next up previous
Next: About this document ...

documentclass[11pt]article usepackageamssymb,amsmath,latexsym usepackagegraphicx par newedcommandbfibfseriesitshape par textwidth 6.5 truein oddsidemargin 0 truein evensidemargin -0.50 truein topmargin -.5 truein textheight 8.5in par newedtheoremthmTheorem[section] newedtheoremprop[thm]Proposition newedtheoremlem[thm]Lemma newedtheoremcor[thm]Corollary newedtheoremdfn[thm]Definition par newedcommandintprod[2]#1hook#2 newedcommandhookmathbinhboxvrule height .5pt width 3.5pt depth 0pt vrule height 6pt width .5pt depth 0pt par makeatletter addtoresetfiguresubsection addtoresettablesubsection addtoresetequationsubsection makeatother par makeatletter par newskip centering centering = 0pt plus 1000pt par eqnsel= par makeatother par begindocument par titleReview: Vector Spaces par authorCDS201 Lecturer: W.S. Koon datesmall Fall, 1998 maketitle par sectionReal and Complex Vector Spaces paragraphDefinition: paragraphExamples: beginenumerate item $ R^n$ item $ C^n$ item $ C[0,1]$ item $ L^2[0,1]$ item matrices item polynomials endenumerate par sectionSubspace paragraphDefinition: paragraphExamples: beginenumerate item Let $ V$ be any vector space, $ V$ is a subspace of $ V$ and $ \{0\}$ is a subspace of $ V$. item $ V=R^3$, $ W=\{(a,b.c)in R^3: c=0\}$. item $ V=$ space of $ ntimes n$ matrices, $ Wsubset V$ is the subset of symmetric matrices. item $ V$ is the set of all polynomials of degree $ n$ with real coefficients, $ W$ is the subset of $ V$ consisting of polynomials of degree $ m leq n$. item $ U, W$ subspaces of $ V$, $ Ucap W$ is a subspace of $ V$. endenumerate par sectionLinear Combinations and Spans paragraphDefinition: Let $ V$ be a vector space, $ v_1, ldots , v_m in V$. Any vector in $ V$ of the form $ a_1v_1 + cdots + a_mv_m$ is called a it linear combination of $ v_1, ldots , v_m$. $ a_1, ldots ,a_m$ are called the coefficients of the linear combinations. par paragraphDefinition: Let $ S$ be a subset of a vector space $ V$. $ L(S)$ denotes the set of all linear combinations of vectors in $ S$. It can be shown that $ L(S)$ is a subspace, and it is said to be the subspace it spanned or generated by $ S$. par sectionDirect Sum paragraphDefinition: Suppose $ U$ and $ W$ are subspace of a vector space $ V$. Then the sum of $ U$ and $ W$, denoted $ U+W$, consists of all sums $ u+w$ where $ uin U$, $ win W$, i.e.

$\displaystyle U+W=\{u+w\vert uin U, win W \}
$

par paragraphDefinition: $ V$ is said to be the it direct sum of $ U$ and $ W$ if for any $ vin V$ there exists a unique $ uin U, win W$ such that $ v=u+w$. $ V=Uoplus W$. par paragraphExamples: $ V=R^3$ beginenumerate item $ U=\{(a,b,0)\vert a,bin R\}, W=\{(0,a,b)\vert a,bin R\}$. Notice that while $ V=U+W$, $ V$ is not the direct sum of $ U$ and $ W$. item $ U=\{(a,b,0)\vert a,bin R\}, W=\{(0,0,a)\vert ain R\}$. $ V=Uoplus W$. endenumerate par begintheorem_type[prop][thm][][][][] Suppose $ U$ and $ W$ are subspaces of $ V$. Then $ U+W$ is also a subspace of $ V$.endtheorem_type par begintheorem_type[thm][thm][section][][][] Let $ U, W$ be subspaces of a vector space $ V$. Then $ V$ is a direct sum of $ U$ and $ W$ if and only if beginenumerate item $ V=U+W$ item $ Ucap W =\{0\}$. endenumerateendtheorem_type vspace2in par sectionLinear Independence and Dependence paragraphDefinition: Let $ V$ be a vector space and let $ v_1, ldots , v_m in V$. The set $ \{v_1, ldots , v_m\}$ is said to be it linearly independent if $ a^1v_1 + cdots + a^mv_m =0$ implies $ a^1= cdots = a^m=0$. Otherwise, they are said to be it linearly dependent. par paragraphExample: Linear dependence in $ R^n$ Problem of linear dependence is related to a nontrivial solution of a homogeneous system of linear equations. par begintheorem_type[prop][thm][][][][] Let $ \{v_1, ldots , v_m\}$ be a collection of nonzero vectors. Then this set of vectors is linearly dependent if and only if one of the vectors can be expressed as a linear combination of the others.endtheorem_type vspace1in par sectionBases, Coordinates and Dimension paragraphDefinition: Let $ \{e_1, ldots , e_n\}$ be a set of linearly independent vectors in a vector space $ V$. Then $ \{e_1, ldots , e_n\}$ is said to be a it basis for $ V$ if any $ vin V$ can be expressed as a linear combination of $ \{e_1, ldots , e_n\}$, i.e. $ v=a^1e_1
+cdots + a^ne_n$. The numbers $ a^1, ldots , a^n$ are called the components or it coordinates of the vector $ v$ with respect to the basis $ \{e_1, ldots , e_n\}$. The components are unique for a given basis. par paragraphDefinition: A vector space $ V$ is said to have dimension $ n$ if it has $ n$ linearly independent vectors while every set of $ n+1$ vectors are linearly dependent. par begintheorem_type[thm][thm][section][][][] In a vector space $ V$ of dimension $ n$ there exists a basis consisting of $ n$ independent vectors. Moreover, any set of $ n$ linearly independent vectors in $ V$ is a basis for $ V$.endtheorem_type par begintheorem_type[thm][thm][section][][][] If there is a basis in $ V$, then the dimension of $ V$ equals the number of basis vectors.endtheorem_type vspace5in par sectionUseful Theorems Concerning Subspaces and Bases begintheorem_type[thm][thm][section][][][] Suppose $ W$ is a subspace of the vector space $ V$ where dim $ V=n$ and let $ \{w_1,ldots , w_l\}$ be a basis for $ W$. Then there exists vectors $ \{e_{l+1}, ldots , e_n\}$ such that $ \{w_1, ldots ,w_l, e_{l+1}, ldots ,
e_n\}$ is a basis of $ V$.endtheorem_type par begintheorem_type[thm][thm][section][][][] Suppose $ U$ and $ W$ are subspaces of a finite dimensional vector space $ V$. Then dim $ (U+W)=$ dim $ U$ + dim $ W$ $ -$ dim $ (Ucap W)$.endtheorem_type par begintheorem_type[thm][thm][section][][][] Let $ V$ be a vector space of dimension $ n$ and suppose $ Wsubset V$ is a subspace of $ V$. Then there exists a subspace $ Usubset V$ such that $ V=Uoplus W$.endtheorem_type enddocument


next up previous
Next: About this document ...
www admin
1998-09-28