CALIFORNIA INSTITUTE OF TECHNOLOGY Biology and Biological Engineering (BBE)

BE 150

M. Elowitz and R. M. Murray	Problem Set #6	Issued:	27 Feb 2013
Winter 2013		Due:	8 or 13 Mar 2013

1. (Two-sided diffusion; Alon 8.1)

A morphogen is produced at both boundaries of a region of cells that ranges from x = 0to x = L. The morphogen diffuses into the region and is degraded at rate α . What is the steady state concentration of the morphogen as a function of position? Assume that the concentration at the boundaries is $M(0) = M(L) = M_o$. Under what conditions is the concentration of morphogen at the center of the region very small compared to M_o ?

Hint: The morphogen concentration obeys the following reaction-diffusion equation at steady state:

$$D\frac{d^2M}{dx^2} - \alpha M = 0$$

The solutions of this equation are of the form

$$M(x) = Ae^{-x/\lambda} + Be^{x/\lambda}.$$

Find λ , A, and B that satisfy the diffusion-degradation equation and the boundary conditions.

2. (Polynomial self-enhanced degradation; Alon 8.3)

Find the steady state concentration profile of a morphogen produced at x=0. The morphogen diffuses into a field of cells, with nonlinear self-enhanced degradation described by:

$$\frac{dM}{dt} = D\frac{d^2M}{dx^2} - \alpha M^n$$

When is patterning with this profile robust to the level of M at the boundary, M_o ?

Hint: Try a solution of the form $M(x) = a(x+b)^m$ and find the parameters a and b in terms of D, M_o , and α .

3. (Scaling of morphogen gradients. Based on Ben-Zvi, Barkai, PNAS, 2010)

Consider the feedback "expansion-repression" model for morphogen gradient scaling in which the range of the morphogen gradient, [M] increases with the abundance of some diffusible molecule [E], whose production, in turn, is repressed by morphogen signaling. The partial differential equations

$$\frac{d[M]}{dt} = D_M \nabla^2[M] - (1+[E])^{-1_1} \alpha_M^1[M] - (1+[E])^{-1} \alpha_M^2[M]^2$$
$$\frac{d[E]}{dt} = D_E \nabla^2[E] - \alpha_E^1[E] + \beta_E \frac{1}{1 + ([M]/T_{rep})^h}$$

and boundary conditions:

$$D_M \nabla[M]_{x=0} = -\eta_M, \qquad D_M \nabla[M]_{x=L} = 0, \qquad D_E \nabla[E]_{x=0} = 0, \qquad D_E \nabla[E]_{x=L} = 0$$

represent the dynamics of morphogen/expander concentrations with respect to position and time.

a) Implement the system above using the technique discussed in class. Use the parameters below in addition to L = 15 grid points, h = 4, cell size 100 μm and time at steady state 5×10^5 sec.

Morphogen diffusion, D _M	10 µm ² ·sec ⁻¹
E diffusion, DE	$1 \mu m^2 \cdot sec^{-1}$
Morphogen linear degradation rate, α_M^1	10 ⁻¹ sec ⁻¹
Morphogen quadratic degradation rate, α_M^2	1 µM ⁻¹ ·sec ⁻¹
E degradation rate, α_E	10 ⁻⁵ sec ⁻¹
Morphogen flux from proximal pole, η_M	10 µm·µM·sec ⁻¹
E production rate, β_E	10 ⁻² µM-sec ⁻¹
Threshold for E repression, Trep	10 ⁻³ µM

- b) Plot the dynamics of the expansion-repression mechanism at three different times: when the morphogen gradient is sharp, when the gradient expands, and at steady state, along with the threshold. Explain the dynamics of the system in the three situations.
- c) Run the simulation with parameters below for two different cell sizes and plot the morphogen concentration in μM vs relative length x/L. Do the same using parameters below and compare.

Morphogen diffusion, D _M	10 µm ² ·sec ⁻¹
E diffusion, D_E	10 ⁻¹ µm ² ·sec ⁻¹
Morphogen linear degradation rate, a _M ¹	10 ⁻⁵ sec ⁻¹
Morphogen quadratic degradation rate, α_M^2	1 µM ⁻¹ ·sec ⁻¹
E degradation rate, α_E	10 ⁻⁴ sec ⁻¹
Morphogen flux from proximal pole, n _M	1 µm·µM·sec ⁻¹
E production rate, β_E	10 ⁻³ µM·sec ⁻¹
Threshold for E repression, Trep	10 ⁻³ µM
Time points (Fig. 1B)	

- d) What is the condition on the diffusion of the expander that allows for scaling of the gradient?
- 4. (Pattern formation by lateral inhibition; based on Collier et al., *Journal of Theoretical Biology*, 1996)

The Notch-Delta signaling pathway allows communication between neighboring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighboring cells and sharply delineating

neighboring regions in developing tissues. In this problem, we investigate the pattern-forming potential and temporal behavior of the Collier model through numerical simulation.

The dynamics of Notch (n_p) and Delta (d_p) for each individual cell p are governed by:

$$\dot{n}_p = f(d_p) - n_p, \qquad d_p = \nu(g(n_p) - d_p)$$

where \bar{d}_p denotes the mean of the levels of Delta activity in the cells adjacent to cell p, and

$$f(x) = \frac{x^k}{a + x^k}, \qquad g(x) = \frac{1}{1 + bx^h}$$

- (a) Consider a two dimensional array of cells, where each cell is modeled by a square. The parameters for the simulation are $a = 0.01, b = 100, \nu = 1, k = h = 2$. Simulate Notch-Delta dynamics for a 15×15 array of cells, using initial conditions chosen randomly from a uniform distribution. Use the code provided in in *NotchDeltaGui.m* to provide a visualization of your simulation. Color cells with high Notch activity (if Notch activity is ≥ 0.995) in red, and low Notch activity level in black. Provide an illustration of the steady state of your simulation.
- (b) What is the main feature of the model that allows fine grain patterning? Comment on its properties.

CALIFORNIA INSTITUTE OF TECHNOLOGY Biology and Biological Engineering (BBE)

Bi 250b

M. Elowitz and R. M. Murray	Problem Set #6	Issued:	27 Feb 2013
Winter 2013		Due:	8 or 13 Mar 2013

1. (Two-sided diffusion; Alon 8.1)

A morphogen is produced at both boundaries of a region of cells that ranges from x = 0to x = L. The morphogen diffuses into the region and is degraded at rate α . What is the steady state concentration of the morphogen as a function of position? Assume that the concentration at the boundaries is $M(0) = M(L) = M_o$. Under what conditions is the concentration of morphogen at the center of the region very small compared to M_o ?

Hint: The morphogen concentration obeys the following reaction-diffusion equation at steady state:

$$D\frac{d^2M}{dx^2} - \alpha M = 0$$

The solutions of this equation are of the form

$$M(x) = Ae^{-x/\lambda} + Be^{x/\lambda}.$$

Find λ , A, and B that satisfy the diffusion-degradation equation and the boundary conditions.

2. (Polynomial self-enhanced degradation; Alon 8.3)

Find the steady state concentration profile of a morphogen produced at x=0. The morphogen diffuses into a field of cells, with nonlinear self-enhanced degradation described by:

$$\frac{dM}{dt} = D\frac{d^2M}{dx^2} - \alpha M^n$$

When is patterning with this profile robust to the level of M at the boundary, M_o ?

Hint: Try a solution of the form $M(x) = a(x+b)^m$ and find the parameters a and b in terms of D, M_o , and α .

3. (Scaling of morphogen gradients. Based on Ben-Zvi, Barkai, PNAS, 2010)

Consider the feedback "expansion-repression" model for morphogen gradient scaling in which the range of the morphogen gradient, [M] increases with the abundance of some diffusible molecule [E], whose production, in turn, is repressed by morphogen signaling. The partial differential equations

$$\frac{d[M]}{dt} = D_M \nabla^2 [M] - (1 + [E])^{-1_1} \alpha_M^1 [M] - (1 + [E])^{-1} \alpha_M^2 [M]^2$$
$$\frac{d[E]}{dt} = D_E \nabla^2 [E] - \alpha_E^1 [E] + \beta_E \frac{1}{1 + ([M]/T_{rep})^h}$$

and boundary conditions:

$$D_M \nabla[M]_{x=0} = -\eta_M, \qquad D_M \nabla[M]_{x=L} = 0, \qquad D_E \nabla[E]_{x=0} = 0, \qquad D_E \nabla[E]_{x=L} = 0$$

represent the dynamics of morphogen/expander concentrations with respect to position and time.

- a) Explain the dynamics of the expansion-repression mechanism at three different times: when the morphogen gradient is sharp, when the gradient expands, and at steady state.
- b) What is the condition on the diffusion of the expander that allows for scaling of the gradient?
- (Pattern formation by lateral inhibition; based on Collier et al., Journal of Theoretical Biology, 1996)

The Notch-Delta signaling pathway allows communication between neighboring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighboring cells and sharply delineating neighboring regions in developing tissues. In this problem, we investigate the pattern-forming potential and temporal behavior of the Collier model through numerical simulation.

The dynamics of Notch (n_p) and Delta (d_p) for each individual cell p are governed by:

$$\dot{n}_p = f(\bar{d}_p) - n_p, \qquad \dot{d}_p = \nu(g(n_p) - d_p)$$

where \bar{d}_p denotes the mean of the levels of Delta activity in the cells adjacent to cell p, and

$$f(x) = \frac{x^k}{a + x^k}, \qquad g(x) = \frac{1}{1 + bx^h}$$

- (a) Describe the model and state its assumptions. Describe what the steady state will look like in a simulation of this model.
- (b) What is the main feature of the model that allows fine grain patterning? Comment on its properties.