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1. (Repressilator modeling and robustness) The repressilator is a synthetic genetic transcrip-
tional circuit that is design to produce a sustained oscillation in cells. A schematic diagram
and simple differential equation model are shown below:
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(a) Build a SimBiology model of the represssilator that captures the mRNA and protein
dynamics shown to the right and simulate the system using the following parameters:
α = 0.5, n = 2, Km = 40, δ = 0.0058, γ = 0.0012, β = 0.116. (Note: you should use
the “unknown” kinetic law in SimBiology to implement these dynamics.) Show that
some (reasonable) initial conditions generate sustained oscillations while other initial
conditions do not.

(b) Suppose the protein half-life suddenly decreases by half. Which parameter(s) will change
and how? Simulate what happens. What if the protein half-life is doubled? How do
these two changes affect the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. How does the system’s
ODE change? Simulate the system with a small leakiness (say, 5× 10−3) and comment
on how it affects the oscillatory behavior.

2. (Autoinhibition with transcriptional delay; based on Lewis, J., 200x, DOI 10.1016/S0960-
9822(03)00534-7) Consider the following delayed differential equations:
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The function f(p) represents the action of the inhibitory protein as a dimer and the variables
m and p are mRNA and protein concentrations. The parameter Tm is the delay from initiation
of transcription and the arrival of mature mRNA into the cytoplasm, Tp is the delay from
initiation of translation to the emergence of a complete functional protein. The parameters
δ and γ are degradation of and mRNA and protein.



(a) Implement the delayed differential equation model above in MATLAB. Specifically, write
a function which takes in the current and delayed protein and mRNA levels (assume these
are known) as input and returns the vector [dm/dt; dp/dt]. Choose parameters from the
paper to obtain sustained oscillations and plot the mRNA and protein concentrations.
You can implement your own numerical integrator or use dde.m from the course website,
which takes a function as one of its arguments.

(b) Comment on the robustness of sustained oscillations with respect to reduction in protein
synthesis rate.

(c) Leave parameters as in a) and change only one parameter to obtain damped oscillations
and plot mRNA and protein concentrations. Do not change the protein synthesis rate.
Comment on how the change of parameter might affect damping of the oscillation.

3. (Limit cycle behaviors in simple chemical reactions) The KaiABC circuit is a protein-based
circadian oscillator found in cyanobacteria. The main protein, KaiC, has two distinct phos-
phorylation sites. Therefore it has four possible states - unphosphorylated (U), phosphory-
lated at the threonine site (T), phosphorylated at the serine site (S), or phosphorylated at
both sites (D).

(a) Consider the following KaiC reaction scheme discussed during the circadian clock lecture.
At first glance, a system like this appears like it might be able to support self-sustaining
oscillations:

i. Write down a three-dimensional system of differential equations describing this sys-
tem. Remember that the total amount of KaiC, Ctot = T +U +D+S , is constant.
Assume that Ctot = 3.4µM and k = 0.116 h−1.

ii. Solve for the fixed point(s).

iii. Determine the stability of the fixed point using linear stability analysis. Find the
eigenvalues of the Jacobian of your ODE system. A fixed point is stable if and only
if all eigenvalues λi have Re(λi) ≤ 0. Is the fixed point stable?

iv. Simulate the dynamics of the system from three different initial conditions, running
the simulations for 200 hrs. Plot the resulting trajectories in 3D phase space using
the Matlab command plot3.

v. Simulate the total phosphorylation of KaiC (T + D + S) versus time using ode45
for each of the three initial conditions, and plot. Can you explain intuitively why
the dynamics have this form, and why this scheme does not appear to generate self-
sustaining oscillations? Would you expect the system to behave differently if there
were only one molecule of KaiC?
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(b) Cyclic scheme with feedback/nonlinearity: Now consider the same system with feedback:

U = Ctot − S − T −D

kXY = kbasalXY +
kAXY ∗Aact

Aact +K1/2

Aact = max{0, Atot − 2S}

where kXY is the rate constant (which depends indirectly on S) for the conversion from
phosphoform X to phosphoform Y, and the constants Ctot, Aact, k

basal
XY , kAXY , andK1/2 are

given in the following table.

i. Use ode45 to simulate this system in (T, D, S) phase space for three different
initial conditions of your choosing, plotting the results in 3D phase space with plot3.
Make sure that your initial conditions T0, D0, S0 are with respect to the value o f
Ctot, i.e., T0 +D0 + S0 ≤ Ctot. Run the simulations for 200 h.

ii. Plot total phosphorylation of KaiC (T + D + S) versus time for each of the three
initial conditions.

iii. What is the period T of the oscillator? Does it depend on the initial conditions?
Why or why not?

iv. Why do the initial (transient) dynamics differ depending on initial conditions?
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(c) Phase response curve: A key characteristic of circadian clocks is their so-called phase
response curve (PRC), which describes how the phase of the clock changes in response to
a stimulus/perturbation such as exposure to light for a defined duration. A PRC is a plot
of the change in phase of the clock (y axis) versus the phase (subjective time) at which
the perturbation is applied (x axis). The phase change is evaluated by comparing the
phase of the perturbed clock to the phase expected in the absence of perturbation several
periods after the perturbation to allow the phase of the perturbed clock to stabilize.

i. For the simple system examined above, apply a perturbation described by the vector
δ = (δT, δD, δS) = (−0.05µM,−0.05µM,−0.05µM) at each hour of the day, that
is for 24 different times evenly spaced within [103.5 h, 103.5 hours + T), where
T is the period you determined in 3b(iii). (Note that a given system is perturbed
only once; you need to run 24 different simulations.) Calculate the trajectories of
each of the perturbed systems for at least six periods following the perturbation.
Also, calculate the trajectory of an unperturbed clock for at least seven periods
following 103.5 hours. Plot the total phosphorylation for the 1st, 6th, 12th, and
18th perturbations versus time, for t = [100, 200]. On the same plot, show the total
phosphorylation of the unperturbed clock over the same time period.

ii. Now calculate and plot the phase response curve for those 24 perturbations. Define
the time at which the perturbation is applied as24 ∗ (tperturb − tprecedingpeak)/T .
tperturb is the time at which the perturbation is applied, tprecedingpeak is the time of
the last peak of total phosphorylation immediately preceding tperturb, and T is the
period of the oscillator. The time should lie in the interval [0 h, 24 h]. (This formula
normalizes time to that of an idealized 24-hour clock, resulting in a measure called
circadian time [CT], which is standard in the field.) Define the phase change after
perturbation, measured in the CT shift of the total phosphorylation peak, such that
it lies in the interval [-12 h, +12 h). ]. To determine the phase change, consider the
phase of the perturbed oscillator beginning 5 ∗ T after perturbation compared to
that of the unperturbed oscillator. Match the trajectories plotted in 3c(i) to their
circadian times.

iii. Describe the implications of this PRC for you if you were a cyanobacterium traveling
from Los Angeles to Beijing via a Star Trek-style (instantaneous) transporter. The
time in Beijing is 15 hours ahead of the time in Los Angeles; in the date-agnostic
PRC in 3c(ii), in which phase changes lie in [-12 h, 12 h), this time difference would
be equivalent to a 9-hour phase delay (-9 h). If you could perturb your clock with
perturbation δ once per day, and the phase change were instantaneous (for the sake
of simplicity), describe a scheme for synchronizing your circadian clock with Beijing
time?
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(a) Build a SimBiology model of the represssilator that captures the mRNA and protein
dynamics shown to the right and simulate the system using the following parameters:
α = 0.5, n = 2, Km = 40, δ = 0.0058, γ = 0.0012, β = 0.116. (Note: you should use
the “unknown” kinetic law in SimBiology to implement these dynamics.) Show that
some (reasonable) initial conditions generate sustained oscillations while other initial
conditions do not.

(b) Suppose the protein half-life suddenly decreases by half. Which parameter(s) will change
and how? Simulate what happens. What if the protein half-life is doubled? How do
these two changes affect the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. How does the system’s
ODE change? Simulate the system with a small leakiness (say, 5× 10−3) and comment
on how it affects the oscillatory behavior.

2. (Limit cycle behaviors in simple chemical reactions) The KaiABC circuit is a protein-based
circadian oscillator found in cyanobacteria. The main protein, KaiC, has two distinct phos-
phorylation sites. Therefore it has four possible states - unphosphorylated (U), phosphory-
lated at the threonine site (T), phosphorylated at the serine site (S), or phosphorylated at
both sites (D).

(a) Consider the following KaiC reaction scheme discussed during the circadian clock lecture.
At first glance, a system like this appears like it might be able to support self-sustaining
oscillations:



i. Write down a three-dimensional system of differential equations describing this sys-
tem. Remember that the total amount of KaiC, Ctot = T +U +D+S , is constant.
Assume that Ctot = 3.4µM and k = 0.116 h−1.

ii. Solve for the fixed point(s).

iii. Determine the stability of the fixed point using linear stability analysis. Find the
eigenvalues of the Jacobian of your ODE system. A fixed point is stable if and only
if all eigenvalues λi have Re(λi) ≤ 0. Is the fixed point stable?

iv. Simulate the dynamics of the system from three different initial conditions, running
the simulations for 200 hrs. Plot the resulting trajectories in 3D phase space using
the Matlab command plot3.

v. Simulate the total phosphorylation of KaiC (T + D + S) versus time using ode45
for each of the three initial conditions, and plot. Can you explain intuitively why
the dynamics have this form, and why this scheme does not appear to generate self-
sustaining oscillations? Would you expect the system to behave differently if there
were only one molecule of KaiC?

(b) Cyclic scheme with feedback/nonlinearity: Now consider the same system with feedback:

U = Ctot − S − T −D

kXY = kbasalXY +
kAXY ∗Aact

Aact +K1/2

Aact = max{0, Atot − 2S}

where kXY is the rate constant (which depends indirectly on S) for the conversion from
phosphoform X to phosphoform Y, and the constants Ctot, Aact, k

basal
XY , kAXY , andK1/2 are

given in the following table.
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i. Use ode45 to simulate this system in (T, D, S) phase space for three different
initial conditions of your choosing, plotting the results in 3D phase space with plot3.
Make sure that your initial conditions T0, D0, S0 are with respect to the value o f
Ctot, i.e., T0 +D0 + S0 ≤ Ctot. Run the simulations for 200 h.

ii. Plot total phosphorylation of KaiC (T + D + S) versus time for each of the three
initial conditions.

iii. What is the period T of the oscillator? Does it depend on the initial conditions?
Why or why not?

iv. Why do the initial (transient) dynamics differ depending on initial conditions?

(c) Phase response curve: A key characteristic of circadian clocks is their so-called phase
response curve (PRC), which describes how the phase of the clock changes in response to
a stimulus/perturbation such as exposure to light for a defined duration. A PRC is a plot
of the change in phase of the clock (y axis) versus the phase (subjective time) at which
the perturbation is applied (x axis). The phase change is evaluated by comparing the
phase of the perturbed clock to the phase expected in the absence of perturbation several
periods after the perturbation to allow the phase of the perturbed clock to stabilize.

i. For the simple system examined above, apply a perturbation described by the vector
δ = (δT, δD, δS) = (−0.05µM,−0.05µM,−0.05µM) at each hour of the day, that
is for 24 different times evenly spaced within [103.5 h, 103.5 hours + T), where
T is the period you determined in 3b(iii). (Note that a given system is perturbed
only once; you need to run 24 different simulations.) Calculate the trajectories of
each of the perturbed systems for at least six periods following the perturbation.
Also, calculate the trajectory of an unperturbed clock for at least seven periods
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following 103.5 hours. Plot the total phosphorylation for the 1st, 6th, 12th, and
18th perturbations versus time, for t = [100, 200]. On the same plot, show the total
phosphorylation of the unperturbed clock over the same time period.

ii. Now calculate and plot the phase response curve for those 24 perturbations. Define
the time at which the perturbation is applied as24 ∗ (tperturb − tprecedingpeak)/T .
tperturb is the time at which the perturbation is applied, tprecedingpeak is the time of
the last peak of total phosphorylation immediately preceding tperturb, and T is the
period of the oscillator. The time should lie in the interval [0 h, 24 h]. (This formula
normalizes time to that of an idealized 24-hour clock, resulting in a measure called
circadian time [CT], which is standard in the field.) Define the phase change after
perturbation, measured in the CT shift of the total phosphorylation peak, such that
it lies in the interval [-12 h, +12 h). ]. To determine the phase change, consider the
phase of the perturbed oscillator beginning 5 ∗ T after perturbation compared to
that of the unperturbed oscillator. Match the trajectories plotted in 3c(i) to their
circadian times.

iii. Describe the implications of this PRC for you if you were a cyanobacterium traveling
from Los Angeles to Beijing via a Star Trek-style (instantaneous) transporter. The
time in Beijing is 15 hours ahead of the time in Los Angeles; in the date-agnostic
PRC in 3c(ii), in which phase changes lie in [-12 h, 12 h), this time difference would
be equivalent to a 9-hour phase delay (-9 h). If you could perturb your clock with
perturbation δ once per day, and the phase change were instantaneous (for the sake
of simplicity), describe a scheme for synchronizing your circadian clock with Beijing
time?
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