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Dynamics

3.1 Introduction

From the perspective of control a dynamical system is such that the ef-
fects of actions do not occur immediately. Typical examples are: The ve-
locity of a car does not change immediately when the gas pedal is pushed.
The temperature in a room does not rise immediately when an air condi-
tioner is switched on. Dynamical systems are also common in daily life. An
headache does not vanish immediately when an aspirin is taken. Knowl-
edge of school children do not improve immediately after an increase of a
school budget. Training in sports does not immediately improve results.
Increased funding for a development project does not increase revenues
in the short term.

Dynamics is a key element of control because both processes and con-
trollers are dynamical systems. Concepts, ideas and theories of dynamics
are part of the foundation of control theory. Dynamics is also a topic of its
own that is closely tied to the development of natural science and math-
ematics. There has been an amazing development due to contributions
from intellectual giants like Newton, Euler, Lagrange and Poincare.

Dynamics is a very rich field that is partly highly technical. In this
section we have collected a number of results that are relevant for under-
standing the basic ideas of control. The chapter is organized in separate
sections which can be read independently. For a first time reader we rec-
ommend to read this section section-wise as they are needed for the other
chapters of the book. To make this possible there is a bit of overlap be-
tween the different sections. in connection with the other chapters. There
is a bit of overlap so that the different sections can be read independently.

Section 3.2 gives an overview of dynamics and how it is used in con-
trol which has inherited ideas both from mechanics and from electrical
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Chapter 3. Dynamics

engineering. It also introduces the standard models that are discussed in
the following sections. In Section 3.3 we introduce a model for dynamics
in terms of linear, time-invariant differential equations. This material is
sufficient for analysis and design of simple control systems of the type dis-
cussed in the beginning of Chapter 5. The concepts of transfer function,
poles and zeros are also introduced in Section 3.3. Another view of lin-
ear, time-invariant systems is given in Section 3.4 introduces the Laplace
transform which is a good formalism for linear systems. This also gives
another view on transfer functions. Combining the block diagrams intro-
duced in Chapter 2 with the transfer functions gives a simple way to
model and analyze feedback systems. The material Section 3.4 gives a
good theoretical base for Chapters 4 and 5. Frequency response is yet an-
other useful way of describing dynamics that provides additional insight.
The key idea is to investigate how sine waves are propagating through
a dynamical system. This is one of the contributions from electrical en-
gineering discussed in Section 3.5. This section together with Section 3.4
gives the basis for reading Chapters 4, 5, 6 and 7 of the book.

Section 3.6 presents the idea of state models which has its origin in
Newtonian mechanics. The problems of control have added richness by
the necessity to include the effect of external inputs and the information
obtained from sensors. In Section 3.6 we also discuss how to obtain models
from physics and how nonlinear systems can be approximated by linear
systems, so called linearization. In

The main part of this chapter deals with linear time invariant systems.
We will frequently only consider systems with one input and one output.
This is true for Sections 3.3, 3.4 and 3.5. The state models in Section 3.5
can however be nonlinear and have many inputs and outputs.

3.2 Two Views on Dynamics

Dynamical systems can be viewed from two different ways: the internal
view or the external views. The internal view which attempts to describe
the internal workings of the system originates from classical mechanics.
The prototype problem was the problem to describe the motion of the plan-
ets. For this problem it was natural to give a complete characterization
of the motion of all planets. The other view on dynamics originated in
electrical engineering. The prototype problem was to describe electronic
amplifiers. It was natural to view an amplifier as a device that transforms
input voltages to output voltages and disregard the internal detail of the
amplifier. This resulted in the input-output view of systems. The two dif-
ferent views have been amalgamated in control theory. Models based on
the internal view are called internal descriptions, state models or white
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3.2 Two Views on Dynamics

box models. The external view is associated with names such as external
descriptions, input-output models or black box models. In this book we
will mostly use the words state models and input-output models.

The Heritage of Mechanics

Dynamics originated in the attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the
results of Kepler who found empirically that the orbits could be well de-
scribed by ellipses. Newton embarked on an ambitious program to try to
explain why the planets move in ellipses and he found that the motion
could be explained by his law of gravitation and the formula that force
equals mass times acceleration. In the process he also invented calculus
and differential equations. Newtons results was the first example of the
idea of reductionism, i.e. that seemingly complicated natural phenomena
can be explained by simple physical laws. This became the paradigm of
natural science for many centuries.

One of the triumphs of Newton’s mechanics was the observation that
the motion of the planets could be predicted based on the current posi-
tions and velocities of all planets. It was not necessary to know the past
motion. The state of a dynamical system is a collection of variables that
characterize the motion of a system completely for the purpose of pre-
dicting future motion. For a system of planets the state is simply the
positions and the velocities of the planets. A mathematical model simply
gives the rate of change of the state as a function of the state itself, i.e. a
differential equation.

dx
dt
= f (x) (3.1)

This is illustrated in Figure 3.1 for a system with two state variables. The
particular system represented in the figure is the van der Pol equation

dx1

dt
= x1 − x3

1 − x2

dx2

dt
= x1

which is a model of an electronic oscillator. The model (3.1) gives the ve-
locity of the state vector for each value of the state. These are represented
by the arrows in the figure. The figure gives a strong intuitive represen-
tation of the equation as a vector field or a flow. Systems of second order
can be represented in this way. It is unfortunately difficult to visualize
equations of higher order in this way.

The ideas of dynamics and state have had a profound influence on
philosophy where it inspired the idea of predestination. If the state of a
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x ’ = M x − y − x3

y ’ = x            
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Figure 3.1 Illustration of a state model. A state model gives the rate of change of
the state as a function of the state. The velocity of the state are denoted by arrows.

natural system is known ant some time its future development is complete
determined. The vital development of dynamics has continued in the 20th
century. One of the interesting outcomes is chaos theory. It was discovered
that there are simple dynamical systems that are extremely sensitive
to initial conditions, small perturbations may lead to drastic changes in
the behavior of the system. The behavior of the system could also be
extremely complicated. The emergence of chaos also resolved the problem
of determinism, even if the solution is uniquely determined by the initial
conditions it is in practice impossible to make predictions because of the
sensitivity of initial conditions.

The Heritage of Electrical Engineering

A very different view of dynamics emerged from electrical engineering.
The prototype problem was design of electronic amplifiers. Since an am-
plifier is a device for amplification of signals it is natural to focus on the
input-output behavior. A system was considered as a device that trans-
formed inputs to outputs, see Figure 3.2. Conceptually an input-output
model can be viewed as a giant table of inputs and outputs. The input-
output view is particularly useful for the special class of linear systems. To
define linearity we let (u1, y1) och (u2, y2) denote two input-output pairs,
and a and b be real numbers. A system is linear if (au1+bu2, ay1+ay2) is
also an input-output pair (superposition). A nice property of control prob-
lems is that they can often be modeled by linear, time-invariant systems.

Time invariance is another concept. It means that the behavior of the
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3.2 Two Views on Dynamics

System
Input Output

Figure 3.2 Illustration of the input-output view of a dynamical system.

system at one time is equivalent to the behavior at another time. It can be
expressed as follows. Let (u, y) be an input-output pair and let ut denote
the signal obtained by shifting the signal u, t units forward. A system
is called time-invariant if (ut, yt) is also an input-output pair. This view
point has been very useful, particularly for linear, time-invariant systems,
whose input output relation can be described by

y(t) =
∫ t

0
n(t− τ )u(τ )dτ . (3.2)

where n is the impulse response of the system. If the input u is a unit
step the output becomes

y(t) = h(t) =
∫ t

0
n(t− τ )dτ =

∫ t

0
n(τ )u(τ )dτ (3.3)

The function h is called the step response of the system. Notice that the
impulse response is the derivative of the step response.

Another possibility to describe a linear, time-invariant system is to
represent a system by its response to sinusoidal signals, this is called fre-
quency response. A rich powerful theory with many concepts and strong,
useful results have emerged. The results are based on the theory of com-
plex variables and Laplace transforms. The input-output view lends it
naturally to experimental determination of system dynamics, where a
system is characterized by recording its response to a particular input,
e.g. a step.

The words input-output models, external descriptions, black boxes are
synonyms for input-output descriptions.

The Control View

When control emerged in the 1940s the approach to dynamics was strongly
influenced by the Electrical Engineering view. The second wave of devel-
opments starting in the late 1950s was inspired by the mechanics and the
two different views were merged. Systems like planets are autonomous
and cannot easily be influenced from the outside. Much of the classical
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Chapter 3. Dynamics

development of dynamical systems therefore focused on autonomous sys-
tems. In control it is of course essential that systems can have external
influences. The emergence of space flight is a typical example where pre-
cise control of the orbit is essential. Information also plays an important
role in control because it is essential to know the information about a
system that is provided by available sensors. The models from mechan-
ics were thus modified to include external control forces and sensors. In
control the model given by (3.4) is thus replaced by

dx
dt
= f (x, u)

y = n(x, u)
(3.4)

where u is a vector of control signal and y a vector of measurements. This
viewpoint has added to the richness of the classical problems and led to
new important concepts. For example it is natural to ask if all points
in the state space can be reached (reachability) and if the measurement
contains enough information to reconstruct the state.

The input-output approach was also strengthened by using ideas from
functional analysis to deal with nonlinear systems. Relations between
the state view and the input output view were also established. Current
control theory presents a rich view of dynamics based on good classical
traditions.

The importance of disturbances and model uncertainty are critical el-
ements of control because these are the main reasons for using feedback.
To model disturbances and model uncertainty is therefore essential. One
approach is to describe a model by a nominal system and some character-
ization of the model uncertainty. The dual views on dynamics is essential
in this context. State models are very convenient to describe a nominal
model but uncertainties are easier to describe using frequency response.

Standard Models

Standard models are very useful for structuring our knowledge. It also
simplifies problem solving. Learn the standard models, transform the
problem to a standard form and you are on familiar grounds. We will
discuss four standard forms

• Ordinary differential equations

• Transfer functions

• Frequency responses

• State equations

The first two standard forms are primarily used for linear time-invariant
systems. The state equations also apply to nonlinear systems.
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3.3 Ordinary Differential Equations

3.3 Ordinary Differential Equations

Consider the following description of a linear time-invariant dynamical
system

dn y
dtn + a1

dn−1 y
dtn−1 + . . .+ an y = b1

dn−1u
dtn−1 + b2

dn−2u
dtn−2 + . . .+ bnu, (3.5)

where u is the input and y the output. The system is of order n order,
where n is the highest derivative of y. The ordinary differential equations
is a standard topic in mathematics. In mathematics it is common practice
to have bn = 1 and b1 = b2 = . . . = bn−1 = 0 in (3.5). The form (3.5) adds
richness and is much more relevant to control. The equation is sometimes
called a controlled differential equation.

The Homogeneous Equation

If the input u to the system (3.5) is zero, we obtain the equation

dn y
dtn + a1

dn−1 y
dtn−1 + a2

dn−2 y
dtn−2 + . . .+ an y = 0, (3.6)

which is called the homogeneous equation associated with equation (3.5).
The characteristic polynomial of Equations (3.5) and (3.6) is

A(s) = sn + a1sn−1 + a2sn−2 + . . .+ an (3.7)
The roots of the characteristic equation determine the properties of the
solution. If A(α ) = 0, then y(t) = Ceα t is a solution to Equation (3.6).

If the characteristic equation has distinct roots α k the solution is

y(t) =
n∑

k=1

Ckeα kt, (3.8)

where Ck are arbitrary constants. The Equation (3.6) thus has n free
parameters.

Roots of the Characteristic Equation give Insight

A real root s = α correspond to ordinary exponential functions eα t. These
are monotone functions that decrease if α is negative and increase if α is
positive as is shown in Figure 3.3. Notice that the linear approximations
shown in dashed lines change by one unit for one unit of α t. Complex
roots s = σ ± iω correspond to the time functions.

eσ t sin ω t, eσ t cosω t

which have oscillatory behavior, see Figure 3.4. The distance between zero
crossings is π/ω and corresponding amplitude change is eσπ /ω .
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Figure 3.3 The exponential function y(t) = eα t. The linear approximations of of
the functions for small α t are shown in dashed lines. The parameter T = 1/α is
the time constant of the system.
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Figure 3.4 The exponential function y(t) = eσ t sinω t. The linear approximations
of of the functions for small α t are shown in dashed lines. The dashed line corre-
sponds to a first order system with time constant T = 1/σ . The distance between
zero crossings is π/ω .

Multiple Roots

When there are multiple roots the solution to Equation (3.6) has the form

y(t) =
n∑

k=1

Ck(t)eα kt, (3.9)

Where Ck(t) is a polynomial with degree less than the multiplicity of the
root α k. The solution (3.9) thus has n free parameters.

The Inhomogeneous Equation – A Special Case

The equation

dn y
dtn + a1

dn−1 y
dtn−1 + a2

dn−2 y
dtn−2 + . . .+ an y = u(t) (3.10)
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3.3 Ordinary Differential Equations

has the solution

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
h(t−τ )u(τ )dτ , (3.11)

where f is the solution to the homogeneous equation

dn f
dtn + a1

dn−1 f
dtn−1 + . . .+ an f = 0

with initial conditions

f (0) = 0, f ′(0) = 0, . . . , f (n−2)(0) = 0, f (n−1)(0) = 1. (3.12)

The solution (3.11) is thus a sum of two terms, the general solution to
the homogeneous equation and a particular solution which depends on
the input u. The solution has n free parameters which can be determined
from initial conditions.

The Inhomogeneous Equation - The General Case

The Equation (3.5) has the solution

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
n(t−τ )u(τ )dτ , (3.13)

where the function n, called the impulse response, is given by

n(t) = b1 f (n−1)(t) + b2 f (n−2)(t) + . . . + bn f (t). (3.14)

The solution is thus the sum of two terms, the general solution to the ho-
mogeneous equation and a particular solution. The general solution to the
homogeneous equation does not depend on the input and the particular
solution depends on the input.

Notice that the impulse response has the form

n(t) =
n∑

k=1

ck(t)eα kt. (3.15)

It thus has the same form as the general solution to the homogeneous
equation (3.9). The coefficients ck are given by the conditions (3.12).

The impulse response is also called the weighting function because the
second term of (3.13) can be interpreted as a weighted sum of past inputs.
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Chapter 3. Dynamics

The Step Response

Consider (3.13) and assume that all initial conditions are zero. The output
is then given by

y(t) =
∫ t

0
n(t− τ )u(τ )dτ , (3.16)

If the input is constant u(t) = 1 we get

y(t) =
∫ t

0
n(t− τ )dτ =

∫ t

0
n(τ )dτ = H(t), (3.17)

The function H is called the unit step response or the step response for
short. It follows from the above equation that

n(t) = dh(t)
dt

(3.18)

The step response can easily be determined experimentally by waiting
for the system to come to rest and applying a constant input. In process
engineering the experiment is called a bump test. The impulse response
can then be determined by differentiating the step response.

Stability

The solution of system is described by the ordinary differential equation
(3.5) is given by (3.9). The solution is stable if all solutions go to zero. A
system is thus stable if the real parts of all α i are negative, or equivalently
that all the roots of the characteristic polynomial (3.7) have negative real
parts.

Stability can be determined simply by finding the roots of the charac-
teristic polynomial of a system. This is easily done in Matlab.

The Routh-Hurwitz Stability Criterion

When control started to be used for steam engines and electric generators
computational tools were not available and it was it was a major effort to
find roots of an algebraic equation. Much intellectual activity was devoted
to the problem of investigating if an algebraic equation have all its roots
in the left half plane without solving the equation resulting in the Routh-
Hurwitz criterion. Some simple special cases of this criterion are given
below.

• The polynomial A(s) = s + a1 has its zero in the left half plane if
a1 > 0.

• The polynomial A(s) = s2 + a1s+ a2 has all its zeros in the left half
plane if all coefficients are positive.
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3.3 Ordinary Differential Equations

• The polynomial A(s) = s3+a2s2+a3 has all its zeros in the left half
plane if all coefficients are positive and if a1a2 > a− 3.

Transfer Functions, Poles and Zeros

The model (3.5) is characterized by two polynomials

A(s) = sn + a1sn−1 + a2sn−2 + . . .+ an−1s+ an

B(s) = b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn

The rational function

G(s) = B(s)
A(s) (3.19)

is called the transfer function of the system.
Consider a system described by (3.5) assume that the input and the

output have constant values u0 and y0 respectively. It then follows from
(3.5) that

an y0 = bnu0

which implies that
y0

u0
= bn

an
= G(0)

The number G(0) is called the static gain of the system because it tells
the ratio of the output and the input under steady state condition. If the
input is constant u = u0 and the system is stable then the output will
reach the steady state value y0 = G(0)u0. The transfer function can thus
be viewed as a generalization of the concept of gain.

Notice the symmetry between y and u. The inverse system is obtained
by reversing the roles of input and output. The transfer function of the

system is
B(s)
A(s) and the inverse system has the transfer function

A(s)
B(s) .

The roots of A(s) are called poles of the system. The roots of B(s)
are called zeros of the system. The poles of the system are the roots
of the characteristic equation, they characterize the general solution to
to the homogeneous equation and the impulse response. A pole s = λ
corresponds to the component eλ t of the solution, also called a mode. If
A(α ) = 0, then y(t) = eα t is a solution to the homogeneous equation (3.6).
Differentiation gives

dk y
dtk = α k y(t)

and we find

dn y
dtn + a1

dn−1 y
dtn−1 + a2

dn−2 y
dtn−2 + . . .+ an y = A(α )y(t) = 0
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The modes thus correspond to the terms of the solution to the homoge-
neous equation (3.6) and the terms of the impulse response (3.15) and
the step response.

If s = β is a zero of B(s) and u(t) = Ceβ t, then it follows that

b1
dn−1u
dtn−1 + b2

dn−2u
dtn−2 . . .+ bnu = B(β )Ceβ t = 0.

A zero of B(s) at s = β blocks the transmission of the signal u(t) = Ceβ t.

3.4 Laplace Transforms

The Laplace transform is very convenient for dealing with linear time-
invariant system. The reason is that it simplifies manipulations of linear
systems to pure algebra. It also a natural way to introduce transfer func-
tions and it also opens the road for using the powerful tools of the theory
of complex variables. The Laplace transform is an essential element of
the language of control.

The Laplace Transform

Consider a function f defined on 0 ≤ t < ∞ and a real number σ > 0.
Assume that f grows slower than eσ t for large t. The Laplace transform
F = L f of f is defined as

L f = F(s) =
∫ ∞

0
e−st f (t)dt

We will illustrate computation of Laplace transforms with a few examples

Transforms of Simple Function The transform of the function f1(t) =
e−at is given by

F1(s) =
∫ ∞

0
e−(s+a)tdt = − 1

s+ a
e−st
∣∣∣∞
0
= 1

s+ a

Differentiating the above equation we find that the transform of the func-
tion f2(t) = te −at is

F2(s) = 1
(s+ a)2

Repeated differentiation shows that the transform of the function f3(t) =
tne−at is

F3(s) = (n− 1)!
(s+ a)n
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3.4 Laplace Transforms

Setting a = 0 in f1 we find that the transform of the unit step function
f4(t) = 1 is

F4(s) = 1
s

Similarly we find by setting a = 0 in f3 that the transform of f5 = tn is

F5(s) = n!
sn+1

Setting a = ib in f1 we find that the transform of f (t) = e−ibt = cos bt−
i sin bt is

F(s) = 1
s+ ib

= s− ib
s2 + b2 =

s
s2 + b2 − i

b
s2 + b2

Separating real and imaginary parts we find that the transform of f6(t) =
sin bt and f7(t) = cos bt are

F6(t) = b
s2 + b2 , F7(t) = s

s2 + b2

Proceeding in this way it is possible to build up tables of transforms that
are useful for hand calculations.

Properties of Laplace Transforms The Laplace transform also has
many useful properties. First we observe that the transform is linear
because

L(af + bn) = aF(s) + bF(s) = a
∫ ∞

0
e−st f (t)dt+ b

∫ ∞

0
e−stn(t)dt

=
∫ ∞

0
e−st(af (t) + bn(t))dt = aL f + bLn

Next we will calculate the transform of the derivative of a function, i.e.
f ′(t) = d f (t)

dt . We have

L df
dt
=
∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣∣∣∞
0
+ s

∫ ∞

0
e−st f (t)dt = − f (0) + sL f

where the second equality is obtained by integration by parts. This for-
mula is very useful because it implies that differentiation of a time func-
tion corresponds to multiplication of the transform by s provided that the
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initial value f (0) is zero. We will consider the transform of an integral

L
∫ t

0
f (τ )dτ =

∫ ∞

0
e−st

∫ t

0
f (τ )dτ

= − e−st

s

∫ t

0
e−sτ f ′(τ )dτ

∣∣∣∞
0
+
∫ ∞

0

e−sτ

s
f (τ )dτ

= 1
s

∫ ∞

0
e−sτ f (τ )dτ = L f

The relation between the input u and the output y of a linear time-
invariant system is given by the convolution integral

y(t) =
∫ ∞

0
n(t− τ )u(τ )dτ

see (3.18). We will now consider the Laplace transform of such an expres-
sion. We have

Y(s) =
∫ ∞

0
e−st y(t)dt =

∫ ∞

0
e−st

∫ ∞

0
n(t− τ )u(τ )dτ dt

=
∫ ∞

0

∫ t

0
e−s(t−τ )e−sτn(t− τ )u(τ )dτ dt

=
∫ ∞

0
e−sτ u(τ )dτ

∫ ∞

0
e−stn(t)dt = G(s)U (s)

The description of a linear time-invariant systems thus becomes very sim-
ple when working with Laplace transforms.

Next we will consider the effect of a time shift. Let the number a be
positive and let the function fa be a time shift of the function f , i.e.

fa(t) =
{

0 for PI t < 0

f (t− a) for t ≥ 0

The Laplace transform of fa is given by

Fa(s) =
∫ ∞

0
e−st f (t− a)dt =

∫ ∞

a
e−st f (t− a)dt

=
∫ ∞

a
e−ase−s(t−a) f (t− a)dt = e−as

∫ ∞

0
e−st f (t)dt = e−as F(s)

(3.20)
Delaying a signal by a time units thus correspond to multiplication of its
Laplace transform by e−as.
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The behavior of time functions for small arguments is governed by the
behavior of the Laplace transform for large arguments. This is expressed
by the so called initial value theorem.

lim
s→∞

sF(s) = lim
s→∞

∫ ∞

0
se−st f (t)dt = lim

s→∞

∫ ∞

0
e−v f (v

s
)dv = f (0)

This holds provided that the limit exists.
The converse is also true which means that the behavior of time func-

tions for large arguments is governed by the behavior of the Laplace trans-
form for small arguments. Final value theorem. Hence

lim
s→0

sF(s) = lim
s→0

∫ ∞

0
se−st f (t)dt = lim

s→0

∫ ∞

0
e−v f (v

s
)dv = f (∞)

These properties are very useful for qualitative assessment of a time func-
tions and Laplace transforms.

Linear Differential Equations

The differentiation property L d f
dt = sL f − f (0) makes the Laplace trans-

form very convenient for dealing with linear differential equations. Con-
sider for example the system

dy
dt
= ay+ bu

Taking Laplace transforms of both sides give

sY(s) − y(0) = aY(s) + bU (s)

Solving this linear equation for Y(s) gives

Y(s) = y(0)
s− a

+ b
s− a

U (s)

Transforming back to time function we find

y(t) = eat y(0) + b
∫ t

0
ea(t−τ )u(τ ]dτ

To convert the transforms to time functions we have used the fact that
the transform

1
s− a

corresponds to the time function eat and we have also used the rule for
transforms of convolution.
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Inverse Transforms
A simple way to find time functions corresponding to a rational Laplace
transform. Write F(s) in a partial fraction expansion

F(s) = B(s)
A(s) =

B(s)
(s−α 1)(s−α 2) . . . (s−α n) =

C1

s−α 1
+ C2

s−α 2
+ . . .+ Cn

s−α n

Ck = lim
s→α k

(s−α k)F(s) = B(α k)
(α k −α 1) . . . (α k −α k−1)(s−α k+1) . . . (α k −α n)

The time function corresponding to the transform is

f (t) = C1eα 1t + C2eα 2t + . . .+ Cneα nt

Parameters α k give shape and numbers Ck give magnitudes.
Notice that α k may be complex numbers. With multiple roots the con-

stants Ck are instead polynomials.

The Transfer Function

The transfer function of an LTI system was introduced in Section 3.3 when
dealing with differential equations. Using Laplace transforms it can also
be defined as follows. Consider an LTI system with input u and output y.
The transfer function is the ratio of the transform of the output and the
input where the Laplace transforms are calculated under the assumption
that all initial values are zero.

G(s) = Y(s)
U (s) =

L y
Lu

The fact that all initial values are assumed to be zero has some conse-
quences that will be discussed later.

EXAMPLE 3.1—LINEAR TIME-INVARIANT SYSTEMS

Consider a system described by the ordinary differential equation (3.5),
i.e

dn y
dtn + a1

dn−1 y
dtn−1 + . . .+ an y = b1

dn−1u
dtn−1 + b2

dn−2u
dtn−2 + . . .+ bnu,

Taking Laplace transforms under the assumption that all initial values
are zero we get.

(sn + a1sn−1 + a2sn−2 + . . .+ an−1s+ an)Y(s)
= (b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn)U (s)
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The transfer function of the system is thus given by

G(s) = Y(s)
U (s) =

b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn

sn + a1sn−1 + a2sn−2 + . . .+ an−1s+ an
= B(s)

A(s) (3.21)

EXAMPLE 3.2—A TIME DELAY

Consider a system which simply delays the input T time units. It follows
from 3.20 that the input output relation is

Y(s) = e−sT U (s)
The transfer function of a time delay is thus

G(s) = Y(s)
U (s) = e−sT

It is also possible to calculate the transfer functions for systems de-
scribed by partial differential equations.

EXAMPLE 3.3—THE HEAT EQUATION

G(s) = e−
√

sT

G(s) = 1

cosh
√

sT

Transfer functions and Laplace transforms are ideal to deal with block
diagrams for linear time-invariant systems. We have already shown that
a block is simply characterized by

Y(s) = G(s)U (s)
The transform of the output of a block is simply the product of the transfer
function of the block and the transform of the input system. Algebraically
this is equivalent to multiplication with a constant. This makes it easy
to find relations between the signals that appear in a block diagram.
The combination of block diagrams and transfer functions is a very nice
combination because they make it possible both to obtain an overview of
a system and to guide the derivation of equations for the system. This is
one of the reasons why block diagrams are so widely used in control.

Notice that it also follows from the above equation that signals and
systems have the same representations. In the formula we can thus con-
sider n as the input and u as the transfer function.

To illustrate the idea we will consider an example.
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C PΣ ΣΣ
r e u x y

n

−1

d

Figure 3.5 Block diagram of a feedback system.

EXAMPLE 3.4—RELATIONS BETWEEN SIGNALS IN A BLOCK DIAGRAM

Consider the system in Figure 3.5. The system has two blocks representing
the process P and the controller C. There are three external signals, the
reference r, the load disturbance d and the measurement noise n. A typical
problem is to find out how the error e related to the signals r d and
n? Introduce Laplace transforms and transfer functions. To obtain the
desired relation we simply trace the signals around the loop. Starting
with the signal e and tracing backwards in the loop we find that e is the
difference between r and y, hence E = R− Y. The signal y in turn is the
sum of n and the output of the block P, hence Y = N+ P(D+V ). Finally
the signal v is the output of the controller which is given by V = PE.
Combining the results we get

E = R − (N + P(D + CE))
With a little practice this equation can be written directly. Solving for E
gives

E = 1
1+ PC

R − 1
1+ PC

N − P
1+ PC

D

Notice the form of the equations and the use of superposition.

Simulating LTI Systems

Linear time-invariant systems can be conveniently simulated using Mat-
lab. For example a system with the transfer function

G(s) = 5s+ 2
s2 + 3s+ 2

is introduced in matlab as

G=tf([5 2],[1 3 2])

The command step(G) gives the step response of the system.
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Transfer Functions

The transfer function of a linear system is defined as

G(s) = Y(s)
U (s) =

L y
Lu

(3.22)

where U (s) = Lu is the Laplace transform of the input u and Y(s) = L y
is the Laplace transform of the output y. The Laplace transforms are
computed under the assumption that all initial conditions are zero.

Circuit Analysis

Laplace transforms are very useful for circuit analysis. A resistor is de-
scribed by the algebraic equation

V = RI

but inductors and capacitors are describe by the linear differential equa-
tions

CV =
∫ t

0
I(τ ]dτ

L
dI
dt
= V

Taking Laplace transforms we get

LV = RI

LV = 1
sC

L I

LV = sLL I

The transformed equations for all components thus look identical, the
transformed voltage LV is a generalized impedance Z multiplied by the
transformed current L I. The impedance is

Z(s) = R for a resistor

Z(s) = 1
sC

for a capacitor

Z(s) = sL for an inductor

Operating with the transforms we can thus pretend that all elements of
a circuit is a resistor which means that circuit analysis is reduced to pure
algebra. This is just another illustration of the fact that differential equa-
tions are transformed to algebraic equations. We illustrate the procedure
by an example.
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Figure 3.6 Schematic diagram of an electric circuit.

EXAMPLE 3.5—OPERATIONAL AMPLIFIERS

Consider the electric circuit shown in Figure 3.6. Assume that the problem
is to find the relation between the input voltage V1 and the output voltage
V2. Assuming that the gain of the amplifier is very high, say around 106,
then the voltage V is negligible and the current I0 is zero. The currents
I1 and I2 then are the same which gives

LV1

Z1(s) = −
LV2

Z2(s)
It now remains to determine the generalized impedances Z1 and Z2. The
impedance Z2 is a regular resistor. To determine Z1 we use the simple
rule for combining resistors which gives

Z1(s) = R + 1
sC

Hence
LV2

LV2
= −Z1(s)

Z2(s) = −
R
R2
− 1

R2Cs

Converting to the time domain we find

V2(t) = − R
R2
− 1

R2C

∫ t

0
V1(τ )dτ

The circuit is thus a PI controller.

3.5 Frequency Response

The idea of frequency response is to characterize linear time-invariant
systems by their response to sinusoidal signals. The idea goes back to
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Figure 3.7 Response of a linear time-invariant system to a sinusoidal input (full
lines). The dashed line shows the steady state output calculated from (3.23).

Fourier, who introduced the method to investigate propagation of heat in
metals. Figure 3.7 shows the response of a linear time-invariant system to
a sinusoidal input. The figure indicates that after a transient the output
is a sinusoid with the same frequency as the input. The steady state
response to a sinusoidal input of a stable linear system is in fact given by
G(iω ). Hence if the input is

u(t) = a sinω t = aℑeiω t

the output is

y(t) = ahG(iω )h sin (ω t+ arg G(iω )) = aℑeiω tG(iω ) (3.23)
The dashed line in Figure 3.7 shows the output calculated by this for-
mula. It follows from this equation that the transfer function G has the
interesting property that its value for s = iω describes the steady state
response to sinusoidal signals. The function G(iω ) is therefore called the
frequency response. The argument of the function is frequency ω and the
function takes complex values. The magnitude gives the magnitude of the
steady state output for a unit amplitude sinusoidal input and the argu-
ment gives the phase shift between the input and the output. Notice that
the system must be stable for the steady state output to exist.
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The frequency response can be determined experimentally by analyz-
ing how a system responds to sinusoidal signals. It is possible to make
very accurate measurements by using correlation techniques.

To derive the formula we will first calculate the response of a system
with the transfer function G(s) to the signal eat where all poles of the
transfer function have the property ℜpk < α < a. The Laplace transform
of the output is

Y(s) = G(s) 1
s− a

Making a partial fraction expansion we get

Y(s) = G(a)
s− a

+
∑ Rk

(s− pk)(pk − a)

It follows the output has the property∣∣y(t) − G(a)eat
∣∣ < ce−α t

where c is a constant. Asymptotically we thus find that the output ap-
proaches G(a)eat. Setting a = ib we find that the response to the input

u(t) = eibt = cos bt+ i sin bt

will approach

y(t) = G(ib)eibt = hG(ib)hei(b+arg G(ib))

= hG(ib)h cos (bt+ arg arg G(ib)) + ihG(ib)h sin (bt+ arg arg G(ib))

Separation of real and imaginary parts give the result.

Nyquist Plots

The response of a system to sinusoids is given by the the frequency re-
sponse G(iω ). This function can be represented graphically by plotting
the magnitude and phase of G(iω ) for all frequencies, see Figure 3.8. The
magnitude a = hG(iω )h represents the amplitude of the output and the
angle φ = arg G(iω ) represents the phase shift. The phase shift is typi-
cally negative which implies that the output will lag the input. The angle
ψ in the figure is therefore called phase lag. One reason why the Nyquist
curve is important is that it gives a totally new way of looking at stabil-
ity of a feedback system. Consider the feedback system in Figure 3.9. To
investigate stability of a the system we have to derive the characteristic
equation of the closed loop system and determine if all its roots are in
the left half plane. Even if it easy to determine the roots of the equation
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Figure 3.8 The Nyquist plot of a transfer function G(iω ).

AB

−1

L(s)

Figure 3.9 Block diagram of a simple feedback system.

numerically it is not easy to determine how the roots are influenced by
the properties of the controller. It is for example not easy to see how to
modify the controller if the closed loop system is stable. We have also de-
fined stability as a binary property, a system is either stable or unstable.
In practice it is useful to be able to talk about degrees of stability. All
of these issues are addressed by Nyquist’s stability criterion. This result
has a strong intuitive component which we will discuss first. There is also
some beautiful mathematics associated with it that will be discussed in a
separate section.

Consider the feedback system in Figure 3.9. Let the transfer functions
of the process and the controller be P(s) and C(s) respectively. Introduce
the loop transfer function

L(s) = P(s)C(s) (3.24)

To get insight into the problem of stability we will start by investigating
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the conditions for oscillation. For that purpose we cut the feedback loop
as indicated in the figure and we inject a sinusoid at point A. In steady
state the signal at point B will also be a sinusoid with the same frequency.
It seems reasonable that an oscillation can be maintained if the signal at
B has the same amplitude and phase as the injected signal because we
could then connect A to B. Tracing signals around the loop we find that
the condition that the signal at B is identical to the signal at A is that

L(iω 0) = −1 (3.25)
which we call the condition for oscillation. This condition means that the
Nyquist curve of L(iω ) intersects the negative real axis at the point -1.
Intuitively it seems reasonable that the system would be stable if the
Nyquist curve intersects to the right of the point -1 as indicated in Fig-
ure 3.9. This is essentially true, but there are several subtleties that are
revealed by the proper theory.

Stability Margins

In practice it is not enough to require that the system is stable. There
must also be some margins of stability. There are many ways to express
this. Many of the criteria are based on Nyquist’s stability criterion. They
are based on the fact that it is easy to see the effects of changes of the
gain and the phase of the controller in the Nyquist diagram of the loop
transfer function L(s). An increase of controller gain simply expands the
Nyquist curve radially. An increase of the phase of the controller twists the
Nyquist curve clockwise, see Figure 3.10. The gain margin nm tells how
much the controller gain can be increased before reaching the stability
limit. Let ω 180 be the smallest frequency where the phase lag of the loop
transfer function L(s) is 180○. The gain margin is defined as

nm = 1
hL(iω 180)h (3.26)

The stability margin is a closely related concept which is defined as

sm = 1+ hL(iω 180)h = 1− 1
nm

(3.27)

A nice feature of the stability margin is that it is a number between 0
and 1. Values close to zero imply a small margin.

The phase margin ϕm is the amount of phase lag required to reach the
stability limit. Let ω nc denote the lowest frequency where the loop transfer
function L(s) has unit magnitude. The phase margin is then given by

ϕm = π + arg L(iω nc) (3.28)
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Figure 3.10 Nyquist curve of the loop transfer function L with indication of gain,
phase and stability margins.

The margins have simple geometric interpretations in the Nyquist dia-
gram of the loop transfer function as is shown in Figure 3.10. The stability
margin sm is the distance between the critical point and the intersection
of the Nyquist curve with the negative real axis.

One possibility to characterize the stability margin with a single num-
ber is to choose the shortest distance d to the critical point. This is also
shown in Figure 3.10.

Reasonable values of the margins are phase margin ϕm = 30○ − 60○,
gain margin nm = 2 − 5, stability margin sm = 0.5 − 0.8, and shortest
distance to the critical point d = 0.5− 0.8.

The gain and phase margins were originally conceived for the case
when the Nyquist curve only intersects the unit circle and the negative
real axis once. For more complicated systems there may be many inter-
sections and it is then necessary to consider the intersections that are
closest to the critical point. For more complicated systems there is also
another number that is highly relevant namely the delay margin. The
delay margin is defined as the smallest time delay required to make the
system unstable. For loop transfer functions that decay quickly the delay
margin is closely related to the phase margin but for systems where the
amplitude ratio of the loop transfer function has several peaks at high
frequencies the delay margin is a much more relevant measure.
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Nyquist’s Stability Theorem*

We will now prove the Nyquist stability theorem. This will require more
results from the theory of complex variables than in many other parts of
the book. Since precision is needed we will also use a more mathemati-
cal style of presentation. We will start by proving a key theorem about
functions of complex variables.

THEOREM 3.1—PRINCIPLE OF VARIATION OF THE ARGUMENT

Let D be a closed region in the complex plane and let Γ be the boundary
of the region. Assume the function f is analytic in D and on Γ except at
a finite number of poles and zeros, then

wn = 1
2π

∆Γ arg f (z) = 1
2π i

∫
Γ

f ′(z)
f (z) dz = N − P

where N is the number of zeros and P the number of poles in D. Poles
and zeros of multiplicity m are counted m times. The number wn is called
the winding number and ∆Γ arg f (z) is the variation of the argument of
the function f as the curve Γ is traversed in the positive direction.

PROOF 3.1
Assume that z = a is a zero of multiplicity m. In the neighborhood of
z = a we have

f (z) = (z− a)mn(z)
where the function n is analytic and different form zero. We have

f ′(z)
f (z) =

m
z− a

+ n
′(z)
n(z)

The second term is analytic at z = a. The function f ′/ f thus has a single
pole at z = a with the residue m. The sum of the residues at the zeros of
the function is N. Similarly we find that the sum of the residues of the
poles of is −P. Furthermore we have

d
dz

log f (z) = f ′(z)
f (z)

which implies that ∫
Γ

f ′(z)
f (z) dz = ∆Γ log f (z)

where ∆Γ denotes the variation along the contour Γ. We have

log f (z) = log h f (z)h + i arg f (z)
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Figure 3.11 Contour Γ used to prove Nyquist’s stability theorem.

Since the variation of h f (z)h around a closed contour is zero we have

∆Γ log f (z) = i∆Γ arg f (z)

and the theorem is proven.

REMARK 3.1
The number wn is called the winding number.

REMARK 3.2
The theorem is useful to determine the number of poles and zeros of
an function of complex variables in a given region. To use the result we
must determine the winding number. One way to do this is to investigate
how the curve Γ is transformed under the map f . The variation of the
argument is the number of times the map of Γ winds around the origin
in the f -plane. This explains why the variation of the argument is also
called the winding number.

We will now use the Theorem 1 to prove Nyquist’s stability theorem.
For that purpose we introduce a contour that encloses the right half plane.
For that purpose we choose the contour shown in Figure 3.11. The contour
consists of a small half circle to the right of the origin, the imaginary axis
and a large half circle to the right with with the imaginary axis as a
diameter. To illustrate the contour we have shown it drawn with a small
radius r and a large radius R. The Nyquist curve is normally the map
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of the positive imaginary axis. We call the contour Γ the full Nyquist
contour.

Consider a closed loop system with the loop transfer function L(s).
The closed loop poles are the zeros of the function

f (s) = 1+ L(s)

To find the number of zeros in the right half plane we thus have to inves-
tigate the winding number of the function f = 1+ L as s moves along the
contour Γ. The winding number can conveniently be determined from the
Nyquist plot. A direct application of the Theorem 1 gives.

THEOREM 3.2—NYQUIST’S STABILITY THEOREM

Consider a simple closed loop system with the loop transfer function L(s).
Assume that the loop transfer function does not have any poles in the
region enclosed by Γ and that the winding number of the function 1+L(s)
is zero. Then the closed loop characteristic equation has not zeros in the
right half plane.

We illustrate Nyquist’s theorem by an examples.

EXAMPLE 3.6—A SIMPLE CASE

Consider a closed loop system with the loop transfer function

L(s) = k
s((s+ 1)2

Figure 3.12 shows the image of the contour Γ under the map L. The
Nyquist curve intersects the imaginary axis for ω = 1 the intersection is
at −k/2. It follows from Figure 3.12 that the winding number is zero if
k < 2 and 2 if k > 2. We can thus conclude that the closed loop system is
stable if k < 2 and that the closed loop system has two roots in the right
half plane if k > 2.

By using Nyquist’s theorem it was possible to resolve a problem that
had puzzled the engineers working with feedback amplifiers. The follow-
ing quote by Nyquist gives an interesting perspective.

Mr. Black proposed a negative feedback repeater and proved by tests
that it possessed the advantages which he had predicted for it. In
particular, its gain was constant to a high degree, and it was lin-
ear enough so that spurious signals caused by the interaction of the
various channels could be kept within permissible limits. For best re-
sults, the feedback factor, the quantity usually known as µβ (the loop
transfer function), had to be numerically much larger than unity. The
possibility of stability with a feedback factor greater than unity was
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Figure 3.12 Map of the contour Γ under the map L(s) = k
s((s+1)2 . The curve is

drawn for k < 2. The map of the positive imaginary axis is shown in full lines, the
map of the negative imaginary axis and the small semi circle at the origin in dashed
lines.

puzzling. Granted that the factor is negative it was not obvious how
that would help. If the factor was -10, the effect of one round trip
around the feedback loop is to change the magnitude of the current
from, say 1 to -10. After a second trip around the loop the current
becomes 100, and so forth. The totality looks much like a divergent
series and it was not clear how such a succession of ever-increasing
components could add to something finite and so stable as experience
had shown. The missing part in this argument is that the numbers
that describe the successive components 1, -10, 100, and so on, rep-
resent the steady state, whereas at any finite time many of the com-
ponents have not yet reached steady state and some of them, which
are destined to become very large, have barely reached perceptible
magnitude. My calculations were principally concerned with replac-
ing the indefinite diverging series referred to by a series which gives
the actual value attained at a specific time t. The series thus obtained
is convergent instead of divergent and, moreover, converges to values
in agreement with the experimental findings.

This explains how I came to undertake the work. It should perhaps
be explained also how it come to be so detailed. In the course of the
calculations, the facts with which the term conditional stability have
come to be associated, became apparent. One aspect of this was that
it is possible to have a feedback loop which is stable and can be made
unstable by by increasing the loop loss. this seemed a very surprising
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Figure 3.13 Map of the contour Γ under the map L(s) = 3(s+1)2
s(s+6)2 , see (3.29), which

is a conditionally stable system. The map of the positive imaginary axis is shown
in full lines, the map of the negative imaginary axis and the small semicircle at the
origin in dashed lines. The plot on the right is an enlargement of the area around
the origin of the plot on the left.

result and appeared to require that all the steps be examined and set
forth in full detail.

This quote clearly illustrate the difficulty in understanding feedback by
simple qualitative reasoning. We will illustrate the issue of conditional
stability by an example.

EXAMPLE 3.7—CONDITIONAL STABILITY

Consider a feedback system with the loop transfer function

L(s) = 3(s+ 1)2
s(s+ 6)2 (3.29)

The Nyquist plot of the loop transfer function is shown in Figure 3.13 The
figure shows that the Nyquist curve intersects the negative real axis at a
point close to -5. The naive argument would then indicate that the system
would be unstable. The winding number is however zero and stability
follows from Nyquist’s theorem.

Notice that Nyquist’s theorem does not hold if the loop transfer func-
tion has a pole in the right half plane. There are extensions of the Nyquist
theorem to cover this case but it is simpler to invoke Theorem 1 directly.
We illustrate this by two examples.
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Figure 3.14 Map of the contour Γ under the map L(s) = k
s(s−1)(s+5) . The curve on

the right shows the region around the origin in larger scale. The map of the positive
imaginary axis is shown in full lines, the map of the negative imaginary axis and
the small semi circle at the origin in dashed lines.

EXAMPLE 3.8—LOOP TRANSFER FUNCTION WITH RHP POLE

Consider a feedback system with the loop transfer function

L(s) = k
s(s− 1)(s+ 5)

This transfer function has a pole at s = 1 in the right half plane. This
violates one of the assumptions for Nyquist’s theorem to be valid. The
Nyquist curve of the loop transfer function is shown in Figure 3.14. Traversing
the contour Γ in clockwise we find that the winding number is 1. Applying
Theorem 1 we find that

N − P = 1

Since the loop transfer function has a pole in the right half plane we have
P = 1 and we get N = 2. The characteristic equation thus has two roots
in the right half plane.

EXAMPLE 3.9—THE INVERTED PENDULUM

Consider a closed loop system for stabilization of an inverted pendulum
with a PD controller. The loop transfer function is

L(s) = s+ 2
s2 − 1

(3.30)
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Figure 3.15 Map of the contour Γ under the map L(s) = s+2
s2−1

given by (3.30). The
map of the positive imaginary axis is shown in full lines, the map of the negative
imaginary axis and the small semi circle at the origin in dashed lines.

This transfer function has one pole at s = 1 in the right half plane.
The Nyquist curve of the loop transfer function is shown in Figure 3.15.
Traversing the contour Γ in clockwise we find that the winding number
is -1. Applying Theorem 1 we find that

N − P = −1

Since the loop transfer function has a pole in the right half plane we have
P = 1 and we get N = 0. The characteristic equation thus has no roots
in the right half plane and the closed loop system is stable.

Bode Plots

The Nyquist curve is one way to represent the frequency response G(iω ).
Another useful representation was proposed by Bode who represented
it by two curves, the gain curve and the phase curve. The gain curve
gives the value of G(iω ) as a function of ω and the phase curve gives
arg G(iω ) as a function of ω . The curves are plotted as shown below with
logarithmic scales for frequency and magnitude and linear scale for phase,
see Figure 3.16 An useful feature of the Bode plot is that both the gain
curve and the phase curve can be approximated by straight lines, see
Figure 3.16 where the approximation is shown in dashed lines. This fact
was particularly useful when computing tools were not easily accessible.

102



3.5 Frequency Response

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

−150

−100

−50

0

50

ω

hG
(iω
)h

ar
g

G
(iω
)

Figure 3.16 Bode diagram of a frequency response. The top plot is the gain curve
and bottom plot is the phase curve. The dashed lines show straight line approxima-
tions of the curves.

The fact that logarithmic scales were used also simplified the plotting. We
illustrate Bode plots with a few examples.

It is easy to sketch Bode plots because with the right scales they have
linear asymptotes. This is useful in order to get a quick estimate of the
behavior of a system. It is also a good way to check numerical calculations.

Consider first a transfer function which is a polynomial G(s) = B(s)/A(s).
We have

log G(s) = log B(s) − log A(s)
Since a polynomial is a product of terms of the type :

s, s+ a, s2 + 2ζ as+ a2

it suffices to be able to sketch Bode diagrams for these terms. The Bode
plot of a complex system is then obtained by composition.

EXAMPLE 3.10—BODE PLOT OF A DIFFERENTIATOR

Consider the transfer function

G(s) = s
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Figure 3.17 Bode plot of a differentiator.

We have G(iω ) = iω which implies

log hG(iω )h = log ω
arg G(iω ) = π/2

The gain curve is thus a straight line with slope 1 and the phase curve is
a constant at 90○.. The Bode plot is shown in Figure 3.17

EXAMPLE 3.11—BODE PLOT OF AN INTEGRATOR

Consider the transfer function

G(s) = 1
s

We have G(iω ) = 1/iω which implies

log hG(iω )h = − log ω
arg G(iω ) = −π/2

The gain curve is thus a straight line with slope -1 and the phase curve
is a constant at −90○. The Bode plot is shown in Figure 3.18

Compare the Bode plots for the differentiator in Figure 3.17 and the
integrator in Figure 3.18. The sign of the phase is reversed and the gain
curve is mirror imaged in the horizontal axis. This is a consequence of
the property of the logarithm.

lon 1
G
= −lonG = −lonhGh − i arg G
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Figure 3.18 Bode plot of an integrator.

EXAMPLE 3.12—BODE PLOT OF A FIRST ORDER FACTOR

Consider the transfer function

G(s) = s+ a

We have

G(iω ) = a+ iω

and it follows that

hG(iω )h =
√

ω 2 + a2, arg G(iω ) = arctanω/a

Hence

log hG(iω )h = 1
2

log (ω 2 + a2), arg G(iω ) = arctanω/a

The Bode Plot is shown in Figure 3.19. Both the gain curve and the phase
curve can be approximated by straight lines if proper scales are chosen
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Figure 3.19 Bode plot of a first order factor. The dashed lines show the piece-wise
linear approximations of the curves.

and we obtain the following approximations.

log hG(iω )h �


log a if ω << a,

log a+ log
√

2 if ω = a,

logω if ω >> a

,

arg G(iω ) �



0 if ω << a,

π
4
+ 1

2
log

ω
a

if ω � a,

π
2

if ω >> a

,

Notice that a first order system behaves like an integrator for high fre-
quencies. Compare with the Bode plot in Figure 3.18.

EXAMPLE 3.13—BODE PLOT OF A SECOND ORDER SYSTEM

Consider the transfer function

G(s) = s2 + 2aζ s+ a2

We have
G(iω ) = a2 −ω 2 + 2iζ aω
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Hence

log hG(iω )h = 1
2

log (ω 4 + 2a2ω 2(2ζ 2 − 1) + a4)
arg G(iω ) = arctan 2ζ aω/(a2 −ω 2)

Notice that the smallest value of the magnitude minω hG(iω )h = 1/2ζ is
obtained for ω = a The gain is thus constant for small ω . It has an asymp-
tote with zero slope for low frequencies. For large values of ω the gain is
proportional to ω 2, which means that the gain curve has an asymptote
with slope 2. The phase is zero for low frequencies and approaches 180○

for large frequencies. The curves can be approximated with the following
piece-wise linear expressions

log hG(iω )h �


2 log a if ω << a,

2 log a+ log 2ζ if ω = a,

2 logω if ω >> a

,

arg G(iω ) �


0 if ω << a,
π
2
+ ω − a

aζ
if ω = a,

π if ω >> a

,

The Bode Plot is shown in Figure 3.20, the piece-wise linear approxima-
tions are shown in dashed lines.

Sketching a Bode Plot

It is easy to sketch the asymptotes of the gain curves of a Bode plot. This
is often done in order to get a quick overview of the frequency response.
The following procedure can be used

• Factor the numerator and denominator of the transfer functions.

• The poles and zeros are called break points because they correspond
to the points where the asymptotes change direction.

• Determine break points sort them in increasing frequency

• Start with low frequencies

• Draw the low frequency asymptote

• Go over all break points and note the slope changes
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Figure 3.20 Bode plot of a second order factor with ζ = 0.05 (dotted), 0.1, 0.2, 0.5
and 1.0 (dash-dotted). The dashed lines show the piece-wise linear approximations
of the curves.

• A crude sketch of the phase curve is obtained by using the rela-
tion that, for systems with no RHP poles or zeros, one unit slope
corresponds to a phase of 90○

We illustrate the procedure with the transfer function

G(s) = 200(s+ 1)
s(s+ 10)(s+ 200) =

1+ s
10s(1+ 0.1s)(1+ 0.01s)

The break points are 0.01, 0.1, 1. For low frequencies the transfer function
can be approximated by

G(s) � 1
10s

Following the procedure we get

• The low frequencies the system behaves like an integrator with gain
0.1. The low frequency asymptote thus has slope -1 and it crosses
the axis of unit gain at ω = 0.1.

• The first break point occurs at ω = 0.01. This break point corre-
sponds to a pole which means that the slope decreases by one unit
to -2 at that frequency.

• The next break point is at ω = 0.1 this is also a pole which means
that the slope decreases to -3.
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Figure 3.21 Illustrates how the asymptotes of the gain curve of the Bode plot can
be sketched. The dashed curves show the asymptotes and the full lines the complete
plot.

• The next break point is at ω = 1, since this is a zero the slope
increases by one unit to -2.

Figure 3.21 shows the asymptotes of the gain curve and the complete Bode
plot.

Gain and Phase Margins

The gain and phase margins can easily be found from the Bode plot of
the loop transfer function. Recall that the gain margin tells how much the
gain has to be increased for the system to reach instability. To determine
the gain margin we first find the frequency ω pc where the phase is −180○.
This frequency is called the phase crossover frequency. The gain margin is
the inverse of the gain at that frequency. The phase margin tells how the
phase lag required for the system to reach instability. To determine the
phase margin we first determine the frequency ω nc where the gain of the
loop transfer function is one. This frequency is called the gain crossover
frequency. The phase margin is the phase of the loop transfer function
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Figure 3.22 Finding gain and phase margins from the Bode plot of the loop trans-
fer function.

at that frequency plus 180○. Figure 3.22 illustrates how the margins are
found in the Bode plot of the loop transfer function.

Bode’s Relations

Analyzing the Bode plots in the examples we find that there appears
to be a relation between the gain curve and the phase curve. Consider
e.g. the curves for the differentiator in Figure 3.17 and the integrator
in Figure 3.18. For the differentiator the slope is +1 and the phase is
constant pi/2 radians. For the integrator the slope is -1 and the phase
is −pi/2. Bode investigated the relations between the curves and found
that there was a unique relation between amplitude and phase for many
systems. In particular he found the following relations for system with no
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poles and zeros in the right half plane.

arg G(iω 0) = 2ω 0

π

∫ ∞

0

log hG(iω )h − log hG(iω 0)h
ω 2 −ω 2

0
dω

= 1
π

∫ ∞

0

d log hG(iω )h
d logω

log
∣∣∣ω +ω 0

ω −ω 0

∣∣∣d
� π

2
d log hG(iω )h

d log ω
log hG(iω )h
log hG(iω 0)h = −

2ω 2
0

π

∫ ∞

0

ω−1 arg G(iω ) −ω−1
0 arg G(iω 0)

ω 2 −ω 2
0

dω

= −2ω 2
0

π

∫ ∞

0

d
(
ω−1 arg G(iω ))

dω
log
∣∣∣ω +ω 0

ω −ω 0

∣∣∣dω

(3.31)
The formula for the phase tells that the phase is a weighted average of
the logarithmic derivative of the gain, approximatively

arg G(iω ) � π
2

d log hG(iω )h
d log ω

(3.32)

This formula implies that a slope of +1 corresponds to a phase of π/2,
which holds exactly for the differentiator, see Figure 3.17. The exact for-
mula (3.31) says that the differentiated slope should be weighted by the
kernel ∫ ∞

0
log
∣∣∣ω +ω 0

ω −ω 0

∣∣∣dω = π 2

2

Figure 3.23 is a plot of the kernel.

Minimum Phase and Non-minimum Phase

Bode’s relations hold for systems that do not have poles and zeros in the
left half plane. Such systems are called minimum phase systems. One
nice property of these systems is that the phase curve is uniquely given
by the gain curve. These systems are also relatively easy to control. Other
systems have larger phase lag, i.e. more negative phase. These systems
are said to be non-minimum phase, because they have more phase lag
than the equivalent minimum phase systems. Systems which do not have
minimum phase are more difficult to control. Before proceeding we will
give some examples.

EXAMPLE 3.14—A TIME DELAY

The transfer function of a time delay of T units is

G(s) = e−sT
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Figure 3.23 The weighting kernel in Bodes formula for computing the phase from
the gain.

This transfer function has the property

hG(iω )h = 1, arg G(iω ) = −ω T

Notice that the gain is one. The minimum phase system which has unit
gain has the transfer function G(s) = 1. The time delay thus has an
additional phase lag of ω T . Notice that the phase lag increases with in-
creasing frequency. Figure 3.24

It seems intuitively reasonable that it is not possible to obtain a fast
response of a system with time delay. We will later show that this is
indeed the case.

Next we will consider a system with a zero in the right half plane

EXAMPLE 3.15—SYSTEM WITH A RHP ZERO

Consider a system with the transfer function

G(s) = a− s
a+ s

This transfer function has the property

hG(iω )h = 1, arg G(iω ) = −2 arctan
ω
a

Notice that the gain is one. The minimum phase system which has unit
gain has the transfer function G(s) = 1. In Figure 3.25 we show the Bode
plot of the transfer function. The Bode plot resembles the Bode plot for a
time delay which is not surprising because the exponential function e−sT
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Figure 3.24 Bode plot of a time delay which has the transfer function G(s) = e−s.

can be approximated by

e−sT = 1− sT/2
1+ sT/2

The largest phase lag of a system with a zero in the RHP is however
pi.

We will later show that the presence of a zero in the right half plane
severely limits the performance that can be achieved. We can get an intu-
itive feel for this by considering the step response of a system with a right
half plane zero. Consider a system with the transfer function G(s) that
has a zero at s = −α in the right half plane. Let h be the step response
of the system. The Laplace transform of the step response is given by

H(s) = G(s)
s

=
∫ t

0
e−sth(t)dt
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Figure 3.25 Bode plot of a the transfer function G(s) = a− s
a+ s

.

Since G(α ) is zero we have

0 =
∫ t

0
e−α th(t)dt

Since e−α t is positive it follows that the step response h(t) must be neg-
ative for some t. This is illustrated in Figure 3.26 which shows the step
response of a system having a zero in the right half plane. Notice that the
output goes in the wrong direction initially. This is sometimes referred to
as inverse response. It seems intuitively clear that such systems are diffi-
cult to control fast. This is indeed the case as will be shown in Chapter 5.
We have thus found that systems with time delays and zeros in the right
half plane have similar properties. Next we will consider a system with a
right half plane pole.

EXAMPLE 3.16—SYSTEM WITH A RHP POLE

Consider a system with the transfer function

G(s) = s+ a
s− a
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Figure 3.26 Step response of a system with a zero in the right half plane. The

system has the transfer function G(s) = 6(−s+ 1)
s2 + 5s+ 6

.

This transfer function has the property

hG(iω )h = 1, arg G(iω ) = −2 arctan
a
ω

Notice that the gain is one. The minimum phase system which has unit
gain has the transfer function G(s) = 1. In Figure 3.27 we show the Bode
plot of the transfer function.

Comparing the Bode plots for systems with a right half plane pole
and a right half plane zero we find that the additional phase lag appears
at high frequencies for a system with a right half plane zero and at low
frequencies for a system with a right half plane pole. This means that
there are significant differences between the systems. When there is a
right half plane pole high frequencies must be avoided by making the
system slow. When there is a right half plane zero low frequencies must
be avoided and it is necessary to control these systems rapidly. This will
be discussed more in Chapter 5.

It is a severe limitation to have poles and zeros in the right half plane.
Dynamics of this type should be avoided by redesign of the system. The
zeros of a system can also be changed by moving sensors or by introducing
additional sensors. Unfortunately systems which are non-minimum phase
are not uncommon i real life. We end this section by giving a few examples.

EXAMPLE 3.17—HYDRO ELECTRIC POWER GENERATION

The transfer function from tube opening to electric power in a hydroelec-
tric power station has the form

P(s)
A(s) =

P0

A0

1− 2sT
1+ sT

where T is the time it takes sound to pass along the tube.
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Figure 3.27 Bode plot of a the transfer function G(s) = s+ a
s− a

which has a pole

in the right half plane.

EXAMPLE 3.18—LEVEL CONTROL IN STEAM GENERATORS

Consider the problem of controlling the water level in a steam generator.
The major disturbance is the variation of steam taken from the unit. When
more steam is fed to the turbine the pressure drops. There is typically a
mixture of steam and water under the water level. When pressure drops
the steam bubbles expand and the level increases momentarily. After some
time the level will decrease because of the mass removed from the system.

EXAMPLE 3.19—FLIGHT CONTROL

The transfer function from elevon to height in an airplane is non-minimum
phase. When the elevon is raised there will be a force that pushes the rear
of the airplane down. This causes a rotation which gives an increase of
the angle of attack and an increase of the lift. Initially the aircraft will
however loose height. The Wright brothers understood this and used con-
trol surfaces in the front of the aircraft to avoid the effect.
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EXAMPLE 3.20—BACKING A CAR

Consider backing a car close to a curb. The transfer function from steer-
ing angle to distance from the curve is non-minimum phase. This is a
mechanism that is similar to the aircraft.

EXAMPLE 3.21—REVENUE FROM DEVELOPMENT

The relation between revenue development effort in a new product devel-
opment is a non-minimum phase system. This means that such a system
is very difficult to control tightly.

3.6 State Models

The state is a collection of variables that summarize the past of a sys-
tem for the purpose of prediction the future. For an engineering system
the state is composed of the variables required to account for storage of
mass, momentum and energy. An key issue in modeling is to decide how
accurate storage has to be represented. The state variables are gathered
in a vector, the state vector x. The control variables are represented by
another vector u and the measured signal by the vector y. A system can
then be represented by the model

dx
dt
= f (x, u)

y = n(x, u)
(3.33)

The dimension of the state vector is called the order of the system.
The system is called time-invariant because the functions f and n do not
depend explicitly on time t. It is possible to have more general time-
varying systems where the functions do depend on time. The model thus
consists of two functions. The function f gives the velocity of the state
vector as a function of state x, control u and time t and the function n
gives the measured values as functions of state x, control u and time t. The
function f is called the velocity function and the function n is called the
sensor function or the measurement function. A system is called linear
if the functions f and n are linear in x and u. A linear system can thus
be represented by

dx
dt
= Ax + Bu

y = Cx + Du

where A, B, C and D are constant varying matrices. Such a system is
said to be linear and time-invariant, or LTI for short. The matrix A is
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Figure 3.28 An inverted pendulum. The picture should be mirrored.

called the dynamics matrix, the matrix B is called the control matrix, the
matrix C is called the sensor matrix and the matrix D is called the direct
term. Frequently systems will not have a direct term indicating that the
control signal does not influence the output directly. We will illustrate
by a few examples.

EXAMPLE 3.22—THE DOUBLE INTEGRATOR

Consider a system described by

dx
dt
=
 0 1

0 0

 x +
 0 1

u

y =
 1 0

 x
(3.34)

This is a linear time-invariant system of second order with no direct term.

EXAMPLE 3.23—THE INVERTED PENDULUM

Consider the inverted pendulum in Figure 3.28. The state variables are
the angle θ = x1 and the angular velocity dθ/dt = x2, the control variable
is the acceleration un of the pivot, and the output is the angle θ .

Newtons law of conservation of angular momentum becomes

J
d2θ
dt2 = mnl sinθ +mul cosθ
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Figure 3.29 Schematic diagram of an electric motor.

Introducing x1 = θ and x2 = dθ/dt the state equations become

dx
dt
=
 x2

mnl
J

sin x1 + mlu
J

cos x1


y = x1

It is convenient to normalize the equation by choosing
√

J/mnl as the
unit of time. The equation then becomes

dx
dt
=
 x2

sin x1 + u cos x1


y = x1

(3.35)

This is a nonlinear time-invariant system of second order.

EXAMPLE 3.24—AN ELECTRIC MOTOR

A schematic picture of an electric motor is shown in Figure 3.29 Energy
stored is stored in the capacitor, and the inductor and momentum is stored
in the rotor. Three state variables are needed if we are only interested in
motor speed. Storage can be represented by the current I through the
rotor, the voltage V across the capacitor and the angular velocity ω of
the rotor. The control signal is the voltage E applied to the motor. A
momentum balance for the rotor gives

J
dω
dt
+ Dω = kI
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Figure 3.30 A schematic picture of a water tank.

and Kirchoffs laws for the electric circuit gives

E = RI + L
dI
dt
+ V − k

dω
dt

I = C
dV
dt

Introducing the state variables x1 = ω , x2 = V , x3 = I and the control
variable u = E the equations for the motor can be written as

dx
dt
=


− D

J 0 k
J

0 0 1
C

− kD
J L − 1

L
k2

J L − R
L

 x +


0

0
1
L

uy =
1 0 0

 x (3.36)

This is a linear time-invariant system with three state variables and one
input.

EXAMPLE 3.25—THE WATER TANK

Consider a tank with water where the input is the inflow and there is
free outflow, see Figure 3.30 Assuming that the density is constant a
mass balance for the tank gives

dV
dt

= qin − qout

The outflow is given by
qout = a

√
2nh
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There are several possible choices of state variables. One possibility is to
characterize the storage of water by the height of the tank. We have the
following relation between height h and volume

V =
∫ h

0
A(x)dx

Simplifying the equations we find that the tank can be described by

dh
dt
= 1

A(h)(qin − a
√

2nh)

qout = a
√

2nh

The tank is thus a nonlinear system of first order.

Equilibria

To investigate a system we will first determine the equilibria. Consider
the system given by (3.33) which is assumed to be time-invariant. Let the
control signal be constant u = u0. The equilibria are states x0 such that
the dx/dt = 0. Hence

f (x0, u0) = 0

Notice that there may be several equilibria.
For second order systems the state equations can be visualized by plot-

ting the velocities for all points in the state space. This graph is called the
phase plane shows the behavior qualitative. The equilibria corresponds to
points where the velocity is zero. We illustrate this with an example.

EXAMPLE 3.26—THE PHASE PLANE

Consider the
dx
dt
=
 x2 − x3

2

−x1 − x2
2


The equilibria are given by

x2 − x3
2 = 0

x1 − x2
2 = 0

There are three equilibria:

x1 = −1 x2 = −1

x1 = −1 x2 = 1

x1 = 0 x2 = 0

The phase plane is shown in Figure 3.31. The phase plane is a good
visualization of solutions for second order systems. It also illustrates that
nonlinear systems can be interpreted as a vector field or a flow.
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Figure 3.31 Phase plane for the second order system dx1/dt = x2 − x3
2 ,dx2/dt =

−x1 − x2
2.

Linearization

Nonlinear systems are unfortunately difficult. It is fortunate that many
aspects of control can be understood from linear models. This is particu-
larly true for regulation problems where it is intended to keep variables
close to specified values. When deviations are small the nonlinearities can
be approximated by linear functions. With efficient control the deviations
are small and the approximation works even better. In this section we will
show how nonlinear dynamics systems are approximated. We will start
with an example that shows how static systems are approximated.

EXAMPLE 3.27—LINEARIZATION OF STATIC SYSTEM

Consider the system
y = n(u)

A Taylor series expansion around u = u0 gives

y = n(u0) + n′(u0)(u − u0) + . . .

The linearized model is

y− y0 = n′(u0)(u − u0)
The linearized model thus replaces the nonlinear curve by its tangent at
the operating point.
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Linearization of dynamic systems is done in the same way. We start by
determining the appropriate equilibria. The nonlinear systems are then
approximated using Taylor series expansions. Consider the system

dx
dt
= f (x, u)

y = n(x, u)

Consider small deviations from the equilibrium!

x = x0 + δ x, u = u0 + δ u, y = y0 + δ y

Make a series expansion of the differential equation and neglect terms of
second and higher order. This gives

dx
dt
= f (x0 + δ x, u0 + δ u) � f (x0, u0) + V f

V x
(x0, u0)δ x + V f

Vu
(x0, u0)δ u

y = n(x0 + δ x, u0 + δ u) � y0 + VnV x
(x0, u0)δ x + VnVu

(x0, u0)δ u

We have f (x0, u0) = 0 because x0 is an equilibrium and we find the fol-
lowing approximation for small deviations around the equilibrium.

d(x − x0)
dt

= A(x − x0) + B(u − u0)
y− y0 = C(x − x0) + D(u− u0)

where

A = V f
V x
(x0, u0) B = V f

Vu
(x0, u0)

C = Vn
V x
(x0, u0) D = Vn

Vu
(x0, u0)

The linearized equation is thus a linear time-invariant system, compare
with (3.37). It is common practice to relabel variables and simply let x, y
and u denote deviations from the equilibrium.

We illustrate with a few examples

EXAMPLE 3.28—LINEARIZATION OF THE WATER TANK

dh
dt
= 1

A(h)(qin − a
√

2nh)

qout = a
√

2nh
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To determine the equilibrium we assume that the inflow is constant qin =
q0. It follows that

qout = qin = q0 = a
√

2nh0

h0 = q2
0

2na2

Let A0 be the cross section A at level h0, introduce the deviations. The
linearized equations are

dδ h
dt

= −a
√

2nh0

2A0h0
δ h+ 1

A0
δ qin

δ qout = a
√

2nh0

h0
δ h = q0

h0
δ h

The parameter

T = 2A0h0

q0
= 2� Total water volume [m3]

Flow rate [m3/s]
is called the time constant of the system. Notice that T/2 is the time it
takes to fill the volume A0h0 with the steady state flow rate q0

EXAMPLE 3.29—LINEARIZATION OF THE INVERTED PENDULUM

Consider the inverted pendulum in Example 3.23 which is described by
(3.35). If the control signal is zero the equilibria are given by

x2 = 0

sin x1 = 0

i.e. x2 = θ/dt and x1 = θ = 0 and x1 = θ = π . The first equilibrium corre-
sponds to the pendulum standing upright and the second to the pendulum
hanging straight down. We have

V f (x, 0)
V x

=
 0 1

cos x1 − u sin x1 0

 ,
V f
Vu

=
 0

cos x1

 ,

Evaluating the derivatives at the upper equilibrium u = 0, x1 = 0 and
x2 = 0 we get

A =
 0 1

1 0

 , B =
0 1

 .

For the equilibrium when then pendulum is hanging down, u = 0, x1 = π
and x2 = 0 we have instead

A =
 0 1

−1 0

 , B =
0 −1

 .
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3.7 Linear Time-Invariant Systems

The model
dx
dt
= Ax + Bu

y = Cx + Du
(3.37)

is one of the standard models in control. In this section we will present
an in depth treatment. Let us first recall that x is the state vector, u the
control, y the measurement. The model is nice because it can represent
systems with many inputs and many outputs in a very compact form.
Because of the advances in numeric linear algebra there are also much
powerful software for making computations. Before going into details we
will present some useful results about matrix functions. It is assumed
that the reader is familiar with the basic properties of matrices.

Matrix Functions

Some basic facts about matrix functions are summarized in this section.
Let A be a square matrix, since it is possible to compute powers of matrices
we can define a matrix polynomial as follows

f (A) = a0 I + a1 A+ . . .+ an An

Similarly if the function f (x) has a converging series expansion we can
also define the following matrix function

f (A) = a0 I + a1 A+ . . .+ an An + . . .

The matrix exponential is a nice useful example which can be defined as

eAt = I + At+ 1
2
(At)2 + . . .+ 1

n!
Antn + . . .

Differentiating this expression we find

deAt

dt
= A+ A2t+ 1

2
A3t2 + . . .+ 1

(n− 1)! Antn−1 + . . .

= A(= I + At+ 1
2
(At)2 + . . .+ 1

n!
Antn + . . .) = AeAt

The matrix exponential thus has the property

deAt

dt
= AeAt = eAt A (3.38)

Matrix functions do however have other interesting properties. One result
is the following.
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THEOREM 3.3—CAYLEY-HAMILTON

Let the n� n matrix A have the characteristic equation

det(λ I − A) = λn + a1λn−1 + a2λn−2 . . .+ an = 0

then it follows that

det(λ I − A) = An + a1 An−1 + a2 An−2 . . .+ an I = 0

A matrix satisfies its characteristic equation.

PROOF 3.2
If a matrix has distinct eigenvalues it can be diagonalized and we have
A = T−1ΛT . This implies that

A2 = T−1ΛTT−1ΛT = T−1Λ2T

A3 = T−1ΛT A2 = T−1ΛTT−1Λ2T = T−1Λ3T

and that An = T−1ΛnT . Since λ i is an eigenvalue it follows that

λn
i + a1λn−1

i + a2λn−2
i . . .+ an = 0

Hence
Λn

i + a1Λn−1
i + a2Λn−2

i . . .+ an I = 0

Multiplying by T−1 from the left and T from the right and using the
relation Ak = T−1ΛkT now gives

An + a1 An−1 + a2 An−2 . . .+ an I = 0

The result can actually be sharpened. The minimal polynomial of a
matrix is the polynomial of lowest degree such that n(A) = 0. The char-
acteristic polynomial is generically the minimal polynomial. For matrices
with common eigenvalues the minimal polynomial may, however, be dif-
ferent from the characteristic polynomial. The matrices

A1 =
(

1 0

0 1

)
, A2 =

(
1 1

0 1

)
have the minimal polynomials

n1(λ) = λ − 1, n2(λ) = (λ − 1)2

A matrix function can thus be written as

f (A) = c0 I + c1 A+ . . .+ ck−1Ak−1

where k is the degree of the minimal polynomial.
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Solving the Equations

Using the matrix exponential the solution to (3.37) can be written as

x(t) = eAtx(0) +
∫ t

0
eA(t−τ )Bu(τ )dτ (3.39)

To prove this we differentiate both sides and use the property 3.38) of the
matrix exponential. This gives

dx
dt
= AeAtx(0) +

∫ t

0
AeA(t−τ )Bu(τ )dτ + Bu(t) = Ax + Bu

which prove the result. Notice that the calculation is essentially the same
as for proving the result for a first order equation.

Input-Output Relations

It follows from Equations (3.37) and (3.39) that the input output relation
is given by

y(t) = CeAtx(0) +
∫ t

0
eA(t−τ )Bu(τ )dτ + Du(t)

Taking the Laplace transform of (3.37) under the assumption that x(0) =
0 gives

sX (s) = AX (s) + BU (s)
Y(s) = CX (s) + DU (s)

Solving the first equation for X (s) and inserting in the second gives

X (s) = [sI − A]−1 BU (s)
Y(s) = (C[sI − A]−1 B + D

)
U (s)

The transfer function is thus

G(s) = C[sI − A]−1 B + D (3.40)

we illustrate this with an example.
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EXAMPLE 3.30—TRANSFER FUNCTION OF INVERTED PENDULUM

The linearized model of the pendulum in the upright position is charac-
terized by the matrices

A =
 0 1

1 0

 , B =
 0

1

 , C =
 1 0

 , D = 0.

The characteristic polynomial of the dynamics matrix A is

det (sI − A) = det
 s −1

−1 s

 = s2 − 1

Hence

(sI − A)−1 = 1
s2 − 1

det
 s 1

1 s


The transfer function is thus

G(s) = C[sI − A]−1 B = 1
s2 − 1

1 0
 s 1

1 s

−10

1

 = 1
s2 − 1

Transfer function and impulse response remain invariant with coordi-
nate transformations.

ñ(t) = C̃eÃt B̃ = CT−1eT AT−1tT B = CeAt B = n(t)

and

G̃(s) = C̃(sI − Ã)−1 B̃ = CT−1(sI − T AT−1)−1T B

X S = C(sI − A)−1 B = G(s)

Consider the system

dx
dt
= Ax + Bu

y = Cx

To find the input output relation we can differentiate the output and we
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obtain

y = Cx
dy
dt
= C

dx
dt
= CAx + CBu

d2 y
dt2 = CA

dx
dt
+ CB

du
dt
= CA2x + CABu+ CB

du
dt

...

dn y
dtn = CAnx + CAn−1 Bu + CAn−2 B

du
dt
+ . . .+ CB

dn−1u
dtn−1

Let ak be the coefficients of the characteristic equation. Multiplying the
first equation by an, the second by an−1 etc we find that the input-output
relation can be written as.

dn y
dtn + a1

dn−1 y
dtn−1 + . . .+ an y = B1

dn−1u
dtn−1 + B2

dn−2u
dtn−2 + . . .+ Bnu,

where the matrices Bk are given by.

B1 = CB

B2 = CAB + a1CB

B3 = CA2 B + a1CAB + a2CB
...

Bn = CAn−1 B + a1CAn−1 B + . . .+ an−1CB

Coordinate Changes

The components of the input vector u and the output vector y are unique
physical signals, but the state variables depend on the coordinate system
chosen to represent the state. The elements of the matrices A, B and
C also depend on the coordinate system. The consequences of changing
coordinate system will now be investigated. Introduce new coordinates z
by the transformation z = T x, where T is a regular matrix. It follows
from (3.37) that

dz
dt
= T(Ax + Bu) = T AT−1z+ T Bu = Ãz+ B̃u

y = Cx + DU = CT−1z+ Du = C̃z+ Du

The transformed system has the same form as (3.37) but the matrices A,
B and C are different

Ã = T AT−1, B̃ = T B, C̃ = CT−1, D̃ = D (3.41)
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It is interesting to investigate if there are special coordinate systems that
gives systems of special structure.

The Diagonal Form Some matrices can be transformed to diagonal
form, one broad class is matrices with distinct eigenvalues. For such ma-
trices it is possible to find a matrix T such that the matrix T AT−1 is a
diagonal i.e.

T AT−1 = Λ ==


λ1 0

λ2

. . .

0 λn


The transformed system then becomes

dz
dt
=


λ1 0

λ2

. . .

0 λn

 z+


β 1

β 2

...

β n

u

y =
γ 1 γ 2 . . . γ n

 z+ Du

(3.42)

The transfer function of the system is

G(s) =
n∑

i=1

β iγ i

s− λ i
+ D

Notice appearance of eigenvalues of matrix A in the denominator.

Reachable Canonical Form Consider a system described by the n-th
order differential equation

dn y
dtn + a1

dn−1 y
dtn−1 + . . .+ an y = b1

dn−1u
dtn−1 + . . .+ bnu

To find a representation in terms of state model we first take Laplace
transforms

Y(s) = b1sn−1 + . . .+ b1s+ bn

sn + a1sn−1 + . . .+ an−1s+ an
U (s) = b1sn−1 + . . .+ b1s+ bn

A(s) U (s)
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Introduce the state variables

X1(s) = sn−1

A(s)U (s)

X2(s) = sn−2

A(s)U (s) = 1
s

X1(s)

X3(s) = sn−2

A(s)U (s) = 1
s2 X1(s) = 1

s
X2(s)

...

Xn(s) = 1
A(s)U (s) = 1

sn−1 X1(s) = 1
s

Xn−1(s)

(3.43)

Hence

(sn + a1sn−1 + . . .+ an−1s+ an)X1(s) = sn−1U (s)
sX1(s) + a1 X1(s) + a2

1
s

X1(s) + . . .+ an
1

sn−1 X1(s) = U (s)

sX1(s) + a1 X2(s) + a2 X2(s) + . . .+ an Xn(s) = U (s)

Consider the equation for X1(s), dividing by sn−1 we get

sX1(s) + a1 X2(s) + a2 X2(s) + . . .+ an Xn(s) = U (s)

Conversion to time domain gives

dx1

dt
= −a1x1 − a2x2 − . . .− anxn + u

(3.43) also implies that

X2(s) = 1
s

X1(s)

X3(s) = 1
s

X2(s)
...

Xn(s) = 1
s

Xn−1
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Transforming back to the time domain gives

dx2

dt
= x1

dx3

dt
= x2

...
dxn

dt
= xn−1

With the chosen state variables the output is given by

Y(s) = b1 X1(s) + b2 X2(s) + . . .+ bn Xn(s)

Collecting the parts we find that the equation can be written as

dz
dt
=



−a1 −a2 . . . an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0


z+



1

0

0
...

0


u

y =
 b1 b2 . . . bn−1 bn

 z+ Du

(3.44)

The system has the characteristic polynomial

Dn(s) = det



s+ a1 a2 . . . an−1 an

−1 s 0 0

0 −1 0 0
...

0 0 −1 s


Expanding the determinant by the last row we find that the following
recursive equation for the polynomial Dn(s).

Dn(s) = sDn−1(s) + an

It follows from this equation that

Dn(s) = sn + a1sn−1 + . . .+ an−1s+ an
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Transfer function

G(s) = b1sn−1 + b2sn−2 + . . .+ bn

sn + a1sn−1 + a2sn−2 + . . .+ an
+ D

The numerator of the transfer function G(s) is the characteristic polyno-
mial of the matrix A. This form is called the reachable canonical for for
reasons that will be explained later in this Section.

Observable Canonical Form The reachable canonical form is not the
only way to represent the transfer function

G(s) = b1sn−1 + b2sn−2 + . . .+ bn

sn + a1sn−1 + a2sn−2 + . . .+ an

another representation is obtained by the following recursive procedure.
Introduce the Laplace transform X1 of first state variable as

X1 = Y = b1sn−1 + b2sn−2 + . . .+ bn

sn + a1sn−1 + a2sn−2 + . . .+ an
U

then

(sn + a1sn−1 + a2sn−2 + . . .+ an)X1 = (b1sn−1 + b2sn−2 + . . .+ bn)U

Dividing by sn−1 and rearranging the terms we get

sX1 = −a1 X1 + b1U + X2

where

sn−1 X2 = −(a2sn−2 + a3sn−3 + . . .+ an
)

X1

+ (b2sn−2 + b3sn−3 + . . .+ bn)U

Dividing by sn−2 we get

sX2 = −a2 X2 + b2U + X3

where

sn−2 X3 = −(a3sn−3 + an−4
4 . . .+ an

)
X1 +

(
b3sn−3 + . . .+ bn)U

Dividing by sn−3 gives

sX3 = −a3 X1?b3U + X4
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Proceeding in this we we finally obtain

Xn = −an X1 + b1U

Collecting the different parts and converting to the time domain we find
that the system can be written as

dz
dt
=



−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0


z+



b1

b2

...

bn−1

bn


u

y =
 1 0 0 . . . 0

 z+ Du

(3.45)

Transfer function

G(s) = b1sn−1 + b2sn−2 + . . .+ bn

sn + a1sn−1 + a2sn−2 + . . .+ an
+ D

The numerator of the transfer function G(s) is the characteristic polyno-
mial of the matrix A.

Consider a system described by the n-th order differential equation

dn y
dtn + a1

dn−1 y
dtn−1 + . . .+ an y = b1

dn−1u
dtn−1 + . . .+ bnu

Reachability

We will now disregard the measurements and focus on the evolution of
the state which is given by

sx
dt
= Ax + Bu

where the system is assumed to be or order n. A fundamental question
is if it is possible to find control signals so that any point in the state
space can be reached. For simplicity we assume that the initial state of
the system is zero, the state of the system is then given by

x(t) =
∫ t

0
eA(t−τ )Bu(τ )dτ =

∫ t

0
eA(τ )Bu(t − τ )dτ

It follows from the theory of matrix functions that

eAτ = Iα 0(s) + Aα 1(s) + . . .+ An−1α n−1(s)
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and we find that

x(t) = B
∫ t

0
α 0(τ )u(t − τ )dτ + AB

∫ t

0
α 1(τ )u(t − τ )dτ+

. . .+ An−1 B
∫ t

0
α n−1(τ )u(t − τ )dτ

The right hand is thus composed of a linear combination of the columns
of the matrix.

Wr =
 B AB . . . An−1 B


To reach all points in the state space it must thus be required that there
are n linear independent columns of the matrix Wc. The matrix is therefor
called the reachability matrix. We illustrate by an example.

EXAMPLE 3.31—REACHABILITY OF THE INVERTED PENDULUM

The linearized model of the inverted pendulum is derived in Example 3.29.
The dynamics matrix and the control matrix are

A =
 0 1

1 0

 , B =
 0

1


The reachability matrix is

Wr =
 0 1

1 0

 (3.46)

This matrix has full rank and we can conclude that the system is reach-
able.

Next we will consider a the system in (3.44), i.e

dz
dt
=



−a1 −a2 . . . an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0


z+



1

0

0
...

0


u = Ãz+ B̃u

The inverse of the reachability matrix is

W̃−1
r =


1 a1 a2 . . . an

0 1 a11 . . . an−1

...

0 0 0 . . . 1

 (3.47)
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To show this we consider the product B̃ ÃB̃ ⋅ ⋅ ⋅ Ãn−1 B
W−1

r =
w0 w1 ⋅ ⋅ ⋅ wn−1


where

w0 = B̃

w1 = a1 B̃ + ÃB̃
...

wn−1 = an−1 B + an−2 ÃB + ⋅ ⋅ ⋅+ Ãn−1 B

The vectors wk satisfy the relation

wk = ak + w̃k−1

Iterating this relation we find that

w0 w1 ⋅ ⋅ ⋅ wn−1

 =


1 0 0 . . . 0

0 1 0 . . . 0
...

0 0 0 . . . 1


which shows that the matrix (3.47) is indeed the inverse of W̃r.

Systems That are Not Reachable It is useful of have an intuitive
understanding of the mechanisms that make a system unreachable. An
example of such a system is given in Figure 3.32. The system consists
of two identical systems with the same input. The intuition can also be
demonstrated analytically. We demonstrate this by a simple example.

EXAMPLE 3.32—NON-REACHABLE SYSTEM

Assume that the systems in Figure 3.32 are of first order. The complete
system is then described by

dx1

dt
= −x1 + u

dx2

dt
= −x2 + u

The reachability matrix is

Wr =
 1 −1

1 −1


This matrix is singular and the system is not reachable.
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u

S

S

Figure 3.32 A non-reachable system.

Coordinate Changes

It is interesting to investigate how the reachability matrix transforms
when the coordinates are changed. Consider the system in (3.37). Assume
that the coordinates are changed to z = T x. It follows from (3.41) that
the dynamics matrix and the control matrix for the transformed system
are

Ã = T AT−1

B̃ = T B

The reachability matrix for the transformed system then becomes

W̃r =
 B̃ ÃB̃ . . . Ãn−1 B̃

 =
We have

ÃB̃ = T AT−1T B = T AB

Ã2 B̃ = (T AT−1)2T B = T AT−1T AT−1T B = T A2 B
...

Ãn B̃ = T An B

and we find that the reachability matrix for the transformed system has
the property

W̃r =
 B̃ ÃB̃ . . . Ãn−1 B̃

 = T
 B AB . . . An−1 B

 = TWr

This formula is very useful for finding the transformation matrix T .
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Observability

When discussing reachability we neglected the output and focused on the
state. We will now discuss a related problem where we will neglect the
input and instead focus on the output. Consider the system

dx
dt
= Ax

y = Cx
(3.48)

We will now investigate if it is possible to determine the state from ob-
servations of the output. This is clearly a problem of significant practical
interest, because it will tell if the sensors are sufficient.

The output itself gives the projection of the state on vectors that are
rows of the matrix C. The problem can clearly be solved if the matrix C
is invertible. If the matrix is not invertible we can take derivatives of the
output to obtain.

dy
dt
= C

sc
dt
= CAx

From then derivative of the output we thus get the projections of the state
on vectors which are rows of the matrix CA. Proceeding in this way we
get 

y
dy
dt

d2 y
dt2

...
dn−1 y
dtn−1


=



C

CA

CA2

...

CAn−1


x

We thus find that the state can be determined if the matrix

Wo =



C

CA

CA2

...

CAn−1


(3.49)

has n independent rows. Notice that because of the Cayley-Hamilton equa-
tion it is not worth while to continue and take derivatives higher than
dn−1/dtn−1. The matrix Wo is called the observability matrix. A system is
called observable if the observability matrix has full rank. We illustrate
with an example.
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Σ
y 

S

S

Figure 3.33 A non-observable system.

EXAMPLE 3.33—OBSERVABILITY OF THE INVERTED PENDULUM

The linearized model of inverted pendulum around the upright position
is described by (3.41). The matrices A and C are

A =
0 1

1 0

 , C =
1 0


The observability matrix is

Wo =
 1 0

0 1


which has full rank. It is thus possible to compute the state from a mea-
surement of the angle.

A Non-observable System

It is useful to have an understanding of the mechanisms that make a
system unobservable. Such a system is shown in Figure 3.33. Next we
will consider the system in (3.45) on observable canonical form, i.e.

dz
dt
=



−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0


z+



b1

b2

...

bn−1

bn


u

y =
 1 0 0 . . . 0

 z+ Du

A straight forward but tedious calculation shows that the inverse of the
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observability matrix has a simple form. It is given by

W−1
o =



1 0 0 . . . 0

a1 1 0 . . . 0

a2 a1 1 . . . 0
...

an−1 an−2 an−3 . . . 1


This matrix is always invertible. The system is composed of two identical
systems whose outputs are added. It seems intuitively clear that it is
not possible to deduce the states from the output. This can also be seen
formally.

Coordinate Changes

It is interesting to investigate how the observability matrix transforms
when the coordinates are changed. Consider the system in (3.37). Assume
that the coordinates are changed to z = T x. It follows from (3.41) that
the dynamics matrix and the output matrix are given by

Ã = T AT−1

C̃ = CT−1

The observability matrix for the transformed system then becomes

W̃o =



C̃

C̃ Ã

C̃ Ã2

...

C̃ Ãn−1


We have

C̃ Ã = CT−1T AT−1 = CAT−1

C̃ Ã2 = CT−1(T AT−1)2 = CT−1T AT−1T AT−1 = CA2T−1

...

C̃ Ãn = CAnT−1
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and we find that the observability matrix for the transformed system has
the property

W̃o =



C̃

C̃ Ã

C̃ Ã2

...

C̃Ãn−1


T−1 = WoT−1

This formula is very useful for finding the transformation matrix T .

Kalman’s Decomposition

The concepts of reachability and observability make it possible understand
the structure of a linear system. We first observe that the reachable states
form a linear subspace spanned by the columns of the reachability matrix.
By introducing coordinates that span that space the equations for a linear
system can be written as

d
dt

(
xc

xc̄

)
=
(

A11 A12

0 A22

)(
xc

xc̄

)
+
(

B1

0

)
u

where the states xc are reachable and xc̄ are non-reachable. Similarly
we find that the non-observable or quiet states are the null space of the
observability matrix. We can thus introduce coordinates so that the system
can be written as

d
dt

(
xo

xō

)
=
(

A11 0

A21 A22

)(
xo

x0̄

)
y = (C1 0 )

(
xo

xō

)

where the states xo are observable and xō not observable (quiet) Combin-
ing the representations we find that a linear system can be transformed
to the form

dx
dt
=


A11 0 A13 0

A21 A22 A23 A24

0 0 A33 0

0 0 A43 A44

 x +


B1

B2

0

0

u

y = (C1 0 C2 0 ) x
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ΣSoc
u y

Soc-

Soc- Soc-

-

Figure 3.34 Kalman’s decomposition of a system.

where the state vector has been partitioned as

x =


xro

xrō

xr̄o

xr̄ō


T

A linear system can thus be decomposed into four subsystems.

• Sro reachable and observable

• Srō reachable not observable

• Sr̄o not reachable observable

• Sr̄ō not reachable not observable

This decomposition is illustrated in Figure 3.34. By tracing the arrows in
the diagram we find that the input influences the systems Soc and Sōc and
that the output is influenced by Soc and Soc̄. The system Sōc̄ is neither
connected to the input nor the output.

The transfer function of the system is

G(s) = C1(sI − A11)−1 B1 (3.50)

It is thus uniquely given by the subsystem Sro.

The Cancellation Problem Kalman’s decomposition resolves one of
the longstanding problems in control namely the problem of cancellation
of poles and zeros. To illustrate the problem we will consider a system
described by the equation.
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EXAMPLE 3.34—CANCELLATION OF POLES AND ZEROS
dy
dt
− y = du

dt
− u (3.51)

Integrating this system we find that

y(t) = u(t) + cet

where c is a constant. The transfer function of the system is

Y(s)
U (s) =

s− 1
s− 1

= 1

Since s is a complex variable the cancellation is clearly permissible and we
find that the transfer function is G(s) = 1 and we have seemingly obtained
a contradiction because the system is not equivalent to the system

y(t) = u(t)

The problem is easily resolved by using the Kalman representation. In this
particular case the system has two subsystems Sro and Sr̄o. The system
Sro is a static system with transfer function G(s) = 1 and the subsystem
Sr̄o which is observable but non reachable has the dynamics.

dx
dt
= x

Notice that cancellations typically appear when using Laplace trans-
forms because of the assumption that all initial values are zero. The con-
sequences are particularly serious when factors like s − 1 are cancelled
because they correspond to exponentially growing signals. In the early
development of control cancellations were avoided by ad hoc rules forbid-
ding cancellation of factors with zeros in the right half plane. Kalman’s
decomposition gives a very clear picture of what happens when poles and
zeros are cancelled.

3.8 Summary

This chapter has summarized some properties of dynamical systems that
are useful for control. Both input-output descriptions and state descrip-
tions are given. Much of the terminology that is useful for control has also
been introduced.
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