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Goals:

* Describe what a model is and what types of questions it can be used to answer

* Introduce the concepts of state, dynamic, and inputs
* Provide examples of common modeling techniques: finite state automata,
difference equations, differential equations, Markov chains

* Describe common modeling tradeoffs

Reading:
* K. J. Astrom, Control Systems Design, Sections 3.1-3.2, 3.6

* Optional: Astrom, Section 3.3

Review from last week

Control =
Sensing + Computation +
| Sense Actuation

Actuate —>

Feedback Principles
* Robustness to Uncertainty
* Design of Dynamics

Compute

Many examples of control and feedback in natural and engineered systems:
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Models

Models are a mathematical representations of system | Example: Weather Forecasting
dynamics

* Models allow the dynamics to be simulated and
analyzed, without having to build the system

* Models are never exact, but they can be predictive

Models can be used in ways that the system can’t

* Certain types of analysis (eg, parametric variations)
can’t easily be done on the actual system

* In many cases, models can be run much more quickly |« Question 1: how much will it
than the original models rain tomorrow?

* Question 2: will it rain in the

The model you use depends on the questions you want next 5-10 days?

to answer * Question 3: will we have a
* A single system may have many models drought next summer?

* Time and spatial scale must be chosen to suit the

questions you want to answer Different questions =
. g different models
* Always formulate questions before building a model
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Physical Concept of State

A key concept in modeling is the concept of state
The state of a model of a dynamic system is a set of independent physical quantities,
the specification of which (in the absence of excitation) completely determines the
future evolution of the system

Example #1: car on a sloping road
o State: position and velocity of car

- ¥, o Angle of incline is not a state (not part of the
g _\,-'f
P model of the car)
o,
T

@ Accelerator position is not a state (not intrinsic
to the car)

Example #2: predator prey (rabbits vs foxes)

o State: number of rabbits and foxes

@ Amount of rabbit food is not a state (not
intrinsic to the ecosystem as we have defined it)

@ Number of dead rabbits is not a state (not
independent of number of live rabbits)

‘Warning: objects in picture may not include
any actual foxes.
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Dynamics

Dynamics describes how the state evolves

The dynamics of a model is an update rule for the system state that describes how
the state evolves, as a function on the current state and any external inputs

Example #1: car on a sloping road
= Dynamics: Newton’s law (F = ma)

mx =—bx + uengme(t) +upy, (1)

’:r"'f...i o Engine force modeled as external input

@ Hill modeled as external input

= Dynamics: empirically observed difference eqs
Rk +1]= R[k]+ b, R[k] - aR[k]F[k]
Flk +1]= F[k]~d F[k]+ aR[k]F[k]

o System of difference equations
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Inputs

Inputs describe the external excitation of the dynamics
* Inputs are extrinsic to the system dynamics (externally specified)
 Constant inputs are often considered to be parameters

Example #1: car on a sloping road

mx = —bx + uengine(t) + (1)

-
A5 / N\

::..f"’f 8
__4;"* f’"‘! Input #1 Input #2

Example #2: predator prey

R[k +1]= R[k]+b, (w)R[k]— aR[K]F[k]
Flk +1]= F[k]~d F[k]+aR[k]F[]

Mﬂf“ = Rabbit food can either be a parameter (if
- constant) or an external input (if nonconstant)
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Outputs

Outputs describe the directly measured variables
* QOutputs are a function of the state and inputs = not independent variables
* Not all states are outputs; some states can’t be directly measured

Example #1: car on a sloping road

@ Qutputs: position and velocity

o Measure velocity with speedometer

@ Measure position with odometer (or GPS)

Example #2: motion of an airplane over US

o States: position, altitude, linear + angular vel
o Dynamics: aecrodynamics of flight

o Inputs: thrust, rudder, elevator, flaps, wind

@ Qutputs (from radar): heading and speed

@ Roll, pitch and yaw are not directly measurable;
part of state, but not part of outputs

http://www.flightview.com/
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Modeling Properties

Choice of state is not unique
* There may be many choices of variables that can act as the state
* Predator prey example: look at number of rabbits plus the excess of foxes over

rabbits:
Rlk+1]= f.(R[k], F[k]) E=F-R R[k +1]= f,(R[k], E[k])
Flk+1]= f,(R[k], F[k]) Elk+1]= f,(R[k], E[k])

* Can also look at models for the same system with different numbers of states
o Ignore certain physical effects (and hence eliminate states)

Choice of inputs and outputs depends on point of view
* Inputs: what factors are external to the model that you are building

o Inputs in one model might be outputs of another model (eg, the output of a cruise
controller provides the input to the vehicle model)

* Outputs: what physical variables (often states) can you measure

o Choice of outputs depends on what you can sense and what parts of the
component model interact with other component models
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Model Types

Models are a mathematical representations of system dynamics

* Models allow the dynamics to be simulated and analyzed, without having to
build the system

* Models are never exact, but they can be predictive

Different types of models are used for different purposes
* Ordinary differential equations for rigid body mechanics
* Finite state machines for manufacturing, Internet, information flow
* Partial differential differential equations for fluid flow, solid mechanics, etc
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Model Type #1: Finite State Machines

Finite state machines model discrete transitions between finite number of states
* Represent each configuration of system as a state
* Model transition between states using a graph
* Inputs force transition between states

Timer

Example: Traffic light logic Car arrives
i expires

on E-W St

Y

Timer .
Car arrives

expires
on N-S St
State: current pattern of lights that are on + internal timers
Inputs: presence of car at intersections
Outputs: current pattern of lights that are on
7 Oct 02 R. M. Murray, Caltech CDS 10
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Model Type #2: Difference Equations

Difference equations model discrete transitions between state variables

* “Discrete time” description (clocked transitions)
* New state is function of current state + inputs

* State is represented as a continuous variable

x[k+1] = f(x[k],ulk])
ylk +1]1= h(x[k +1])

Example: predator prey

State: number of rabbits and foxes
Inputs: rabbit food available
Outputs: number of rabbits and foxes

7 Oct 02
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Rk +1]= R[k]+b, (wR[k] - aR[K|F[k]
Flk+1]= F[k]~d FIk]+ aR[K1F[k]

* Note that state is continuous = models
average number of rabbits, foxes

Model Type #3: Differential Equations

Differential equations model continuous evolution of state variables

R. M. Murray, Caltech CDS

* Describe the rate of change of the state variables dx
* Both state and time are continuous variables dt =/ (xu)
y=h(x)
Example: Coupled spring mass system
u() \ .
mg, = k,(q,—q,)— kg,
9>

4 myg, = ky(u—q,)—k,(q, —q,)—bq,
m, m .

) _
MA@ 0
k k k d|%|_ k k
! 2 ? Z ql - ;z(qz_ql)_;lql
E 7, k k. b .
b 1 J(u_qz)_iz(qz_%)_*qz
Lm m m
State: positions and velocities of masses yo %}
Inputs: motion of end of rightmost spring L9
Outputs: positions of masses (via sensors) “State space form”
7 Oct 02
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Model type #4: Markov chains

Markov chains model continuous or discrete evolution of probabilities
* States correspond to probabilities of events d
orepone o v TS By = S W, (' H)Py ~W,(HHE,

* Dynamics can be continuous or discrete time  dt N T X

* Very useful for stochastic systems . o
states  inputs  transition rates

Example: Molecular models for materials growth

Questions
I:l:l:'j * What is the roughness
" of the final surface?
— ] W(H,, H)) » What are the film
| | properties?
* How do we modify the
film properties by
s . varying the processing
State: probabilities of being in given states conditions under sensor
Inputs: processing conditions (temp, flow) feedback (control)?
Outputs: surface profile, film properties
7 Oct 02 R. M. Murray, Caltech CDS 13

Comments on Model Type

One system may have many choices for type of model

* Mass spring system sampled be a computer could use a
continuous time description (what your eyes see) or a discrete S A
time description (what the computer sees) =l

* The choice of model type depends on the question you want to
answer

Many other types of models besides those listed
* Partial differential equations (PDEs)
* Hybrid systems: mixed discrete and continuous time/variables

This class will focus primarily on ordinary differential
equations (ODEs)
* Wide applicability + lots of tools

* Homework will explore discrete time analogs to continuous
time results
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Building Models (A True Story)

GM Astro “tractor”

Model #1: cruise control
* Simplest possible model

¢ Included simple engine dynamics (1%t
order ODE) + vehicle properties

* Didn’t demonstrate instability

Model #2: add detailed engine dynamics

* Added multi-state, nonlinear model of
engine dynamics

* Took into account engine RPM, engine
loading, throttle position, etc

7 Oct 02

Problem reported from the field

* Truck would start “bucking” when
going up hill, in the mountains, in first
gear, under full load (trailer)

* GM Delco Systems Operations called
on to solve the problem (and they
assigned me!)

Experiment #2: field tests

* 15t gear, use brakes to simulate load,
lots of smoke

* Forced response testing to get system
model (ODEs)

Model #3: transmission model
* Long drive shaft, with loading

¢ Increased stiffness in shaft under
loading recreated the field data (!)

R. M. Murray, Caltech CDS 15

Example #1: mass spring system (1/2)

g u(t) |

iu

AR AH

Magnitude (dB)

Phase (deg)

0.1

1 10
Frequency (rad/sec)
7 Oct 02

Applications of mass/spring systems

* Flexible structures (buildings, wings,
membranes, many more...)

* Molecular dynamics, potential wells

Questions we want to answer

* How much do the masses move as a
function of the forcing frequency?

* What happens if I change the values
of the masses?

* Will my building stay up in an
carthquake?

Modeling assumptions

* Mass, spring, and damper constants
are fixed and known

* Springs satisfy Hooke’s law
* Damper is (linear) viscous force,
proportional to velocity

R. M. Murray, Caltech CDS 16
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Example #1: mass spring system (2/2)

u(t) |

Rigid Body Physics
* Sum of forces = mass * acceleration
* Hooke’s law: F'= k(x — X,
* Viscous friction: F =bv
¢ Input: changes end point of spring 3

mg, = ky(q,—¢q,)—kq,
myg, = ky(u—q,)—k,(q, —q,)—bq,

7 Oct 02 R. M. Murray,

Matlab simulation
# twomass.m - CDS 101 example

function dydt = f(t,y,
k3, ml, m2, b, omega)
u = 0.00315*cos (omega*t) ;
dydt = [
y(3);
y(4);
- (k1+k2) /ml*y (1) +
k2/ml*y (2);
k2/m2*y (1) - (k2+k3)/m2*y(2)
- b/m2*y(4) + k3/m2*u ];

k1, k2,

[t,yl =
k1, k2,

oded5 (dydt, tspan, y0, [],
k3, ml, m2, b, omega);

Caltech CDS 17

Example #2: Predator Prey (1/2)

160

‘

190!’; 1915 1925- 1935

N Y
1845 1855 1865 1875 1885 1895

http://www.math.duke.edu/education/ccp/
materials/diffeq/predprey/contents.html
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Questions we want to answer

* Given the current population of rabbits
and foxes, what will it be next year?

* If we hunt down lots of foxes in a
given year, what will the effect on the
rabbit and fox population be?

* How do long term changes in the

amount of rabbit food available affect
the populations?

Modeling assumptions

* The predator species is totally
dependent on the prey species as its
only food supply.

* The prey species has an external food

supply and no threat to its growth other
than the specific predator.
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Example #2: Predator Prey (2/2)

Discrete Lotka-Volterra model Matlab simulation

* State # predprey.m - CDS 101 example
R[1]=20; F[1]=35;
br = 0.7; df = 0.5; a = 0.007;
nperiods=208; year(l)=1845;

o R[k] number of rabbits in period k&
o Flk] number of foxes in period k
* Inputs (optional)

. for k=1:90*nperiods
o y[k] amount of rabbit food

R(k+1l) = R(k) + (br*R(k) -
* QOutputs: number of rabbits and foxes a*F (k) *R(k)) /nperiods;
* Dynamics: discrete Lotka-Volterra eqs F(k+1l) = F(k) + (-df*F(k) +
a*F (k) *R(k)) /nperiods;
Rk +1]= R[k]+ b, (u)R[k]~ aF[k]R[k] year (k) = year (k) + 1/nperiods;
Flk+1]=Flk]—d Flk]+aF[k]R[k] end;
* Parameters/functions ggg
@ b,(u) annual birth rate of rabbits 250
(depends on food supply) 200
@ d,  annual death rate for foxes 128
o a interaction term 50
% Jes0 1870 1890 1910 1930
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Summary: System Modeling

Model = state, inputs, outputs, dynamics

- dx
A = [
., 4 d , :
T yohx) < = 2V (H )P~ W (HHP,

Principle: Choice of model depends on the questions you want to answer

u(t) | function dydt = f(t,y, k1, k2,
k3, ml, m2, b, omega)
u = 0.00315*cos (omega*t) ;

9,
" m, dydt = [

k. b ‘ v(4);
- (k1+k2) /ml*y (1) +
—— @l )
b k2/m2*y (1) - (k2+k3)/m2*y(2)
- b/m2*y(4) + k3/m2*u 1;
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