition, x_0 and x_f do not have to be equilibrium points \Rightarrow we don't necessarily stay at x_f after time T. • Controllability is defined in terms of states \Rightarrow doesn't depend on output • Can characterize controllability by looking at the general solution of a linear system: $x(T) = a^{AT} x + \int_{0}^{T} a^{A(T-\tau)} By(\tau) d\tau$

$$x(T) = e^{AT} x_0 + \int_{\tau=0}^{T} e^{A(T-\tau)} Bu(\tau) d\tau$$

If integral is "full rank", then we can find an input to achieve any desired final state.

28 Oct 02

R. M. Murray, Caltech CDS

4

State space controller design for linear systems $x(T) = e^{AT}x_0 + \int_{-\infty}^{T} e^{A(T-\tau)}Bu(\tau)d\tau$ $\dot{x} = Ax + Bu$ $x \in \mathbb{R}^n, x(0)$ given y = Cx + Du $u \in \mathbb{R}, v \in \mathbb{R}$ Goal: find a linear control law u=Kx such that the closed loop system $\dot{x} = Ax + BKx = (A + BK)x$ is stable at $x_a=0$. Remarks • Stability determined by eigenvalues \Rightarrow use K to make eigenvalues of (A+BK) stable • Can also link eigenvalues to performance (eg, initial condition response) • Question: when can we place the eigenvalues anyplace that we want? **Thm** The eigenvalues of (A+BK) can be set to arbitrary values if and only if the pair (A,B) is controllable. MATLAB: K = place(A, B, eigs) 28 Oct 02 R. M. Murray, Caltech CDS 10

Equilibrium point calculation	% Compute the equil point
$\dot{x}_1 = b_r (1+u) x_1 - a x_1 x_2 - b x_1^2$	<pre>% predprey.m contains dynamics f = inline('predprey(0,x)');</pre>
$\dot{x}_2 = ax_1x_2 - d_f x_2 - bx_2^2$	<pre>xeq = fsolve(f, [50,50]);</pre>
• $x_e = (78.1726 94.4162)$	% Compute linearization
Linearization	A = [
• Compute linearization around equil. point, <i>x_e</i> :	<pre>br - a*xeq(2) - 2*b*xeq(1), -a*xeq(1); a*weq(2)</pre>
$A = \frac{\partial f}{\partial x}\Big _{(x_e, u_e)} B = \frac{\partial f}{\partial u}\Big _{(x_e, u_e)}$	<pre>a*xeq(2), -df + a*xeq(1) - 2*b*xeq(2)];</pre>
• Redefine local variables: $z=x-x_e$, $v=t$	$u - u_e \qquad \qquad$
$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} -b_r - ax_{2,e} - 2bx_{1,e} \\ ax_{2,e} \end{bmatrix}$	$-ax_{1,e} \\ -d_f + ax_{1,e} - 2bx_{2,e} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} b_r x_{1,e} \\ 0 \end{bmatrix} v$
• Controllable? YES, if b_r , $a \neq 0$ (check	ck [B AB]) \Rightarrow can locally steer to any point

Summary: Controllability and State Space Feedback x_0 $\dot{x} = Ax + Bu$ y = Cx + Du $\begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$ $u = u_e + K(x - x_e)$ Key concepts • Controllability: 16 find u s.t. $x_0 \rightarrow x_f$ 14(Controllability rank 120 test for linear ½×10 8 systems 60 · State feedback to 40 20 assign eigenvalues 100 150 200 100 150 200 28 Oct 02 R. M. Murray, Caltech CDS 16