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Contents of the lecture: 
• Intro: Incorporating continuous dynamics & sources of computational 

complexity
• Recall: Receding horizon control
• Receding horizon temporal logic planning (RHTLP)

• Basic idea & main result
• Discussion of the key details of implementation
• Autonomous driving examples

• Finite-state abstraction & hierarchical control architecture
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Handle mixture of 
discrete and continuous 
dynamics

Account for both 
high-level specs and 
low-level constraints

Reactively respond to 
changes in environment,

2

Problem: Design control protocols, that...

ẋ = f(x, u, δ)
Path

Planner

Traffic
Planner

... with “correctness certificates.”
           [                                     ](ϕinit ∧ ϕenv)→ (ϕsafety ∧ ϕgoal)

g(x, u) ≥ 0
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Hierarchical control 
architecture

Preview

TuLiP: Temporal logic planning toolbox
             (Open source at http://tulip-control.sf.net)

[Coming up in the next lecture]

Different views

“short-horizon
specification”

“long-horizon
specification”

continuous
dynamics&
constraints

W0 ≺ . . . ≺WL−1 ≺WL

W0WL WL−1

min

� T

t0

L(x, u)dt

s.t. ẋ = f(x, u)

g(x, u) ≤ 0

Multi-scale modelsAlice’s navigation
stack

Mission
Planner

Traffic
Planner

Path
Planner

Vehicle
Actuation

http://tulip-control.sf.net
http://tulip-control.sf.net
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This lecture focuses on two of the 
remaining issues:

•Incorporating continuous dynamics
•Computational complexity



Computational Complexity

Supélec

Eiffel Tower

L

• Each of these cells may be occupied by 
an obstacle.

• The vehicle can be in any of these cells.

(2L)(22L) possible states!
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ẋ = f(x, u), x(t) given
x(t + T ) = xf , g(x, u) ≤ 0

Receding Horizon Control

6

min
u[t,t+T ]

� t+T

t
C(x(τ), u)τ))dτ + V (x(t + T ))

subject to:

•Reduces the computational 
cost by solving smaller 
problems.

•Real-time (re)computation 
improves robustness. 



• If the terminal cost is chosen as a control Lyapunov 
function, i.e., V is (locally) positive definite and satisfy (for 
some r>0) 

then stability is guaranteed. 

min
u

(V̇ + C)(x, u) < 0, ∀x ∈ {x : V (x) ≤ r2}
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Receding Horizon Control

• If not implemented properly, global 
properties, e.g., stability, are not 
guaranteed. 

• Increasing T helps for stability at 
the expense of increased 
computational cost. ẋ = f(x, u), x(t) given

x(t + T ) = xf , g(x, u) ≤ 0

min
u[t,t+T ]

� t+T

t
C(x(τ), u)τ))dτ + V (x(t + T ))

subject to:

finite-horizon 
optimization terminal cost

• Alternative (related) approach, imposed contractiveness 
constraints in short-horizon problems.
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• Partition the state space into a partially ordered set
• Goal-induced partial order

({Wj},�ϕg )
Basic idea:

Receding Horizon for LTL Synthesis

ν1ν2

ν3ν4

ν5

ν6

ν7

ν8ν9

ν10
W0

W1

W2

W3

W4

Global (long-horizon) specification: 

Theorem: Receding horizon implementation of the short-horizon 
strategies ensures the correctness of the global specification.

[TAC’11(submitted),
HSCC’10]

(ϕinit ∧ ϕenv) → (ϕsafety ∧ ϕgoal)
{

Plan from 
the current 
cell on

{ {
Receding horizon invariant: 
rules out “corner” cases

Short-horizon specification: For each i,

((ν ∈ Wi) ∧ Φ ∧ ϕenv) → (�Φ ∧ ϕsafety ∧ ♦(ν ∈ Fi(Wi)))

F

Get closer to goal 
rather than reaching.
   : “horizon” length”

{

state satisfying ϕgoal

Trade-offs:
computational

cost
horizon
lengthvs.

strength of
invariantvs. conservatismvs.



How to come up with a partial order,    and   ? ΦF
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W0WL WL−1

W0 ≺ . . . ≺WL−1 ≺WL

F(Wj) =Wj−2, j ≥ 2
F(Wj) =W0, j < 2

• The invariant     (in this example) rules out the states that render the 
short horizon problems unrealizable.

• In the example above, it is the conjunction of the following propositional 
formulas on the initial states for each subproblem:

• no collision in the initial state
• vehicle cannot be in the left lane unless there is an obstacle in the 

right lane in the initial state
• vehicle is able to progress from the initial state

Φ

F

• In general, problem-dependent 
and requires user guidance. 

• Partial automation is possible 
(discussed later). 

• Partial order: “measure of 
closeness” to the goal, i.e, to the 
states satisfying.  

• The map    determines the 
“horizon length. 
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ẍ + ẋ = qx(t)
ÿ + ẏ = qy(t)

θ̈ +
2mL2

J
θ̇ = qθ

|qx(t)|, |qy(t)| ≤
√

0.5

|qθ(t)| ≤ 1
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Navigation of point-mass omnidirectional vehicle
nondimensionalized

dynamics:
conservative bounds on 

control authority to 
decouple the dynamics:

Reasons for the non-intuitive trajectories:
• Synthesis: feasibility rather than “optimality.”
• Specifications are not rich enough.

Partition (in two consecutive cells):

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and ) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and ) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×( discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and )! ≺*! )" for any ! < ).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and ) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

# ∈ '#,!+1 and for the case

where it can only transition to 0 ′
# ∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
# ∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

vz

W0WL WL−1



Example: Navigation In Urban-Like Environment

Goals: Visit the cells with *’s 
infinitely often. 

ẋ(t) = ux(t) + dx(t), ẏ(t) = uy(t) + dy(t)
ux(t), uy(t) ∈ [−1, 1], ∀t ≥ 0

dx(t), dy(t) ∈ [−.1, .1], ∀t ≥ 0

Dynamics:
Actuation limits:
Disturbances:

Traffic rules: 
• No collision
• Stay in right lane unless blocked by obstacle
• Proceed through intersection only when clear

11

Environment assumptions: 
• Obstacle may not block a road 
• Obstacle is detected before it gets too close 
• Limited sensing range (2 cells ahead)
• Obstacle does not disappear when 
 the vehicle is in its vicinity
• Obstacles don’t span more than certain # of 
consecutive cells in the middle of the road

• Each intersection is clear infinitely often
• Cells marked by star and adjacent cells are not 
occupied by obstacle infinitely often



Ufuk Topcu 12

Navigation In Urban-Like Environment
Setup:
• Dynamics: Fully actuated with actuation limits 

and bounded disturbances
• Specifications:

• Traffic rules
• Assumptions on obstacles, sensing range, 

intersections,...
• Goals: Visit the two stars infinitely often

[TAC’11(submit),
HSCC’10]

Results:
• Without receding horizon: 1e87 states (hence, not solvable)

• Partial order: From the top layer of the 
control hierarchy

• Receding horizon:

F(Wi
j) =Wi

j−2.• Horizon length = 2    (                         )
• Invariant: Not surrounded by obstacles. If 

started in left lane, obstacle in right lane.
• 1e4 states in the automaton. 
• ~1.5 sec for each short-horizon problem
• Milliseconds for partial order generation

G

Goal
Generator

Trajectory
Planner

response

Continuous
Controller
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What is    ?Φ
• A propositional formula (that we call receding horizon invariant).
• Used to exclude the initial states that render synthesis infeasible, e.g., states from 
which collision is unavoidable

• Check realizability
• If realizable, done. 
• If not, collect violating initiation conditions. Negate them and put in    .
• Repeat until all subproblems or all possible states are excluded (in the 
latter case, either the global problem is infeasible or RHTLP with given 
partial order and      is inconclusive.)

Φ

F

Given partial order and    , computation of the invariant can be automated:F

((ν ∈ Wi) ∧ Φ ∧ ϕenv) → (�Φ ∧ ϕsafety ∧ ♦(ν ∈ Fi(Wi)))

Short-horizon specification:





ψinit ∧�ψe ∧




�

i∈If

� � ψf,i







 →




�

�

i∈Is

�ψs,i

�
∧




�

i∈Ig

� � ψg,i








{
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Generalization to multiple “goals”
General form of LTL specifications considered in reactive 
control protocol synthesis:

multiple “goals”

18

specification Ψi
j associated with W i

j for each i ∈ Ig and j ∈ {0, . . . , p} as

Ψi
j � �(ν ∈W i

j) ∧ Φ ∧ �ψe
e ∧ �k∈If

��ψe
f,k�

�⇒ ��k∈Is �ψs,k ∧ ���ν ∈ F i(W i
j)� ∧ �Φ� , (8)

where ν is the state of the system and ψe
e , ψe

f,k and ψs,k are defined as in (6). An automaton

Ai
j satisfying Ψi

j defines a strategy for going from a state ν1 ∈W i
j to a state ν2 ∈ F i(W i

j) while

satisfying the safety requirements �i∈Is �ψs,i and maintaining the invariant Φ. The roles of P i,

F i and Φ are discussed later in Section VI-A.

Receding Horizon Strategy: For each i ∈ Ig and j ∈ {0, . . . , p}, construct an automaton Ai
j

satisfying Ψi
j . Let Ig = {i1, . . . , in} and define a corresponding ordered set (i1, . . . , in). Note that

this order only affects the sequence of progress properties ψg,i1 , . . . ,ψg,in that the system tries

to satisfy. Hence, it can be picked arbitrarily without affecting the correctness of the receding

horizon strategy.

(1) Determine the index j1 such that the current state ν0 ∈W i1
j1

. If j1 �= 0, then execute automaton

Ai1
j1

until the system reaches a state ν1 ∈W i1
k whereW i1

k �ψg,i1
W i1

j1
. Note that since the union

ofW i1
1 , . . . ,W i1

p is the set V of all the states, given any ν0,ν1 ∈ V , there exist j1, k ∈ {0, . . . , p}
such that ν0 ∈W i1

j1
and ν1 ∈W i1

k .

(2) If the current state ν1 �∈W i1
0 , switch to automaton Ai1

k where the index k is chosen such that

the current state ν1 ∈W i1
k . Execute Ai1

k until the system reaches a state that is smaller in the

partial order P i1 . Repeat this process until a state ν2 ∈W i1
0 is reached.

(3) Switch to automaton Ai2
j2

where the index j2 is chosen such that the current state ν2 ∈W i2
j2

.

Repeat step (2) with i1 replaced by i2 for the partial order P i2 until a state ν3 ∈W i2
0 is reached.

Repeat this process with i2 replaced by i3, i4, . . . , in until a state νn ∈W in
0 is reached.

(4) Repeat steps (1)–(3).

A graphical description of this strategy is depicted in Figure 3. Starting from a state ν0, the

system executes the automaton Ai1
j1

where the index j1 is chosen such that ν0 ∈ Ai1
j1

. Step (2)

ensures that a state ν2 ∈ W i1
0 (i.e., a state satisfying ψg,i1) is eventually reached. This state ν2

belongs to some set, say,W i2
j2

in the partial order P i2 . The system then works through this partial

order until a state ν3 ∈ W i2
0 (i.e., a state satisfying ψg,i2) is reached. This process is repeated

until a state νn satisfying ψg,in is reached. At this point, for each i ∈ Ig, a state satisfying ψg,i

has been visited at least once in the execution. In addition, the state νn belongs to some set in

January 2, 2011 DRAFT

partial 
order 1

partial 
order 2

partial 
order n...

Each partial order covers the discrete 
(system) state space. For each            , 
one can find a cell in the “proceeding” 
partial order that     belongs to.   

ν ∈Wij

0

ν

Strategy:  While in       implement (in 
a receding horizon fashion) the 
controller that realizes 

Wi
j



O(mn|Σ|3)
For Generalized Reactivity [1] formulas, the computation time of synthesis 
is                 , where      is the number of discrete states.   |Σ|

15

Computational complexity & completeness

m�

i=1

� � pe
i →

n�

j=1

� � qs
j

Receding horizon implementation...
• reduces the computational complexity by restricting the state space 

considered in each subproblem; and 
• is not complete, i.e., the global problem may be solvable but the choice 

of         , the partial order, the maps     , and    may not lead to a solution. {Wj} Fi Φ

(ϕinit ∧ ϕenv)→ (ϕsafety ∧ ϕgoal)

((v ∈Wi) ∧ Φ ∧ ϕend) → (ϕsafety ∧ �(v ∈ Fi(Wi) ∧�Φ)

Global synthesis problem

Subproblems in RHTLP

W0WL WL−1

Choose       to give “longer horizon”: 
• Subproblems in RHTLP are more 
likely to be realizable.

• Computational cost is higher. 
E.g., for urban-like driving example is 
infeasible with horizon length of one.

Fi



Response mechanism is introduced to 
compensate for mismatch between the system 
and its model and between the actual behavior 
of the environment and its assumptions.

Trajectory
Planner

Continuous
Controller

Plant

∆

noise

Local
Control

u

sd
δu

env

Goal
Generator

W0WL WL−1

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and ) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and ) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×( discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and )! ≺*! )" for any ! < ).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and ) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

# ∈ '#,!+1 and for the case

where it can only transition to 0 ′
# ∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
# ∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

vz

ẍ + ẋ = qx(t)
ÿ + ẏ = qy(t)

θ̈ +
2mL2

J
θ̇ = qθ

|qx(t)|, |qy(t)| ≤
√

0.5

|qθ(t)| ≤ 1

models of varying fidelity

Hierarchical control structure
Abstraction procedure and 
bisimulations relate models of 
different fidelity level. 

(How: see the coming slides.)

16



ξ̇ = f(ξ, w, u)

ξ ∈ X , u ∈ U , w ∈ W

17

Incorporating continuous dynamics: main idea

ν∗

Trajectory
Planner

Continuous
Controller

response

Main idea:

X

ν6 ν7 ν8 ν9 ν10

ν1 ν2 ν3 ν4 ν5

ν1 ν2 ν3 ν4 ν5

ν6 ν7 ν8 ν9 ν10

Theorem: For any discrete run satisfying the specification, there exists an admissible 
control signal leading to a continuous trajectory satisfying the specification. 

Proof: Constructive → Finite-state model + Continuous control signals.

Abstraction refinement for reducing potential conservatism.



Given: 
•A system with controlled variables          in domain             and environment 
variables            in domain             .   
•Define              ,                   and                                           .    

•Controlled variables evolve with (for t = 0,1,2,...):

•System specification

V = S ∪ E

s ∈ S dom(S)
dom(E)e ∈ E

dom(V ) = dom(S)× dom(E)v = (s, e)

s[t + 1] = As[t] + Buu[t] + Bdd[t]
u[t] ∈ U
d[t] ∈ D

s[0] ∈ dom(S)
s[t + 1] ∈ dom(S) }

state evolution
admissible control inputs 
exogenous disturbances

set that states take values in

ϕ

18

Finite state abstraction

v5

v0

v1

v3

v4

v2

ν0

ν1

ν2ν3

ν4

ν5

Find: A finite transition system with discrete states    
such that for any sequence               satisfying    , (very 
roughly speaking) there exists a sequence of admissible 
control signals leading to an infinite sequence                  
that satisfies    .     

ν
ν0ν1 . . .

ϕ
v0v1v2 . . .

ϕ

(stated more precisely later...)
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Proposition preserving partition

ν6

ν7

ν8

ν9

ν0

ν1

ν2

ν3

ν4

ν5

v v�

Given              and atomic propositions in    .  
A partition of              is said to be proposition 
preserving if, for any atomic proposition           
and any states   and    that belong to the same cell 
of the partition,    satisfies     if and only if    
satisfies   .

dom(V ) Π

π ∈ Π

π
v v�

dom(V )

π
v�v

Π = {x ≤ 1, y ≥ 0, x + y ≥ 0, . . .}

x

y
Example:

1

-1
-2 21

0

v � π ⇔ v� � π

ν5 �d π ⇔ ∃v ∈ ν5 s.t. v � π

ν5 �d π ⇔ ∀v ∈ ν5 s.t. v � π

⇓

proposition preserving:
+

ν

π
v

πA discrete state    is said to satisfy     if and 
only if there exists a continuous state    , in 
the cell labeled, that satisfies   .       



A discrete state νj is finite-time reachable from a discrete
state νi, only if starting from any s[0] ∈ T−1

s (νi), there exists
- a finite horizon length N ∈ {0, 1, . . .}
- for any allowable disturbance, there exists
. u[0], u[1], . . . , u[N − 1] ∈ U such that

s[N ] ∈ T−1
s (νj)

s[t] ∈ T−1
s (νi) ∪ T−1

s (νj), ∀t ∈ {0, . . . , N}

20

Finite-time reachability

ν6

ν7

ν8

ν9

ν0

ν1

ν2

ν3

ν4

ν5

S0

Verifying the reachability relation:
• Compute the set      of        from which          
can be reached under the system dynamics in a 
pre-specified time N. 

• Check whether                   .   

S0 s[0] Ts(νj)

T−1
s (νi) ⊆ S0

{ s[t + 1] = As[t] + Buu[t] + Bdd[t]
u[t] ∈ U
d[t] ∈ D

s[0] ∈ dom(S)
s[t + 1] ∈ dom(S)

system
dynamics



Given N and polyhedral sets
T−1

s (νi) = {s ∈ Rn : L1s ≤ M1}
U = {u ∈ Rm : L2u ≤ M2}
T−1

s (νj) = {s ∈ Rn : L3s ≤ M3}.

L1s[t] ≤M1 for t = 0, . . . , N − 1
L3s[N ] ≤M3,

where

s[t] = Ats0 +
�t−1

k=0

�
AkBuu[t− 1− k] + AkBdd[t− 1− k]

�
,

S0 is computed as the set of s0 such that there
exist u[0], . . . , u[N − 1] satisfying L2u[t] ≤ M2,
for t ∈ {0, . . . , N − 1}, leading to

for all d[0], . . . , d[N − 1] ∈ D (D polyhedral).

T−1
s (ν0)

T−1
s (ν1)

21

S0Computing 

affine in s0 and u

S0 =
�

s0 ∈ Rn : ∃û ∈ RmN s.t. L

�
s0

û

�
≤ M −Gd̂, ∀d̂ ∈ D̄N

�
Put together: S0 is computed as a polytope projection:

stacking of u and d
DN = D × · · ·×Dset of vertices of 

ν6

ν7

ν8

ν0

ν1

ν2

ν3

ν5



ν6

ν7

ν0

ν1

ν2

ν5

While checking the reachability from T−1
s (νi) to

T−1
s (νj), if T−1

s (νi) � S0, then
- Split T−1

s (νi) ∩ S0 and T−1
s (νi) ∩ Sc

0

- Remove νi from the set of discrete states
- Add two new discrete states corresponding to
. T−1

s (νi) ∩ S0 and T−1
s (νi) ∩ Sc

0

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and ) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and ) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×( discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and )! ≺*! )" for any ! < ).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and ) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

# ∈ '#,!+1 and for the case

where it can only transition to 0 ′
# ∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
# ∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

Define the finite transition system D,
an abstraction of S as:
- V := S × E , set of discrete states
. (both controller and environment)
- νi = (ςi, �i)→ vj = (ςj , �j) only if ςj
. is reachable from ςi.

22

Refining the partition 

ν10

ν11

T−1
s (ν0) ∩ S0

T−1
s (ν0) ∩ Sc

0

• Repeat until no cell can be sub-partitioned s.t. the 
volumes of the two resulting new cells both greater 
than            .

• Smaller            leads to more cells in the partition 
and more allowable transitions. 

• If the initial partition is proposition preserving, so is 
the resulting. 

V olmin

V olmin



ν6

ν7

ν0

ν1

ν2

ν5

Using
• Proposition preserving property of the partition
•     only includes the transitions that are implemented by the 
control signal    within some finite time (by construction 
through the reachability formulation)
• Stutter invariance of the specification    , ...

D
u

ϕ

Let σd = ν0ν1 . . . be a sequence in D with νk → νk+1, νk = (ςk, �k), ςk ∈ S
and �k ∈ E . If σd |=d ϕ, then by applying a sequence of control signals from
the Reachability Problem with initial set T−1

s (ςk) and final set T−1
s (ςk+1), the

sequence of continuous states σ = v0v1v2 . . . satisfies ϕ.
23

v0
v1v2

v3

v4

v5
v6

v7
v8

Two words σ1 and σ2 over 2AP are stutter equivalent, if
there exists an infinite sequence A0A1A2 . . . of sets of
atomic propositions and natural numbers n0, n1, n2, . . .
and m0, m1, m2, . . . such that σ1 and σ2 are of the form

σ1 = An0
0 An1

1 An2
2 . . . σ2 = Am0

0 Am1
1 Am2

2 . . .

An LT property P is stutter-invariant if for any word σ ∈ P
all stutter-equivalent words are also contained in P.

v0

v0v1 . . . v8 . . . ν0ν1 . . .Example:                       and              are stutter-equivalent.     

...we can prove:

Correctness of the hierarchical implementation
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Hierarchical control 
architecture

Summary

TuLiP: Temporal logic planning toolbox
             (Open source at http://tulip-control.sf.net)

[Coming up in the next lecture]

Different views

“short-horizon
specification”

“long-horizon
specification”

continuous
dynamics&
constraints

W0 ≺ . . . ≺WL−1 ≺WL

W0WL WL−1

min

� T

t0

L(x, u)dt

s.t. ẋ = f(x, u)

g(x, u) ≤ 0

Multi-scale modelsAlice’s navigation
stack

Mission
Planner

Traffic
Planner

Path
Planner

Vehicle
Actuation

http://tulip-control.sf.net
http://tulip-control.sf.net



