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CDS 101: Lecture 2.1
System Modeling

Richard M. Murray
7 October 2002

Goals:
Describe what a model is and what types of questions it can be used to answer
Introduce the concepts of state, dynamic, and inputs 
Provide examples of common modeling techniques: finite state automata, 
difference equations, differential equations, Markov chains
Describe common modeling tradeoffs

Reading: 
K. J. Astrom, Control Systems Design, Sections 3.1-3.2, 3.6
Optional: Astrom, Section 3.3
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Lecture 1.1: Introduction to Feedback and Control

Sense

Compute

Actuate

Control =
Sensing + Computation +
Actuation

Feedback Principles
Robustness to Uncertainty
Design of Dynamics

Many examples of control and feedback in natural and engineered systems:
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Review from last week 
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Models

Models are a mathematical representations of system 
dynamics

Models allow the dynamics to be simulated and 
analyzed, without having to build the system
Models are never exact, but they can be predictive

Models can be used in ways that the system can’t
Certain types of analysis (eg, parametric variations) 
can’t easily be done on the actual system
In many cases, models can be run much more quickly 
than the original models

The model you use depends on the questions you want 
to answer

A single system may have many models
Time and spatial scale must be chosen to suit the 
questions you want to answer
Always formulate questions before building a model

Example: Weather Forecasting

• Question 1: how much will it 
rain tomorrow?

• Question 2: will it rain in the 
next 5-10 days?

• Question 3: will we have a 
drought next summer?

Different questions ⇒
different models
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Physical Concept of State

A key concept in modeling is the concept of state
The state of a model of a dynamic system is a set of independent physical quantities, 
the specification of which (in the absence of excitation) completely determines the 
future evolution of the system

Example #1: car on a sloping road
State: position and velocity of car
Angle of incline is not a state (not part of the 
model of the car)
Accelerator position is not a state (not intrinsic 
to the car)

Example #2: predator prey (rabbits vs foxes)
State: number of rabbits and foxes
Amount of rabbit food is not a state (not 
intrinsic to the ecosystem as we have defined it)
Number of dead rabbits is not a state (not 
independent of number of live rabbits)

Warning: objects in picture may not include 
any actual foxes.
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Dynamics

Dynamics describes how the state evolves
The dynamics of a model is an update rule for the system state that describes how 
the state evolves, as a function on the current state and any external inputs

Example #1: car on a sloping road
Dynamics: Newton’s law (F = ma)

Engine force modeled as external input
Hill modeled as external input

Example #2: predator prey
Dynamics: empirically observed difference eqs

System of difference equations

engine hill( ) ( )mx bx u t u t= − + +

[ 1] [ ] [ ] [ ] [ ]
[ 1] [ ] [ ] [ ] [ ]

r

f

R k R k b R k aR k F k
F k F k d F k aR k F k

+ = + −
+ = − +
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Inputs

Inputs describe the external excitation of the dynamics
Inputs are extrinsic to the system dynamics (externally specified)
Constant inputs are often considered to be parameters

Example #1: car on a sloping road

Example #2: predator prey

Rabbit food can either be a parameter (if 
constant) or an external input (if nonconstant)

engine hill( ) ( )mx bx u t u t= − + +

Input #1 Input #2

[ 1] [ ] [ ] [ ] [ ]
[ 1] [ ] [ ] [ ] [ ]f

R k R k R k aR k F k
F k F k d F k aR k F k

+ = + −
+ = − +

rb (u)
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Outputs

Outputs describe the directly measured variables
Outputs are a function of the state and inputs ⇒ not independent variables
Not all states are outputs; some states can’t be directly measured

Example #1: car on a sloping road
Outputs: position and velocity
Measure velocity with speedometer
Measure position with odometer (or GPS)

Example #2: motion of an airplane over US
States: position, altitude, linear + angular vel
Dynamics: aerodynamics of flight
Inputs: thrust, rudder, elevator, flaps, wind
Outputs (from radar): heading and speed
Roll, pitch and yaw are not directly measurable; 
part of state, but not part of outputs

http://www.flightview.com/
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Modeling Properties

Choice of state is not unique
There may be many choices of variables that can act as the state
Predator prey example: look at number of rabbits plus the excess of foxes over 
rabbits:

Can also look at models for the same system with different numbers of states
Ignore certain physical effects (and hence eliminate states)

Choice of inputs and outputs depends on point of view
Inputs: what factors are external to the model that you are building

Inputs in one model might be outputs of another model (eg, the output of a cruise 
controller provides the input to the vehicle model)

Outputs: what physical variables (often states) can you measure
Choice of outputs depends on what you can sense and what parts of the 
component model interact with other component models

E F R= −[ 1] ( [ ], [ ])
[ 1] ( [ ], [ ])

r

e

R k f R k F k
F k f R k F k

+ =
+ =

[ 1] ( [ ], [ ])
[ 1] ( [ ], [ ])

r

e

R k f R k E k
E k f R k E k

+ =
+ =
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Model Types

Models are a mathematical representations of system dynamics
Models allow the dynamics to be simulated and analyzed, without having to 
build the system
Models are never exact, but they can be predictive

Different types of models are used for different purposes
Ordinary differential equations for rigid body mechanics
Finite state machines for manufacturing, Internet, information flow
Partial differential differential equations for fluid flow, solid mechanics, etc
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Model Type #1: Finite State Machines

Finite state machines model discrete transitions between finite number of states
Represent each configuration of system as a state
Model transition between states using a graph
Inputs force transition between states

Example: Traffic light logic

State:
Inputs:
Outputs:

current pattern of lights that are on + internal timers
presence of car at intersections
current pattern of lights that are on

Car arrives
on E-W St

Car arrives
on N-S St

Timer
expires

Timer
expires
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Model Type #2: Difference Equations

Difference equations model discrete transitions between state variables
“Discrete time” description (clocked transitions)
New state is function of current state + inputs
State is represented as a continuous variable

Example: predator prey

[ 1] ( [ ], [ ])
[ 1] ( [ 1])

x k f x k u k
y k h x k

+ =
+ = +

State:
Inputs:
Outputs:

number of rabbits and foxes
rabbit food available
number of rabbits and foxes

[ 1] [ ] [ ] [ ] [ ]
[ 1] [ ] [ ] [ ] [ ]f

R k R k R k aR k F k
F k F k d F k aR k F k

+ = + −
+ = − +

rb (u)

• Note that state is continuous ⇒ models 
average number of rabbits, foxes
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Model Type #3: Differential Equations

Differential equations model continuous evolution of state variables 
Describe the rate of change of the state variables
Both state and time are continuous variables

Example: Coupled spring mass system

( , )

( )

dx f x u
dt
y h x

=

=

State:
Inputs:
Outputs:

positions and velocities of masses
motion of end of rightmost spring
positions of masses (via sensors)

b

k3

m1 m2

q1

u(t)

q2

k2k1

1 1 2 2 1 1 1

2 2 3 2 2 2 1 2

( )
( ) ( )

m q k q q k q
m q k u q k q q bq

= − −
= − − − −

1

1 2

2 2 1
2 1 1

1

2 3 2
2 2 1 2

1

2

( )

( ) ( )

q
q q
qd k kq q qqdt m m
q k k bu q q q q

m m m
q

y
q

 
  
  
   = − −  
  
   − − − −  
 

=  
 

“State space form”
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Model type #4: Markov chains

Markov chains model continuous or discrete evolution of probabilities
States correspond to probabilities of events
Dynamics can be continuous or discrete time
Very useful for stochastic systems

Example: Molecular models for materials growth

State:
Inputs:
Outputs:

probabilities of being in given states
processing conditions (temp, flow)
surface profile, film properties

H1 W(H2, H1)W(H1, H2)

( , ) ( , )H u H u H
H

d P W H H P W H H P
dt ′

′

′ ′= −∑

states inputs transition rates

Questions

• What is the roughness 
of the final surface?

• What are the film 
properties?

• How do we modify the 
film properties by 
varying the processing 
conditions under sensor 
feedback (control)?
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Comments on Model Type

One system may have many choices for type of model
Mass spring system sampled be a computer could use a 
continuous time description (what your eyes see) or a discrete 
time description (what the computer sees)
The choice of model type depends on the question you want to 
answer

Many other types of models besides those listed
Partial differential equations (PDEs)
Hybrid systems: mixed discrete and continuous time/variables

This class will focus primarily on ordinary differential 
equations (ODEs)

Wide applicability + lots of tools
Homework will explore discrete time analogs to continuous 
time results

BIO
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Building Models (A True Story)

GM Astro “tractor” Problem reported from the field
Truck would start “bucking” when 
going up hill, in the mountains, in first 
gear, under full load (trailer)
GM Delco Systems Operations called 
on to solve the problem (and they 
assigned me!)

Model #1: cruise control
Simplest possible model
Included simple engine dynamics (1st

order ODE) + vehicle properties
Didn’t demonstrate instability

Model #2: add detailed engine dynamics
Added multi-state, nonlinear model of 
engine dynamics
Took into account engine RPM, engine 
loading, throttle position, etc

Experiment #2: field tests
1st gear, use brakes to simulate load, 
lots of smoke
Forced response testing to get system 
model (ODEs)

Model #3: transmission model
Long drive shaft, with loading
Increased stiffness in shaft under 
loading recreated the field data (!)
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Example #1: mass spring system (1/2)

Applications of mass/spring systems
Flexible structures (buildings, wings, 
membranes, many more…)
Molecular dynamics, potential wells

Questions we want to answer
How much do the masses move as a 
function of the forcing frequency?
What happens if I change the values 
of the masses?
Will my building stay up in an 
earthquake?

Modeling assumptions
Mass, spring, and damper constants 
are fixed and known
Springs satisfy Hooke’s law 
Damper is (linear) viscous force, 
proportional to  velocity

b

k3

m1 m2

x1

u(t)

x2

k2k1

Frequency Response

Frequency (rad/sec)

P
ha

se
 (d

eg
)

M
ag

ni
tu

de
 (d

B
)

-60
-50
-40
-30
-20
-10

0
10
20

0.1 1 10
-360

-270

-180

-90
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Example #1: mass spring system (2/2)

Rigid Body Physics
Sum of forces = mass * acceleration
Hooke’s law: F = k(x – xrest)
Viscous friction: F = b v
Input: changes end point of spring 3

Matlab simulation
# twomass.m – CDS 101 example

function dydt = f(t,y, k1, k2, 
k3,   m1, m2, b, omega)
u = 0.00315*cos(omega*t);
dydt = [ 

y(3);
y(4);
-(k1+k2)/m1*y(1) +

k2/m1*y(2);
k2/m2*y(1) - (k2+k3)/m2*y(2)

- b/m2*y(4) + k3/m2*u ];

[t,y] = ode45(dydt,tspan,y0,[], 
k1, k2, k3, m1, m2, b, omega); 

b

k3

m1 m2

q1

u(t)

q2

k2k1

1 1 2 2 1 1 1

2 2 3 2 2 2 1 2

( )
( ) ( )

m q k q q k q
m q k u q k q q bq

= − −
= − − − −
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Example #2: Predator Prey (1/2)

Questions we want to answer
Given the current population of rabbits 
and foxes, what will it be next year?
If we hunt down lots of foxes in a 
given year, what will the effect on the 
rabbit and fox population be?
How do long term changes in the 
amount of rabbit food available affect 
the populations?

Modeling assumptions
The predator species is totally 
dependent on the prey species as its 
only food supply. 
The prey species has an external food 
supply and no threat to its growth other 
than the specific predator. 

http://www.math.duke.edu/education/ccp/
materials/diffeq/predprey/contents.html

“FOX”
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Example #2: Predator Prey (2/2)

Discrete Lotka-Volterra model
State

R[k] number of rabbits in period k
F[k] number of foxes in period k

Inputs (optional)
u[k] amount of rabbit food

Outputs: number of rabbits and foxes
Dynamics: discrete Lotka-Volterra eqs

Parameters/functions
br(u) annual birth rate of rabbits

(depends on food supply)
dr annual death rate for foxes
a interaction term

Matlab simulation
# predprey.m – CDS 101 example
R[1]=20; F[1]=35;
br = 0.7; df = 0.5; a = 0.007;
nperiods=208; year(1)=1845;
for k=1:90*nperiods
R(k+1) = R(k) + (br*R(k) –
a*F(k)*R(k))/nperiods;

F(k+1) = F(k) + (-df*F(k) + 
a*F(k)*R(k))/nperiods;

year(k) = year(k) + 1/nperiods;
end;

[ 1] [ ] ( ) [ ] [ ] [ ]
[ 1] [ ] [ ] [ ] [ ]

r

f

R k R k b u R k aF k R k
F k F k d F k aF k R k

+ = + −
+ = − +

1850 1870 1890 1910 1930
0

50
100
150
200
250
300
350

7 Oct 02 R. M. Murray, Caltech CDS 20

Summary: System Modeling

Model = state, inputs, outputs, dynamics

Principle: Choice of model depends on the questions you want to answer

( , )

( )

dx f x u
dt
y h x

=

= ( , ) ( , )H u H u H
H

d P W H H P W H H P
dt ′

′

′ ′= −∑

b

k3

m1 m2

q1

u(t)

q2

k2k1

function dydt = f(t,y, k1, k2, 
k3,   m1, m2, b, omega)
u = 0.00315*cos(omega*t);
dydt = [ 

y(3);
y(4);
-(k1+k2)/m1*y(1) +

k2/m1*y(2);
k2/m2*y(1) - (k2+k3)/m2*y(2)

- b/m2*y(4) + k3/m2*u ];


