
Lecture 5
(Manual) Design and Verification

of Control Protocols

Richard M. Murray
Nok Wongpiromsarn Ufuk Topcu
California Institute of Technology

AFRL, 25 April 2012
Outline

• Review: networked control systems and cooperative control systems
• Asynchronous execution / group messaging systems (virtual synchrony)
• Verification of async control protocols for multi-agent, cooperative control
• Applications of model checking to Alice’s actuation interface

Richard M. Murray, Caltech CDSEECI, Mar 2011

Online
Optimization
(RHC, MILP)

Sensing

External Environment

ProcessActuation Feeder:R
eliable

State
Server

(KF -> MHE)

Inner Loop
(PID, H∞)

C
om
m
an
d:
FI
FO

1-3 Gb/s

Sensing

Traj:Causal

ActuatorState:Unreliable

Map:CausalTraj:Causal

10 Mb/s

Goal Mgmt
(MDS)

Attention &
Awareness

Memory and
Learning

Networked Control Systems
(following P. R. Kumar)

Online Model

State
Server

(KF -> MHE)

State:Unreliable

State
Server

(KF, MHE)

100 Kb/s

Online
Optimization
(RHC, MILP)

Online
Optimization
(RHC, MILP)

Mode and
Fault

Management

¸

¸¸

2

Richard M. Murray, Caltech CDSEECI, Mar 2011

Agent dynamics - continuous

Agent mode (or “role”) - discrete
• encodes internal state +

relationship to current task

• Transition

Communications graph
• Encodes the system information flow

• Neighbor set

Communications channel
• Communicated information can be lost,

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode task as finite horizon optimal

control + temporal logic (assume coupled)

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

(Multi-) Vehicle Control Systems Framework

3

N i(x,�)

J =
� T

0
L(x,�, u) dt + V (x(T),�(T)),

ui = ⇥(x,�) {gi
j(x,�) : ri

j(x,�)}

�i � =

�
ri
j(x,�) g(x,�) = true

unchanged otherwise.

� � A

�� = r(x,�)

G

M
JGCD, 2007

ẋi = f i(xi, ui) xi � Rn, ui � Rm

yi = hi(xi) yi � Rq

yi
j [k] = �yi(tk � ⇥j) tk+1 � tk > Tr

ui(x,�) = ui(xi,�i, y�i,��i)

y�i = {yj1 , . . . , yjmi}
jk � N i mi = |N i|

(�init ⇥ ��e) =� (��s ⇥ ⇥�g)

Richard M. Murray, Caltech CDSEECI, Mar 2011 4

RoboFlag Subproblems
1.Formation control

• Maintain positions to
guard defense zone

2.Distributed estimation
• Fuse sensor data to

determine opponent
location

3.Distributed assignment
• Assign individuals to tag

incoming vehicles

Desirable features for designing and verifying distributed protocols
• Controls: stability, performance, robustness
• Computer science: safety, fairness, liveness
• Real-world: delays, asynchronous executions, (information loss)

Richard M. Murray, Caltech CDSEECI, Mar 2011 5

Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by

defending robots
• Incoming robots are assigned randomly to

whoever is free
• Defending robots must move to block, but

cannot run into or cross over others
• Allow robots to communicate with left and

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed

protocol for solving this problem
• Should (eventually) allow for lost data,

incomplete information

Questions
• How do we describe task in terms of LTL?
• Given a protocol, how do we prove specs?
• How do we design the protocol given specs?

zi

yj

Richard M. Murray, Caltech CDSEECI, Mar 2011 6

P(k1,k2) := {
 initializers
 guard1:rule1
 guard2:rule2
 ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of
guarded commands

composition = union

non-shared variables
remain local to

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-
uage for control and comp-
utation. Interfaces with
libraries in other languages.

Automated Verification
CCL encoded in the Isabelle
theorem prover; basic specs
verified semi-automatically.
Investigating various model
checking tools.

Formal Results
Formal semantics in transition
systems and temporal logic.
RoboFlag drill formalized and
basic algorithms verified.

CCL Protocol for
Decentralized

Target Allocation

Richard M. Murray, Caltech CDSEECI, Mar 2011

Guarded Command Programs

• Non-deterministic execution schedule
models concurrency
• Easy to reason about programs
• Guarded commands = update functions

7

g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

P = (I,)

Initial
Predicate

Command
Soup

x > 0 : x' < x

inbox(i) : x' =recv(i)

current state

Any sequence of states produced by this process is a possible behavior
of the system. We want to reason about them all.

CCL

Choose s so that s |= I

Choose g:r

g(s)?

Choose s' so that r(s,s')
set s := s'

yesno

skip

Richard M. Murray, Caltech CDSEECI, Mar 2011

Scheduling and Composition

8

Program composition:
(I1,C1) + (I2,C2) = (I1∧I2, C1∪C2)

EPOCH
Each command is
executed before any
are again.

SYNCH(τ)
In any interval, the difference in
the number of times any two
commands are executed is ≤ τ.

UNITY
Each command must be
executed infinitely often.

Richard M. Murray, Caltech CDSEECI, Mar 2011

Defensive Zone
0

a b

c

Example: RoboFlag Drill

Richard M. Murray, Caltech CDSEECI, Mar 2011

Defensive Zone
0

a b

c

i j

α(j) is too far down
for i to get

RoboFlag Control Protocol

=

Richard M. Murray, Caltech CDSEECI, Mar 2011

Safety (Defenders do not collide)

Stability (switch predicate stays false)

“Lyapunov” stability
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

11

V =
⇤�

n

2

⇥
+ 1

⌅
⇥ + � � =

n⇥

i=1

n⇥

j=i+1

⇥(i, j) where ⇥(i, j) =

�
1 if x�(i) > x�(j)

0 otherwise
� =

n�

i=1

r(i, i)

• skip ∀v . v’ = v state remains unchanged
• p co q ¨(p → [(◯q ∨ skip) ∧ ◊◯q])

 “if p is true, then next time state
 changes, q will be true”

Richard M. Murray, Caltech CDSEECI, Mar 2011

Thm Prf(n) ⊨ ¨ zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender
will always be to the left of defender i+1.

More notation:
• Hoare triple notation: {p} a {q} ≡ ∀ s → t, s ⊨ p → t ⊨ q
- {p} a {q} is true if the predicate p being true implies that q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predicates. If for all
commands c in C we have {p} c {q} then P ⊨ p co q.
- If p is true then any action in the program P that can be applied in the current

state leaves q true
- Thus to check if p co q is true for a program, check each possible action

Proof. Using the lemma, it suffices to check that for all commands c in C we have {p} c
{q}, where p = q = zi < zi+1. So, we need to show that if zi < zi+1 then any command that
changes zi or zi+1 leaves the order unchanged. Two cases: i moves or i+1 moves. For
the first case, {p} c {q} becomes

From the definition of the guarded command, this is true. Similar for second case.

Sketch of Proof for RoboFlag Drill

12

zi < zi+1 ⇤ (zi < x�(i) ⇤ zi < zi+1 � � : z�
i = zi + �) =⇥ z�

i < z�
i+1

a

Richard M. Murray, Caltech CDSEECI, Mar 2011

RoboFlag Simulation

Exercise 1: create a model of the RoboFlag drill in Promela
and verify correctness using SPIN model checker

Exercise 2: create a specification for the RoboFlag drill and
synthesize a (decentralized) protocol to solve it [later]

Richard M. Murray, Caltech CDSTeam Caltech, Jan 08 14

Planner Stack
Mission Planner performs high level decision-making
• Graph search for best routes; replan if routes are blocked

Traffic Planner handles rules of the road
• Control execution of path following & planning (multi-point turns)
• Encode traffic rules - when can we change lanes, proceed thru intersection, etc

Path Planner/Path Follower generate trajectories and track them
• Optimized trajectory generation + PID control (w/ anti-windup)
• Substantial control logic to handle failures, command interface, etc

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Burdick et al, 2007

Richard M. Murray, Caltech CDSEECI, Mar 09

Alice Actuation Interface (adrive) Logic

Desired properties
• If Estop Disable is received, gcdrive state will be Disabled and

acceleration will be ‘full brake’ forever
• Estop Paused: if not disabled, gcdrive will eventually enter

Paused state and acceleration will be ‘full brake’ (not forever)
• Estop Run: if not Disabled, gcdrive will eventually be Running or Resuming (or

receive another pause or disable command)
• If Resuming, eventually Running (or receive another pause or disable)
• If current mode is Disabled, Paused, Resuming or Shifting, full brake is commanded
• After receiving an Estop Pause, vehicle may resume operation 5 seconds after run is

received (suffices to show that we transition from Resuming to Running via Timeout)
• ...

15

Computer Lab
Gcdrive Verification

Gcdrive is the overall driving software for Alice. It takes independent commands from Path Follower and DARPA and
sends appropriate commands to the actuators.

• Commands from Path Follower include control signals to throttle, brake and transmission.

• Commands from DARPA include estop pause, estop run and estop disable.

- An estop pause command should cause the vehicle to be brought quickly and safely to a rolling stop.
- An estop run command resumes the operation of the vehicle.
- An estop disable command is used to stop the vehicle and put it in the disable mode. A vehicle that is in

the disable mode may not restart in response to an estop run command.
 Disabled (D)

- depress brakes

- send trans disable

- reject all directives

 Paused (P)

- depress brakes

- reject all directives

 except steering

 Resuming (Re)

- start timer on entry

- transition after 5

 sec

 Shifting (S)

- reject all directives

- transition when shift

 is completed

Estop Disable

Estop

Run

Estop Paused

 Running (Ru)

- normal operating

 state

- process all directives

Timeout

Estop Disable

Shift cmd

Shift done

 Unknown (U)

- initial state on start
The finite state machine to handle these concurrent
commands is shown below. Use Spin to verify that
the following properties hold.

• If DARPA sends an estop disable command,
Gcdrive state will eventually stay at
DISABLED and Acceleration Module will
eventually command full brake forever.

• If DARPA sends an estop pause command while the vehicle is not disabled, eventually Gcdrive state will be
PAUSED.

• If DARPA sends an estop run command while the vehicle is not disabled, eventually Gcdrive state will be
RUNNING or RESUMING or DARPA will send an estop disable or estop pause command.

• If the current state is RESUMING, eventually the state will be RUNNING or DARPA will send an estop disable
or pause command.

• The vehicle is disabled only after it receives an estop disable command.

• Actuation Interface sends a full brake command to the Acceleration Module if the current state is DISABLED,
PAUSED, RESUMING or SHIFTING. In addition, if the vehicle is disabled, then the gear is shifted to 0.

• After receiving an estop pause command, the vehicle may resume the operation 5 seconds after an estop run
command is received.

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Exercise 1: verify correctness using SPIN model checker

Richard M. Murray, Caltech CDSTeam Caltech, Jan 08

DGC Example: Changing Gear
Verify that we can’t drive while shifting or drive in the wrong gear
• Five component: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network

• Construct temporal logic models for each component (including network)

16

follower
Control

actuators

Actuator commandResponse

follower
Arbiter

gcdrive
Control

gcdrive
Arbiter

Actuator commandResponse

follower
Tactics

gcdrive
Tactics

follower

gcdrive

Asynchronous operation
• Notation: Messagemod,dir - message to/from

a module; Len = length of message queue

• Verify: follower has the right knowledge of
the gear that we are currently in, or it
commands a full brake.
- ¨ ((Len(TransRespf,r) = Len(Transf,s))
∧ TransRespf,r[Len(TransRespf,r)] =
COMPLETED ⇒ Transf = Trans))

- ¨ (Transf = Trans ∨ Accf,s = -1)

• Verify: at infinitely many instants, follower
has the right knowledge of the gear that we
are currently in, or we have hardware
failure.
- ¨◊ (Transf = Trans =

Transf,s[Len(Transf,s)] ∨ HW failure)

Wongpiromsarn and M
CDC 2008

Richard M. Murray, Caltech CDSEECI, Mar 2011

Moving up the Planning Stack

How do we design control protocols that manage behavior
• Mixture of discrete and continuous decision making
• Insure proper response external events, with unknown timing
• Design input = specification + model (system + environment)
• Design output = finite state machine implementing logic

Approach: rapidly explore all trajectories satisfying specs
• Search through all possible actions and events, discarding

executions that violate a set of (LTL) specifications
• Issue: state space explosion (especially due to environment)
• Good news: recent results in model checking for class of specs

17

OFF-ROAD
mode

DR,NP,S STO,NP,S
no collision-free path exists Alice has been stopped for long

enough and there is an obstacle
in the vicinity of Alice

passing finished or obstacle disappeared

DR,P,S STO,P,S
no collision-free path exists

collision-free path is found
no collision-free path exists
and the number of times Alice
has switched to the DR,P,R
state near the current position
is less than some threshold

DR,PR,S

no collision-free path exists and the
number of times Alice has switched
to the DR,P,R state near the current
position is less than some threshold

collision-free path is found
STO,PR,S

BACKUP

no collision-free
path exists and
there is more
than one lane

no collision-free
path exists and
there is only
one lane

backup finished
or failed and the
number of times Alice
has switched to BACKUP
is less than some threshold

DR,P,SSTO,P,S
no collision-free path exists

collision-free path is found
collision-free path is found

no collision-free
path exists

no collision-free path exists and the number
of times Alice has switched to the DR,P,R
state near the current position exceeds some
threshold and there is more than one lane

no collision-free path exists and the number of times Alice has switched to the DR,P,R
state near the current position exceeds some threshold and there is only one lane

STO,A

backup finished or failed and the
number of times Alice has switched
to BACKUP exceeds some threshold

DR,A
no collision-free path exists

no collision-free path exists

collision-free path is found

collision-free path is found

collision-free path
with DR,A is found

DR,B STO,B
no collision-free path exists

collision-free path is found

no collision-free path exists
and there is more than one lane

collision-free path with DR,P,R is found

no collision-free path exists
and there is only one lane

passing finished or obstacle disappeared

FAILED PAUSED

ROAD REGION

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

