Lecture 6 Verification of Hybrid Systems

Ufuk Topcu

Nok Wongpiromsarn

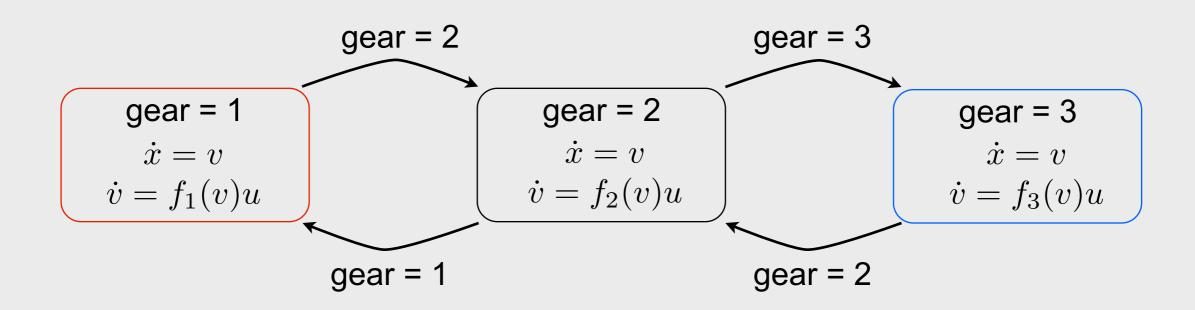
Richard M. Murray

AFRL, 25 April 2012

Outline:

- A hybrid system model
- Finite-state abstractions and use of model checking
- Deductive verification and optimization-based construction of certificates
- Approximate bisimulation functions

Hybrid systems: example



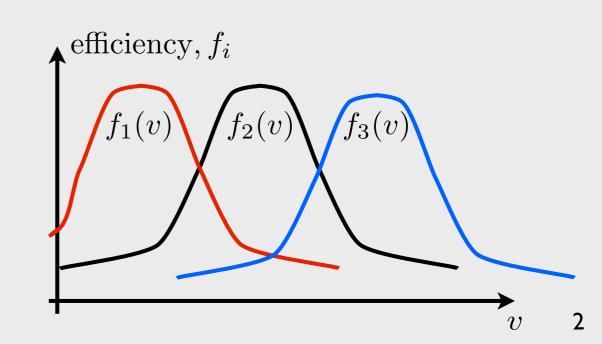
Model and tools so far (in the course) help reason about discrete evolution of systems:

- does there exist a control sequence for which φ holds, or
- do all control sequences lead to executions for which φ holds with

$$\varphi = \square (\text{gear} = 1 \rightarrow \lozenge \text{gear} = 3)$$
?

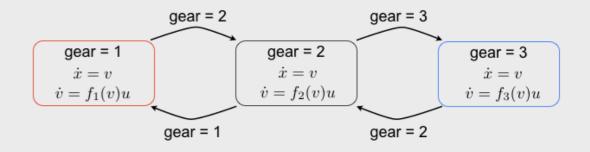
Need to modify to capture continuous evolution:

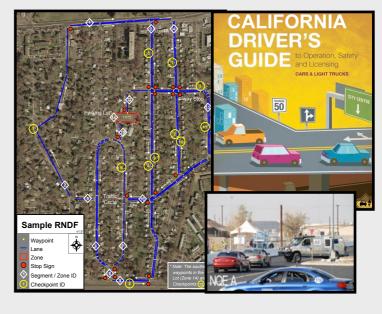
- Can the car come to a stop from any (reasonable) speed within x meters?
- How to efficiently accelerate?

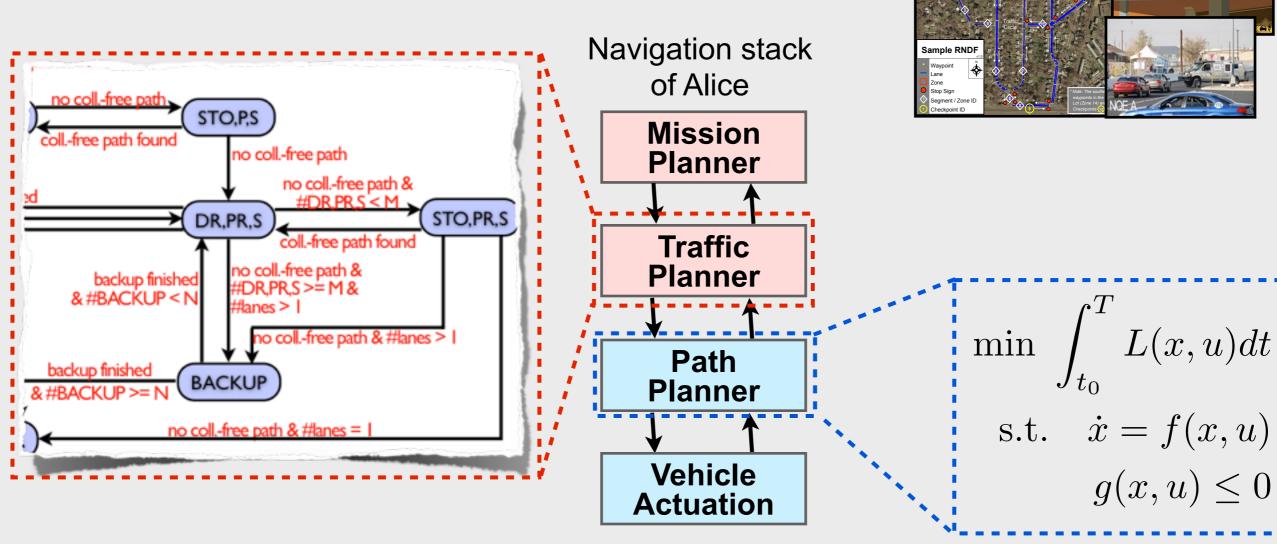


Why to use hybrid system models?

- Continuous systems with multiple modes
- Discrete logic controlling continuous systems
- Continuous systems with "hybrid" specifications



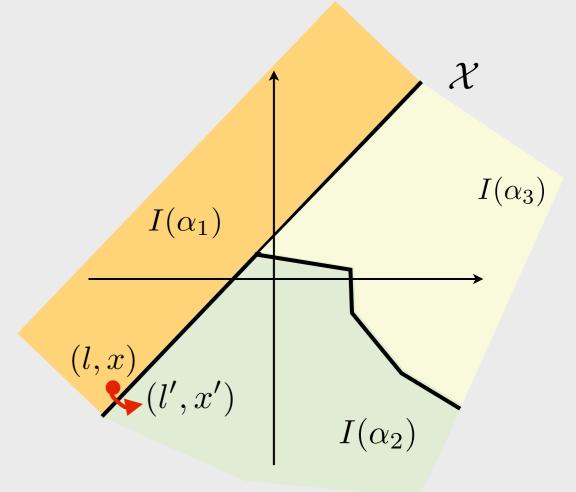




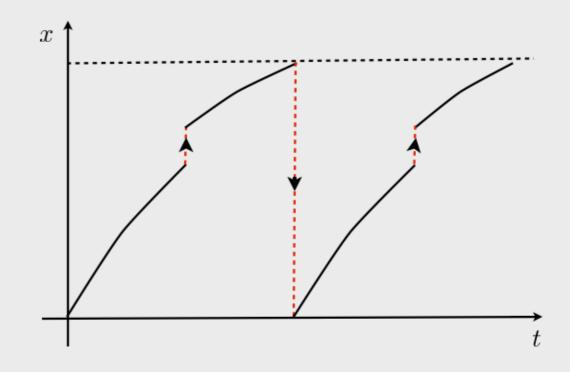
A (simple) hybrid system model

Hybrid system: $H = (\mathcal{X}, L, X_0, I, F, T)$ with

- \bullet \mathcal{X} , continuous state space;
- L, finite set of locations (modes);
- Overall state space $X = \mathcal{X} \times L$;
- $X_0 \subseteq X$, set of initial states;
- $I: L \to 2^{\mathcal{X}}$, invariant that maps $l \in L$ to the set of possible continuous states while in location l;
- $F: X \to 2^{\mathbb{R}^n}$, set of vector fields, i.e., $\dot{x} \in F(l, x)$;
- $T \subseteq X \times X$, relation capturing discrete transitions between locations.



$$L = \{\alpha_1, \alpha_2, \alpha_3\}$$



Specifications

Given: $H = (\mathcal{X}, L, X_0, I, F, T)$

Solution at time t with the initial condition $x_0 \in \mathcal{X}_0$: $\phi(t; x_0)$

• With the simple model H, specifying the initial state also specifies the initial mode.

Sample temporal properties:

• <u>Stability</u>: Given equilibrium $x_e \in \mathcal{X}$, for all $x_0 \in \mathcal{X}_0 \subseteq \mathcal{X}$, $\phi(t; x_0) \in \mathcal{X}$, $\forall t$ and $\phi(t; x_0) \to x_e, \ t \to \infty$

• <u>Safety</u>: Given $\mathcal{X}_{unsafe} \subseteq \mathcal{X}$, safety property holds if there exists <u>no</u> t_{unsafe} and trajectory with initial condition $x_0 \in \mathcal{X}_0$,

$$\phi(t_{unsafe}; x_0) \in \mathcal{X}_{unsafe}$$
$$\phi(t; x_0) \in \mathcal{X}, \ \forall t \in [0, t_{unsafe}]$$

• Reachability: Given $\mathcal{X}_{reach} \subseteq \mathcal{X}$, reachability property holds if there exists finite $t_{reach} \geq 0$ and a trajectory with initial condition $x_0 \in \mathcal{X}_0$,

$$\phi(t_{reach}; x_0) \in \mathcal{X}_{reach}$$
 and $\phi(t; x_0) \in \mathcal{X}, \ \forall t \in [0, t_{reach}]$

- Eventuality: reachable from every initial condition
- Combinations of the above, e.g., starting in X_A , reach both X_B and X_C , but X_B will not be reached before X_C is reached while staying safe.

 $I(\alpha_1)$

 \mathcal{X}_0

 \mathcal{X}_{reach}

 $I(\alpha_2)$

Verification of hybrid systems: Overview

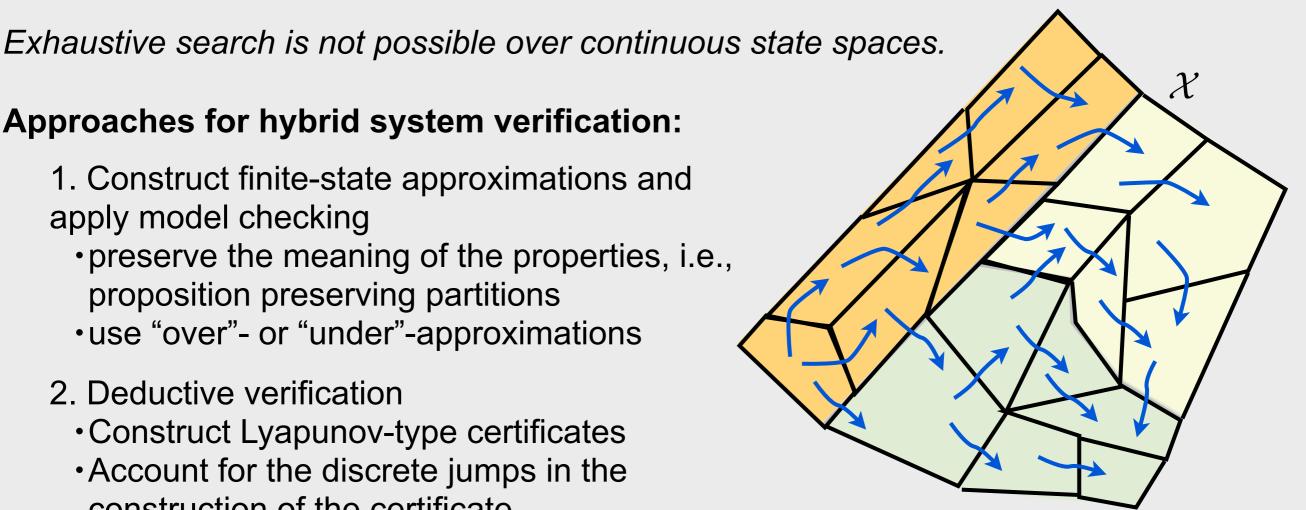
Why not directly use model checking?

- Model checking applied to finite transitions systems
- exhaustively search for counterexamples....
 - if found, property does not hold.
 - if there is no counterexample in all possible executions, the property is verified.

Approaches for hybrid system verification:

 Construct finite-state approximations and apply model checking

- preserve the meaning of the properties, i.e., proposition preserving partitions
- ·use "over"- or "under"-approximations
- 2. Deductive verification
 - Construct Lyapunov-type certificates
 - Account for the discrete jumps in the construction of the certificate
- 3. Explicitly construct the set of reachable states
 - Limited classes of temporal properties (e.g., reachability and safety)
 - Not covered in this lecture

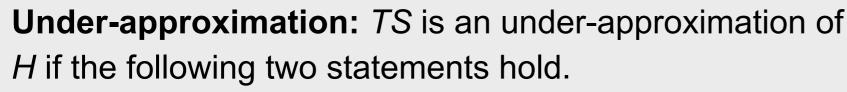


Finite-state, under- and over-approximations

Hybrid system: $H = (\mathcal{X}, L, X_0, I, F, T)$

Finite-transition system: $TS = (Q, \rightarrow, Q_0)$

Define the map $T:Q\to 2^{\mathcal{X}}$ For discrete state q, $T^{-1}(q)$ is the corresponding cell in \mathcal{X} .



•Given $q, q' \in Q$ with $q \neq q'$, if $q \rightarrow q'$, then for all $x_0 \in T^{-1}(q)$, there exists finite $\tau > 0$ such that

$$\phi(\tau; x_0) \in T^{-1}(q'), \quad \phi(t; x_0) \in T^{-1}(q) \cup T^{-1}(q'), \quad \forall t \in [0, \tau]$$

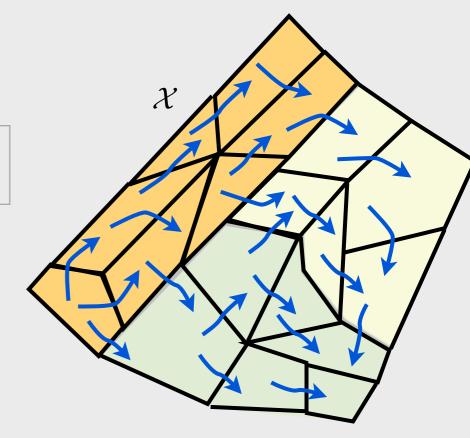
•If $q \to q$, then $T^{-1}(q)$ is positively-invariant.

In other words:

- Every discrete trajectory in an under-approximation *TS* can be implemented by H.
- TS "simulates" H.

Over-approximation: TS is an over-approximation of H, if for each discrete transition in TS, there is a "possibility" to be implemented by H.

Possibility induced by the coarseness of the partition.



Use of under-approximations

Let the following be given.

- A hybrid system *H*,
- a finite-state, under-approximation *TS1* for *H*,

Verification

- Let an LTL specification φ be given.
- Question: $H \models \varphi$?
- Model check " $TS1 \models \varphi$?"



H <u>cannot</u> satisfy the specification.

$$TS1 \not\models \phi$$

$$\downarrow \downarrow$$

$$H \not\models \phi$$

$$Words(\neg \varphi) \cap Trace(TS1)$$
 is empty

Inconclusive

Logic synthesis:

- If $Words(\varphi) \cap Trace(TS1)$ is nonempty, there exists a trajectory of TS1 which satisfies φ and can be implemented by H.
- Otherwise, inconclusive.

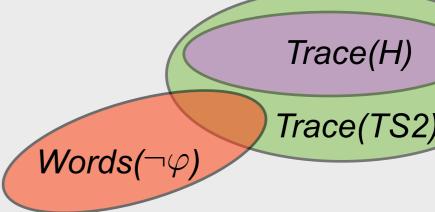
Use of over-approximations

Hybrid system H and a finite-state, over-approximation TS2 for H.

Verification

 $Words(\varphi) \cap Trace(TS2)$ is nonempty

Inconclusive



$$\operatorname{Words}(\neg \varphi) \cap \operatorname{Trace}(TS2)$$
 is empty $\ \downarrow \ \operatorname{Words}(\neg \varphi) \cap \operatorname{Trace}(H)$ is empty

H satisfies the specification.

$$TS2 \models \varphi$$

$$\downarrow \downarrow$$

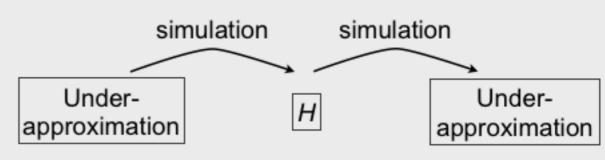
$$H \models \varphi$$

Logic synthesis:

- •If $Words(\varphi) \cap Trace(TS2)$ is empty, no valid trajectories for TS2 or H.
- ·Otherwise, inconclusive.

Remarks:

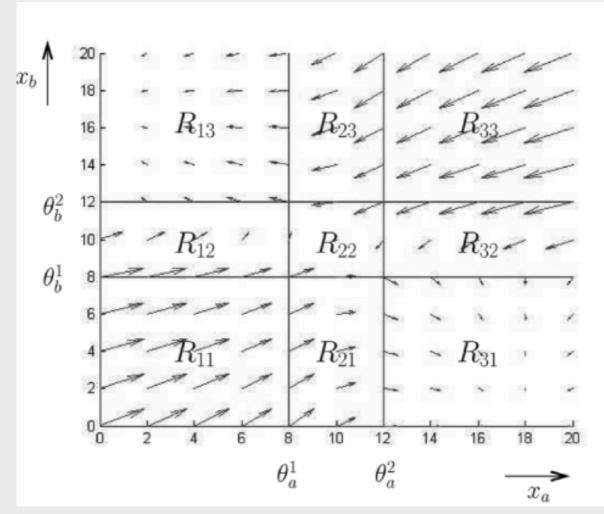
- Under- and over-approximations give partial results.
- •Potential remedies:
 - Finer approximations
 - Bisimulations



Example: verification

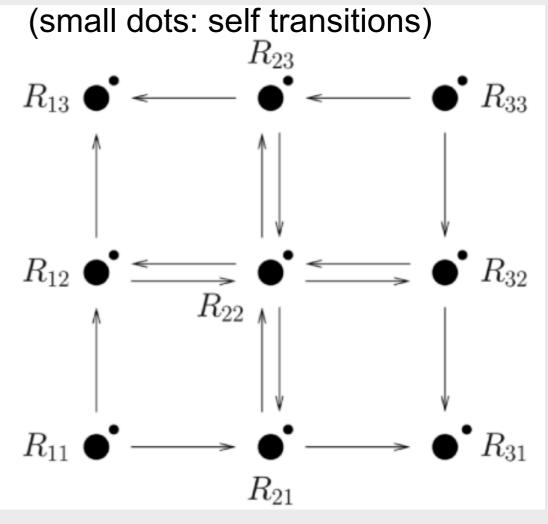
System models:

Continuous vector field:



 $\phi_2 = \langle (x_a < \theta_a^2 \lor x_b < \theta_b^2) \rangle$

Discrete over-approximation:



Specifications:

$$\phi_1 = (x_a < \theta_a^1 \land x_b > \theta_b^2 \to \square (x_a < \theta_a^1 \land x_b > \theta_b^2))$$
$$\land (x_b < \theta_b^1 \land x_a > \theta_a^2 \to \square (x_b < \theta_b^1 \land x_a > \theta_a^2))$$

Both hold for the overapproximation; hence, they hold for the actual system.

Example from "Temporal logic analysis of gene networks under parametric uncertainty," Batt, Belta, Weiss, Joint special issue of IEEE TAC & Trans on Circuits, 2008.

Verification of hybrid systems: Overview

Why not directly use model checking?

- Model checking applied to finite transitions systems
- exhaustively search for counterexamples....
 - if found, property does not hold.
 - if there is no counterexample in all possible executions, the property is verified.

Exhaustive search is not possible over continuous state spaces.

Approaches for hybrid system verification:

- 1. Construct finite-state approximations and apply model checking
 - preserve the meaning of the properties, i.e., proposition preserving partitions
 - ·use "over"- or "under"-approximations
- 2. Deductive verification
 - Construct Lyapunov-type certificates
 - Account for the discrete jumps in the construction of the certificate
- 3. Explicitly construct the set of reachable states
 - Limited classes of temporal properties (e.g., reachability and safety)
 - Not covered in this lecture

What does deductive verification mean?

Example with continuous, nonlinear dynamics:

$$\dot{x}(t) = f(x(t))$$

where $x(t) \in \mathbb{R}^n$, f(0) = 0, x = 0 is an asymptotically stable equilibrium.

Region-of-attraction: $\mathcal{R} := \left\{ x : \lim_{t \to \infty} \phi(t; x) = 0 \right\}$

Question 1 (a system analysis question):

Given $S \subset \mathbb{R}^n$, is S invariant and $S \subseteq \mathcal{R}$?

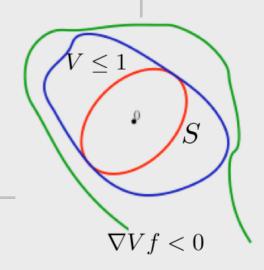
- the question we want to answer

the question we attempt to answer

Question 2 (an algebraic question):

Does there exist a continuously differentiable function $V:\mathbb{R}^n \to \mathbb{R}$ such that

- *V* is positive definite,
- V(0) = 0,
- $\Omega := \{x : V(x) \le 1\} \subset \{x : \nabla V \cdot f(x) < 0\} \cup \{0\}$
- $S \subseteq \Omega$?

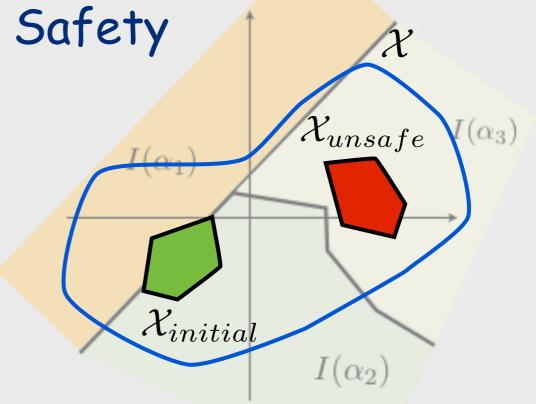


Yes to Question 2 \rightarrow Yes to Question 1.

Barrier Certificates - Safety

Safety property holds if there exists no $T \ge 0$ and trajectory such that:

$$x = \phi(0; x) \in \mathcal{X}_{initial}$$
$$\phi(T; x) \in \mathcal{X}_{unsafe}$$
$$\phi(t; x) \in \mathcal{X} \ \forall t \in [0, T].$$



Continuous dynamics:

$$\dot{x}(t) = f(x(t))$$

Suppose there exists a differentiable function B such that

$$B(x) \leq 0, \ \forall x \in \mathcal{X}_{initial}$$

 $B(x) > 0, \ \forall x \in \mathcal{X}_{unsafe}$
 $\frac{\partial B}{\partial x} f(x) \leq 0, \ \forall x \in \mathcal{X}.$

Then, the safety property holds.

Hybrid dynamics:

$$H = (\mathcal{X}, L, X_0, I, F, \mathcal{T})$$

Suppose there exist differentiable functions B_l (for each mode) such that

$$B_l(x) \le 0, \ \forall x \in I(l) \cap \mathcal{X}_{initial}$$

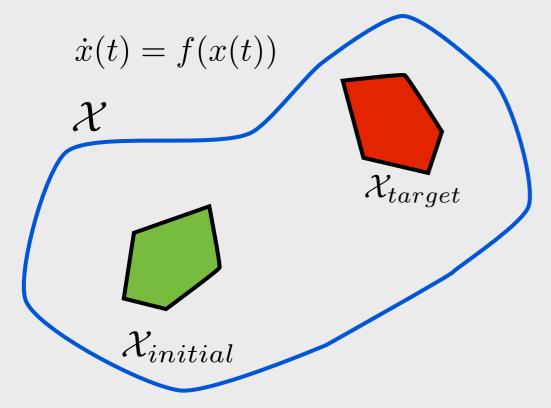
$$B_l(x) > 0, \ \forall x \in I(l) \cap \mathcal{X}_{unsafe}$$

$$\frac{\partial B_l}{\partial x} F(x) \le 0, \ \forall x \in I(l)$$

$$B_{l'}(x') - B_l(x) \le 0$$
, for each jump $(l, x) \to (l', x')$

Then, the safety property holds.

Barrier Certificates - Eventuality



Eventuality property holds if for all

$$x_0 \in \mathcal{X}_{initial}$$
 ,

$$\phi(T; x_0) \in \mathcal{X}_{target}$$

 $\phi(t; x_0) \in \mathcal{X}, \ \forall t \in [0, T]$

for some non-negative *T*.

notation: set closure

 $\mathcal{X}, \ \mathcal{X}_{target}, \ \mathcal{X}_{initial} \ \text{are bounded}$

Suppose that f is continuously differentiable and there exists a continuously differentiable function B such that

don't leave
$$\mathcal{X}$$
 before reaching \mathcal{X}_{target}

$$B(x) \le 0, \ \forall x \in \mathcal{X}_{initial}$$

$$\to B(x) > 0, \ \forall x \in \overline{\partial \mathcal{X} \setminus \partial \mathcal{X}_{target}}$$

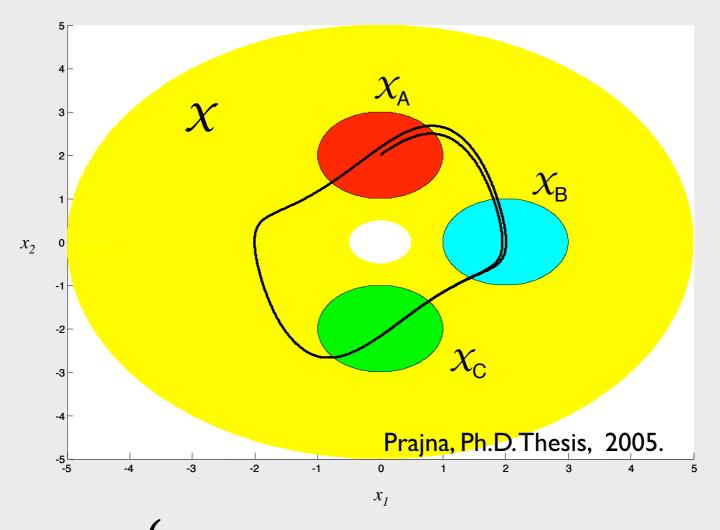
leave $\mathcal{X} \setminus \mathcal{X}_{target}$ in finite time

$$\frac{\partial B}{\partial x}(x) \cdot f(x) < 0, \ \forall x \in \overline{\mathcal{X} \setminus \mathcal{X}_{target}}$$

Then, the eventuality property holds.

Straightforward extensions for hybrid dynamics as in safety verification are possible.

Composing Barrier Certificates



If system starts in \mathcal{X}_A , then both \mathcal{X}_B and \mathcal{X}_C are reached in finite time, but \mathcal{X}_C will not be reached before system reaches \mathcal{X}_B .

$$B_{1}(x) \leq 0 \quad \forall x \in \mathcal{X}_{A}, \qquad \text{uncertainty}$$

$$B_{1}(x) > 0 \quad \forall x \in \partial \mathcal{X} \cup \mathcal{X}_{C},$$

$$\frac{\partial B_{1}}{\partial x}(x) f(x, d) \leq -\epsilon \quad \forall (x, d) \in (\mathcal{X} \setminus \mathcal{X}_{B}) \times \mathcal{D},$$

$$B_{2}(x) \leq 0 \quad \forall x \in \mathcal{X}_{A},$$

$$B_{2}(x) > 0 \quad \forall x \in \partial \mathcal{X},$$

$$\frac{\partial B_{2}}{\partial x}(x) f(x, d) \leq -\epsilon \quad \forall x \in (\mathcal{X} \setminus \mathcal{X}_{C}) \times \mathcal{D},$$

incorporating disturbances and uncertainties

How to construct the certificates?

- System properties → Algebraic conditions
 Lyapunov, dissipation inequalities.

 Problem-dependent!

- ightharpoonup Algebraic conditions \rightarrow Numerical optimization problems
 - Restrict the attention to polynomial vector fields, polynomial certificates,...
 - S-procedure like conditions (for set containment constraints)
 - Sum-of-squares (SOS) relaxations for polynomial nonnegativity
 - Pass to semidefinite programming (SDP) that are equivalent of SOS conditions
- Solve the resulting (linear or "bilinear") SDPs
 Construct polynomial certificates
- Construct polynomial certificates

packages.

Some preliminaries

- Semidefinite programming problems
- Positive semidefinite polynomials and sum-of- squares (SOS) programming
- Set containment conditions and S-procedure

Linear and bilinear matrix inequalities

Convex, efficient, general-purpose solvers exist

Given matrices $\{F_i\}_{i=0}^N \subset \mathcal{S}^{n\times n}$, Linear Matrix Inequality (LMI) is a constraint on $\lambda \in \mathbb{R}^N$ of the form:

$$F_0 + \sum_{k=1}^{N} \lambda_k F_k \succeq 0$$

Non-convex, no efficient, generalpurpose solvers Given matrices $\{F_i\}_{i=0}^N$, $\{G_j\}_{j=1}^M$, and $\{H_{k,j}\}_{k=1}^N$ $\stackrel{M}{j=1}$ $\subset \mathcal{S}^{n\times n}$, a Bilinear Matrix Inequality (BMI) is a constraint on $\lambda \in \mathbb{R}^N$ and $\gamma \in \mathbb{R}^M$ of the form:

$$F_0 + \sum_{k=1}^{N} \lambda_k F_k + \sum_{j=1}^{M} \gamma_k G_j + \sum_{k=1}^{N} \sum_{j=1}^{M} \lambda_k \gamma_j H_{k,j} \succeq 0$$

Semidefinite program (?)

very roughly speaking, optimization of affine objective subject to LMI or/and BMI constraints

Polynomials and Multipoly Toolbox

Given $\alpha \in \mathbb{N}^n$, a monomial in n variables is a function $m_{\alpha} : \mathbb{R}^n \to \mathbb{R}$ defined as $m_{\alpha}(x) := x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$.

The degree of a monomial is defined as $\deg m_{\alpha} := \sum_{i=1}^{n} \alpha_i$.

Polynomial: Finite linear combination of monomials.

$$p:=\sum_{\alpha\in\mathcal{A}}c_{\alpha}m_{\alpha}=\sum_{\alpha\in\mathcal{A}}c_{\alpha}x^{\alpha}\quad\text{where }\mathcal{A}\subset\mathbb{N}^{n}\text{ is a finite set and }c_{\alpha}\in\mathbb{R}\ \forall\alpha\in\mathcal{A}.$$

Multipoly is a Matlab toolbox for the creation and manipulation of polynomials of one or more variables.

Example:

Positive semidefinite polynomials

 $\mathbb{R}[x_1,\ldots,x_n]$ or $\mathbb{R}[x]$ denotes the set of polynomials (with real coefficients) in the variables $\{x_1,\ldots,x_n\}$.

 $p \in \mathbb{R}[x]$ is positive semi-definite (PSD) if $p(x) \geq 0 \ \forall x$. The set of PSD polynomials in n variables $\{x_1, \ldots, x_n\}$ will be denoted $\mathcal{P}[x_1, \ldots, x_n]$ or $\mathcal{P}[x]$.

Testing if $p \in \mathcal{P}[x]$ is NP-hard when the polynomial degree is at least four.

How about a quadratic polynomial?

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, Ph.D. thesis, California Institute of Technology, 2000. (Chapter 4 of this thesis and the reference contained therein summarize the computational issues associated with verifying global non-negativity of functions.)

Sum-of-Squares Polynomials

p is a sum of squares (SOS) if there exist polynomials $\{f_i\}_{i=1}^N$ such that $p = \sum_{i=1}^N f_i^2$.

The set of SOS polynomials in n variables $\{x_1, \ldots, x_n\}$ will be denoted $\Sigma[x_1, \ldots, x_n]$ or $\Sigma[x]$.

If p is a SOS then p is PSD.

For every polynomial p of degree 2d, there exists a symmetric matrix $\mathbf Q$ such that

$$p(x) = z(x)^T Q z(x)$$

with

$$z(x) := [1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^2, \dots, x_n^d]^T$$

p is SOS if and only if there exists $Q\succeq 0$ s.t. $p(x)=z(x)^TQz(x)$

SOS example

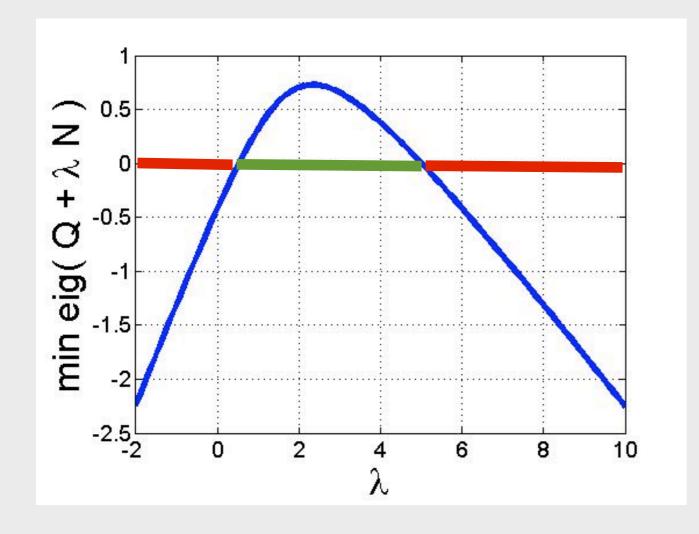
All possible Gram matrix representations of

$$p(x) = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4$$

 $p(x) = z(x)^T Q z(x)$ $0 = z(x)^T N z(x)$ $(x_1 x_2) \cdot (x_1 x_2) = x_1^2 \cdot x_2^2$

are given by $z^T (Q + \lambda N) z$ where:

$$z = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}, \ Q = \begin{bmatrix} 2 & 1 & -0.5 \\ 1 & 0 & 0 \\ -0.5 & 0 & 5 \end{bmatrix}, \ N = \begin{bmatrix} 0 & 0 & -0.5 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0 \end{bmatrix}$$



$$Q + \lambda N \succeq 0 \leftarrow LM$$

for some $\lambda \in \mathbb{R}$.

SOS programming

SOS Programming: Given $c \in \mathbb{R}^m$ and polynomials $\{f_{j,k}\}_{j=1}^{N_s} {\atop k=0}^m$, solve:

$$\min_{\alpha \in \mathbb{R}^m} c^T \alpha$$
 subject to:
$$f_{1,0}(x) + f_{1,1}(x)\alpha_1 + \dots + f_{1,m}(x)\alpha_m \in \Sigma[x]$$

$$\vdots$$

$$f_{N_s,0}(x) + f_{N_s,1}(x)\alpha_1 + \dots + f_{N_s,m}(x)\alpha_m \in \Sigma[x]$$

There is freely available software (e.g. SOSTOOLS, YALMIP, SOSOPT) that:

- 1. Converts the SOS program to an SDP
- 2. Solves the SDP with available SDP codes (e.g. Sedumi)
- 3. Converts the SDP results back into polynomial solutions

Set containment conditions

Given polynomials g_1 and g_2 , define sets S_1 and S_2 :

$$S_1 := \{ x \in \mathbb{R}^n : g_1(x) \le 0 \}$$

$$S_2 := \{ x \in \mathbb{R}^n : g_2(x) \le 0 \}$$

Is $S_2 \subseteq S_1$?

Polynomial S-procedure

$$\exists \lambda \in \Sigma[x] \text{ s.t. } -g_1(x) + \lambda(x)g_2(x) \in \Sigma[x]$$

 $\downarrow \downarrow$

 $\exists \lambda \text{ positive semidefinite polynomial s.t. } -g_1(x) + \lambda(x)g_2(x) \geq 0 \ \forall x$

$$\downarrow \downarrow$$

$${x: g_2(x) \le 0} \subseteq {x: g_1(x) \le 0}$$

Example: $B(x) \leq 0$, $\forall x \in \mathcal{X}_{initial}$

Suppose $\mathcal{X}_{initial} = \{x : g(x) \leq 0\}$ for some g

Sufficient condition: There exists positive semidefinite function *s* such that

$$-B(x) + s(x)g(x) = -B(x) - s(x)(-g(x)) \ge 0, \quad \forall x \in \mathbb{R}^n$$

Global stability theorem

Theorem: Let $l_1, l_2 \in \mathbb{R}[x]$ satisfy $l_i(0) = 0$ and $l_i(x) > 0 \ \forall x \neq 0$ for i = 1, 2. If there exists $V \in \mathbb{R}[x]$ such that:

- V(0) = 0
- $V l_1 \in \Sigma[x]$
- $-\nabla V \cdot f l_2 \in \Sigma[x]$

Then $\mathcal{R}_0 = \mathbb{R}^n$.

Reference: Vidyasagar, M., *Nonlinear Systems Analysis*, SIAM, 2002. (Refer to Section 5.3 for theorems on Lyapunov's direct method.)

V is positive definite, radially unbounded

V is decreasing along the vector field

Global stability examples with sosopt

 $0.30089*x1^2 + 1.8228e-017*x1*x2 + 0.6018*x2^2$

```
% Code from Parrilo1_GlobalStabilityWithVec.m
% Create vector field for dynamics
pvar x1 x2;
x = [x1; x2];
x1dot = -x1 - 2*x2^2;
x2dot = -x2 - x1*x2 - 2*x2^3;
xdot = [x1dot; x2dot];
% Use sosopt to find a Lyapunov function
                                                2
% that proves x = 0 is GAS
% Define decision variable for quadratic
% Lyapunov function
zV = monomials(x,2);
V = polydecvar('c',zV,'vec');
% Constraint 1 : V(x) - L1 \in SOS
L1 = 1e-6 * (x1^2 + x2^2);
sosconstr{1} = V - L1;
% Constraint 2: -Vdot - L2 \in SOS
L2 = 1e-6 * (x1^2 + x2^2);
Vdot = jacobian(V,x)*xdot;
sosconstr{2} = -Vdot - L2;
                                                                           x1
% Solve with feasibility problem
[info,dopt,sossol] = sosopt(sosconstr,x);
Vsol = subs(V,dopt)
Vsol =
```

Approximate bisimulation relations & bisimulation functions

Two systems with $x_i \in \mathbb{R}^{n_i}, \ x_i(0) \in I_i \subseteq \mathbb{R}^{n_i}, \ u_i(t) \in U_i \subseteq \mathbb{R}^{m_i}, \ y_i \in \mathbb{R}^p$

$$\Phi_1: \left\{ \begin{array}{l} \dot{x}_1(t) = f_1(x_1(t), u_1(t)) \\ y_1(t) = g_1(x_1(t)) \end{array} \right. \qquad \Phi_2: \left\{ \begin{array}{l} \dot{x}_2(t) = f_2(x_2(t), u_2(t)) \\ y_2(t) = g_2(x_2(t)) \end{array} \right.$$

A relation $\mathcal{R}_{\delta} \in \mathbb{R}^{m_1} \times \mathbb{R}^{n_2}$ is a δ -approximate bisimulation relation between Φ_1 and Φ_2 if for all $(x_1, x_2) \in \mathcal{R}_{\delta}$:

- $\cdot \|g_1(x_1) g_2(x_2)\| \le \delta;$
- $\forall T > 0 \text{ and } \forall u_1(\cdot), \exists u_2(\cdot) \text{ s.t. } (\phi_1(t; x_1) \phi_2(t; x_2)) \in \mathcal{R}_{\delta} \ \forall t \in [0, T];$
- $\forall T > 0 \text{ and } \forall u_2(\cdot), \exists u_1(\cdot) \text{ s.t. } (\phi_1(t; x_1) \phi_2(t; x_2)) \in \mathcal{R}_\delta \ \forall t \in [0, T].$

If start in relation, stay in relation. Observations are "close."

A function $V: \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^+ \cup \{+\infty\}$ is a bisimulation function between Φ_1 and Φ_2 if for all $\delta \geq 0$:

$$\mathcal{R}_{\delta} = \{(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} : V(x_1, x_2) \leq \delta\}$$
 sublevel sets of V induce a relation

is a closed set and a δ -approximate bisimulation relation between Φ_1 and Φ_2 .

Approximate bisimulation relations & bisimulation functions

Two systems with $x_i \in \mathbb{R}^{n_i}, \ x_i(0) \in I_i \subseteq \mathbb{R}^{n_i}, \ u_i(t) \in U_i \subseteq \mathbb{R}^{m_i}, \ y_i \in \mathbb{R}^p$

$$\Phi_1: \left\{ \begin{array}{l} \dot{x}_1(t) = f_1(x_1(t), u_1(t)) \\ y_1(t) = g_1(x_1(t)) \end{array} \right. \qquad \Phi_2: \left\{ \begin{array}{l} \dot{x}_2(t) = f_2(x_2(t), u_2(t)) \\ y_2(t) = g_2(x_2(t)) \end{array} \right.$$

Let $W: \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^+$ be a continuously differentiable function. If for all $(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$,

$$W(x_1, x_2) \ge ||g_1(x_1) - g_2(x_2)||^2$$

$$\left(\frac{\partial W}{\partial x_1} f_1(x_1, u_1) - \frac{\partial W}{\partial x_2} f(x_2, u_2) \le 0, \ \forall (x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}, \ u_1 \in \mathbb{R}^{m_1}, \ u_2 \in \mathbb{R}^{m_2}\right)$$

then $V := |\sqrt{W}|$ is a bisimulation function between Φ_1 and Φ_2 .

guarantees that no matter what u_1 and u_2 do, the time derivative of W stays non-positive

Approximate bisimulations + safety

