

7 Oct 02

Modeling Properties		
Choice of state i	s not unique	
• There may be	many choices of variables that can act as the	e state
 Predator prey rabbits: 	example: look at number of rabbits plus the	excess of foxes over
R[k+1] =	$f_r(R[k], F[k]) \qquad E = F - R \qquad R[k - R]$	$+1] = f_r(R[k], E[k])$
F[k+1] =	$f_e(R[k], F[k]) \qquad \qquad E[k - 1]$	$+1] = f_e(R[k], E[k])$
• Can also look • Ignore cert	at models for the same system with <i>differen</i> ain physical effects (and hence eliminate sta	at numbers of states (ates)
Choice of inputs	and outputs depends on point of view	1 111
• Inputs: what I	actors are <i>external</i> to the model that you are	building
 Inputs in o controller 	ne model might be outputs of another mode provides the input to the vehicle model)	l (eg, the output of a cruise
• Outputs: what	physical variables (often states) can you me	easure
Choice of component	outputs depends on what you can sense and model interact with other component mode	what parts of the els
7 Oct 02	P. M. Murray, Caltach CDS	0

7 Oct 02

R. M. Murray, Caltech CDS

Model Type #1: Finite State Machines Finite state machines model discrete transitions between finite number of states • Represent each configuration of system as a state • Model transition between states using a graph · Inputs force transition between states Car arrives Timer **Example: Traffic light logic** (L) on E-W St expires Timer Car arrives expires L (L) on N-S St State: current pattern of lights that are on + internal timers presence of car at intersections **Inputs: Outputs:** current pattern of lights that are on 7 Oct 02 R. M. Murray, Caltech CDS 10


```
7 Oct 02
```

R. M. Murray, Caltech CDS

15

7 Oct 02