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Note: In the upper left hand corner of the first page of your homework set, please put the
class you are taking (CDS 101, CDS 110) and the number of hours that you spent on this
homework set (including reading).

All students should complete the following problems:

1. For each of the following linear systems, determine whether the equilibrium point is asymptotically
stable and, if it is, plot the step response and Bode plot for the system. If there are multiple inputs or
outputs, plot the response for each pair of inputs and outputs.

(a) Coupled mass spring system. Consider the coupled mass spring system we saw in class, which has
a damper on only one of the masses:
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Use m = 250, k = 50, b = 10 for the parameter values. Note that this system does not diagonalize
in the same way as the version given in homework set #2 (due to the asymmetric damper).

(b) Bridged Tee Circuit. Consider the following electrical circuit, with input vi and output vo:
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where vc1 and vc2 are the voltages across the two capacitors. Assume that R1 = 100Ω, R2 = 100Ω
and C1 = C2 = 1µF.
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2. (MATLAB/SIMULINK) Consider the inverted pendulum on a cart, as show in the figure below:

x
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θ

M

(M +m)ẍ+ml cos θθ̈ = −bẋ+ml sin θθ̇2 + F

(J +ml2)θ̈ +ml cos θẍ = −mgl sin θ

M = 0.5 kg m = 0.2 kg

b = 0.1 N/m/sec l = 0.3 m

J = 0.006 kg m2

This system has been modeled in SIMULINK in the file hw4cartpend.mdl, available from the course
web page.

The linearization of the system was given in class:
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ẋ

θ̇









=

















0 0 1 0
0 0 0 1

0
m2gl2

J(M +m) +Mml2
−(J +ml2)b

J(M +m) +Mml2
0

0
mgl(M +m)

J(M +m) +Mml2
−mlb

J(M +m) +Mml2
0

















x+

















0
0

J +ml2

J(M +m) +Mml2

ml

J(M +m) +Mml2

















u

y =
[

1 0 0 0
]

x

Note: in the SIMULINK model, the output has been set to include all of the states (y = x). You will
need this for part (c) below.

(a) Use the MATLAB linmod command to numerically compute the linearization of the original
nonlinear system at the equilibrium point (x, θ, ẋ, θ̇) = (0, π, 0, 0). Compare the eigenvalues of the
analytical linearization to those of the one you obtained with linmod and verify they agree.

(b) We can design a stabilizing control law for this system using “state feedback”, which is a control
law of the form u = −Kx (we will learn about this more next week). The closed loop system
under state feedback has the form

ẋ = (A−BK)x.

Show that the following state feedback stabilizes the linearization of the inverted pendulum on a
cart: K = (−1, 18.7,−1.7, 3.5).

(c) Now build a simulation for the closed loop, nonlinear system in SIMULINK. Use the file hw4cartpend.mdl
for the nonlinear equations of motion in it (you should look in the file and try to understand how
it works). Simulate several different initial conditions and show that the controller locally asymp-
totically stabilizes x0. Include plots of a representative simulation for an initial condition that is
in the region of attraction of the controller and one that is outside the region of attraction. (Hint:
remember that the equilibrium point that we linearized about was not zero. You will need to
account for this in your controller by implementing u = −K(x− x0) for the nonlinear system.)

(d) Optional. Use MATLAB to write an animation of your results and post them on the web.
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Only CDS 110a/ChE 105 students need to complete the following additional problems:

3. Consider the following discrete time system

z[k + 1] = Az[k] +Bu[k]

y[k + 1] = Cz[k + 1].

In this problem we will derive the stability conditions, step response, and “convolution equation” for
discrete time systems. (Don’t worry, they are much easier than the ODE versions.)

(a) Assume that the matrix A has a full basis of eigenvectors {vi}, so that any initial condition can
be written as a linear combination of these eigenvectors. Let λi be the associated eigenvectors
and show the discrete time system is asymptotically stable if and only if |λi| < 1.

(b) Derive a formula for the transient response to an initial condition x0 (the analog of eATx0 for
continuous time systems). Your answer should be in the form y[k] = CΦ[k]x0 where Φ[k] depends
on the matrix A.

(c) Derive a formula for the output response of the system to a general input uk. Your result should
be expressed as a sum involving terms of the from Φ[k − j] (similar to the terms eA(t−τ) for
continuous time systems).

Note: you can find the answer to this in many books on linear control systems, including those on
reserve in the library. You are encouraged to look at them, but make sure you understand the answer
you write down and include enough detail for the TAs to follow your derivation.

4. Consider the motion of a small model aircraft powered by a vectored thrust engine, as shown below.

net thrust

(x, y)

θ

f2

f1

adjustable flaps

Let (x, y, θ) denote the position and orientation of the center of mass of the fan. We assume that the
forces acting on the fan consist of a force f1 perpendicular to the axis of the fan acting at a distance r
and a force f2 parallel to the axis of the fan. Let m be the mass of the fan, J the moment of inertia,
γ the gravitational constant, and D the damping coefficient. Then the equations of motion for the fan
are given by:

mẍ = f1 cos θ − f2 sin θ − dẋ

mÿ = f1 sin θ + f2 cos θ −mγ − dẏ

Jθ̈ = rf1.
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It is convenient to redefine the inputs so that the origin is an equilibrium point of the system with zero
input. If we let u1 = f1 and u2 = f2 −mg then the equations become

mẍ = −mg sin θ − dẋ+ u1 cos θ − u2 sin θ

mÿ = mg(cos θ − 1)− dẏ + u1 sin θ + u2 cos θ

Jθ̈ = ru1.

(1)

These equations are referred to as the planar ducted fan equations (this is an experiment that we use
for CDS 111).

Use the following values for the parameters of the system:

γ = 0.52 m/sec2 m = 4.25 kg

r = 26 cm J = 0.0475 kg m2
d = 0.1 kg/sec

The reason that gravity γ is not 9.8 m/sec2 is because of the presence of a counterweight to offset the
weight of the fan.

(a) Rewrite the equations of motion in state space form (still nonlinear, still symbolic). Choose x and
y as the outputs.

(b) Compute the linearization of the system around the “hover” state: (x, y, θ, ẋ, ẏ, θ̇) = (0, 0, 0, 0, 0, 0).
Your result should be in terms of the symbolic parameters (don’t plug in the numbers, yet).

(c) Using the parameters above, determine if the linearization is stable, asymptotically stable, or
unstable.

(d) Plot the step and frequency responses of the system from the two inputs to the two outputs (you
should have eight plots total). (Hint: you might want to use the MATLAB subplot command to
save some paper.)

5. Optional. Show that the Lyapunov equation

AP + PTA = −Q

has a solution P > 0 for any Q ≥ 0 if the matrix A is asymptotically stable (all eigenvalues in the left
half plane). (This was an exam question in my linear systems class at Berkeley. You need to know
some linear algebra in order to solve it.)
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