CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CDS 101/110 Course Survey

R. Murray Fall 2002 Issued: 30 Sep 02 Due: 7 Oct 02

The purpose of this survey is to get a sense of the background and level of the students in the class. Please mark your answers in the space provided.

Please turn in this survey by Monday, 7 October, at 5 pm in the box outside of 102 Steele.

- 1. Which course are you taking (CDS 101, CDS 110a, ChE 105, undecided):
- 2. What is your area of study (ME, ChE, CS, Bio, etc)? _____ Year (Jr, Sr, G1, G2, etc)? _____
- 3. Put a check mark next to any of the following courses that you have already taken. Put a 'C' if you are currently enrolled in the course:

$_$ ACM 95/100 (complex variables, ODEs)	AM 114 (complex variables, ODEs)
AM 35 (statics and mechanics)	$_$ ME 18/ChE 63 (engineering thermo)
EE 20 (circuit theory)	EE 32 (signals and systems)
AM 151 (dynamics and vibrations)	CDS 140 (dynamical systems)

4. Please rank your understanding of the following topics on a scale of 1 to 5, using the following classification:

1	2	3	4	5
never heard	r	emember ma	in	very familiar
of topic	i	ideas/concept	ts	with topic

Note: it is *completely OK* if you have not heard of many of these topics. The purpose of the survey is to understand that background of the class. We will cover most of the topics in the right hand column in CDS 101 and almost all of them in CDS 110ab.

Topics:

matrices and vectors	<u>frequency</u> response
eigenvalues and eigenvectors	transfer function
ordinary differential equations	Laplace transform
homogeneous and	PID control
particular solutions	lead/lag compensation
Jordan form	gain and phase margin
asymptotic stability	linear quadratic regulator
region of attraction	Kalman filter
limit cycles	feedback linearization