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Note: In the upper left hand corner of the first page of your homework set, please put the
class you are taking (CDS 101, CDS 110) and the number of hours that you spent on this
homework set (including reading).

All students should complete the following problems:

1. For each of the following systems, locate the equilibrium points for the system and indicate whether
each is asymptotically stable, stable, or unstable. To determine stability, you can either use a phase
portrait (if appropriate) or simulate the system by perturbing the initial condition slightly from the
equilibrium point and then seeing how the state evolves. (Note: if you know how to check stability
through the linearization, you can also use this approach.)

(a) Duffing equation. The Duffing equation is a model for a nonlinear mass spring system:

mẍ = k(x + ax3) − cẋ,

where m = 1000 kg is the mass, k = 250 N/sec2 is the nominal spring constant, a = 10 represents
the nonlinearity of the spring, and c = 1 N/sec is the damping coefficient. Note that this is very
similar to the mass spring systems we have studied in class, except for the nonlinearity.

(b) Modified Predator-Prey ODE. In class we saw an ODE model for the predator-prey problem:

ẋ1 = brx1 − ax1x2 − bx2
1

ẋ2 = ax1x2 − dfx2 − bx2
2

Use the following parameters: br = 0.7, df = 0.5, a = 0.007, b = 0.0005. (Note: in the plot shown
in Lecture 3.1, two equilibrium points were missing.)

(c) Pendulum. The equations of motion for a single inverted pendulum are given by

ml2θ̈ = −bθ̇ − mgl sin(θ)

where θ is the angle of the pendulum (θ = 0 rad corresponds to pointing down), m = 1 kg is
the mass of the pendulum (assumed concentrated at the end), l = 0.5 m is the length of the
pendulum, b = 0.25 N·m·sec is the damping coefficient, and g = 9.8 m/sec2 is the gravitational
constant.

2. (MATLAB/SIMULINK) Consider the cruise control system from Homework Set #1, problem 1. Set
the gains of the system to their default values (Ki = 100, Kp = 500).

(a) Plot the step response of the system (from 55 mph to 65 mph) and measure the rise time, overshoot,
settling time, and steady state error.

(b) Modify the block diagram to allow a sinusoidal reference signal superimposed on top of a com-
manded reference (so that you get something that oscillates around the nominal speed of 55 m/s).
Plot the response of the system to a commanded reference speed that varies sinusoidally between
50 m/s and 60 m/s at a frequency of 1 Hz (about 6 rad/sec). Measure the relative amplitude and
phase of the velocity with respect to the commanded input. Your answer should be the ratio of
the output amplitude to the input amplitude (after subtracting off the means) and the number
of radians of phase “lead” or “lag” between the sinusoids.
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(c) Plot the frequency response for the cruise control system, showing the gain (relative amplitude)
and phase at the following frequencies (all in rad/sec): 0.01 0.03 0.07 0.1 0.3 0.7 1 3 7 10. Your
answer should be in the form of two plots: the relative amplitude (gain) versus frequency and the
relative phase versus frequency. Use a logarithmic scale for the frequency and amplitude, and a
linear scale for the phase.

(d) Optional: The system model given in Homework Set #1 originally had a saturation function on
the input. This version of the model is called hw1cruise_sat.mdl and you can see the saturation
by clicking into the vehicle block. Using that model, show that if we increase the amplitude of the
desired oscillations sufficiently high, that the response of the system is no longer a pure sinusoid
at the desired frequency.

You should use hw1cruise.mdl to solve this problem, available on the course web page.

Only CDS 110a/ChE 105 students need to complete the following additional problems:

3. Consider a second order system of the form

ÿ + 2ζωnẏ + ω2
ny = u(t)

with initial conditions y(0) = y0, ẏ(0) = ẏ0.

(a) Compute the homogenous solution to this equation (u(t) = 0) with initial condition y0 = 1,
ẏ0 = 0. This is the “impulse response” for this system. Plot the impulse response as a function
of time for ωn = 1, ζ = 0.5.

(b) Compute the response of the system to a sinusoidal input u(t) = A sin(ωt). Your result should be
analytical (a formula, like the ones I gave in lecture) and you should make sure to keep the effects
of the initial conditions. Now assuming that the initial conditions have died out (i.e., ignoring
the homogeneous part of the solution), plot the frequency response of the system on a Bode plot,
labelling all relevant points. Note: you can find this solution worked out in many textbooks.
You are encouraged to look for the solution, but make sure that you provide a derivation of your
results and that you understand them. (Pretend that this might be the type of thing you were
asked on a closed book section of the midterm.)

(c) Suppose that we now implement a feedback control law of the form

u(t) = k1(y − v(t)) + k2ẏ,

which is intended to allow us to track a new input v(t) (just like the cruise control example).
Compute the frequency response of the closed loop and show that we can set the closed loop
natural frequency ω′

n and damping ratio ζ ′ to arbitrary values by adjusting the gains k1 and k2.
Give formulas for the gains in terms of the desired ω′

n and ζ ′.

(d) Optional: Use the results from this problem to design a cruise control law for the system in
problem #2 of last week’s homework that has a settling time of 1 second and no overshoot.

4. For each of the following systems, use a quadratic Lyapunov function to show that the origin is
asymptotically stable. Then investigate whether the origin is exponentially stable and/or globally
asymptotically stable.

(a)
ẋ1 = −x1 + x2

2

ẋ2 = −x2

(b)
ẋ1 = −x1 − x2

ẋ2 = x1 − x3
2

Hint: you might want to generate a phase plot of the system to get a better understanding of the dy-
namics. Time domain simulations may also give you insight about whether the system is exponentially
stable or not. However, in all cases you should prove your results by finding a Lyapunov function and
checking the conditions.
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