Outline:
• Transition systems
• Linear-time properties
• Regular properties
This short-course is on this picture applied to a particular class of systems/problems.

- **requirements** (on the system behavior)
- **assumptions** (on the unknowns, e.g., environment behavior)
- **complete system or some of its components**

verification
- satisfied (+certificate)
- violated (+counterexample)

synthesis
- controller that render the system to satisfy the spec's
- no such controller exists
This short-course is on this picture applied to a particular class of systems/problems.

- **requirements (on the system behavior)**
- **assumptions (on the unknowns, e.g., environment behavior)**
- **complete system or some of its components**

formal specifications

verification
- satisfied (+certificate)
- violated (+counterexample)

synthesis
- controller that render the system to satisfy the spec's
- no such controller exists

system model
This short-course is on this picture applied to a particular class of systems/problems.

This lecture is an intro to these.

- requirements (on the system behavior)
- assumptions (on the unknowns, e.g., environment behavior)
- complete system or some of its components

formal specifications

verification
- satisfied (+certificate)
- violated (+counterexample)

synthesis
- controller that render the system to satisfy the spec’s
- no such controller exists

system model
Finite transition system

A finite transition system is a mathematical description of the behavior of systems, plants, controllers or environments with finite (discrete)

• inputs,

• outputs, and

• internal states and transitions between the states.
A finite transition system is a mathematical description of the behavior of systems, plants, controllers or environments with finite (discrete)
 • inputs,
 • outputs, and
 • internal states and transitions between the states.

{door is not open} \quad {door is open}
Finite transition system

A finite transition system is a mathematical description of the behavior of systems, plants, controllers or environments with finite (discrete)
• inputs,
• outputs, and
• internal states and transitions between the states.
Finite transition system

A finite transition system is a mathematical description of the behavior of systems, plants, controllers or environments with finite (discrete)
• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

\[q_0 \quad \text{\{door is not open\}} \quad q_1 \quad \text{\{door is open\}} \]

\[q_0 \quad \text{\{door is not open\}} \quad q_1 \quad \text{\{door is open\}} \]
Finite transition system

A finite transition system is a mathematical description of the behavior of systems, plants, controllers or environments with finite (discrete)
- inputs,
- outputs, and
- internal states and transitions between the states.

\[
\begin{align*}
q_0 & \rightarrow \text{front, rear, both} \\
q_1 & \rightarrow \text{rear, both, neither}
\end{align*}
\]

\{\text{door is not open}\} \quad \text{neither} \\
\{\text{door is open}\}
Finite transition system

Example: Traffic logic planner in Alice.

Partial nomenclature:
- DR = drive.
- STO = stop.
- NP = no passing, no reversing.
- P = passing, no reversing.
- PR = passing, reversing allowed.
- S = safe clearance with obstacle.
- A = aggressive clearance with obstacle.
- B = no clearance with obstacle.
Finite transition system

Example: Traffic lights.
A **proposition** is a statement that can be either true or false, but not both.

Examples:
- “Traffic light is green” is a proposition.
- “The front pad is occupied” is a proposition.
- “Is the front pad?” is **not** a proposition.
Preliminaries

A *proposition* is a statement that can be either true or false, but not both.

Examples:

- “Traffic light is green” is a proposition.
- “The front pad is occupied” is a proposition.
- “Is the front pad?” is *not* a proposition.

An *atomic proposition* is one whose truth or falsity does not depend on the truth or falsity of any other proposition.

Examples:

- All propositions above are atomic propositions.
- “If traffic light is green, the car can drive” is *not* an atomic proposition.
A **proposition** is a statement that can be either true or false, but not both.

Examples:
- “Traffic light is green” is a proposition.
- “The front pad is occupied” is a proposition.
- “Is the front pad?” is **not** a proposition.

An **atomic proposition** is one whose truth or falsity does not depend on the truth or falsity of any other proposition.

Examples:
- All propositions above are atomic propositions.
- “If traffic light is green, the car can drive” is **not** an atomic proposition.

For notational brevity, use propositional variables to abbreviate propositions. For example,

\[p \equiv \text{Traffic light is green} \]
\[q \equiv \text{Front pad is occupied} \]
Finite transition system

A transition system TS is a tuple $TS = (S, Act, \rightarrow, I, AP, L)$, where

- S is a set of states,
- Act is a set of actions,
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation,
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions,
- $L : S \rightarrow 2^{AP}$ is a labeling function, and

TS is called finite if S, Act, and AP are finite.

Example

<table>
<thead>
<tr>
<th>State</th>
<th>Actions</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>rear, both, neither</td>
<td>{door is not open}</td>
</tr>
<tr>
<td>q_1</td>
<td>front, rear, both</td>
<td>{door is open}</td>
</tr>
</tbody>
</table>

$S = \{q_0, q_1\}$
$Act = \{\text{rear, front, both, neither}\}$
$\rightarrow = \{(q_0, \text{front}, q_1), (q_1, \text{neither}, q_0), (q_1, \text{rear}, q_1), \ldots\}$
$I = \{q_0\}$
$L(q_0) = \{\text{door is not open}\}$
$L(q_1) = \{\text{door is open}\}$
Finite transition system

A transition system TS is a tuple $TS = (S, Act, \rightarrow, I, AP, L)$, where

- S is a set of states,
- Act is a set of actions,
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation,
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions,
- $L : S \rightarrow 2^{AP}$ is a labeling function, and

TS is called finite if S, Act, and AP are finite.

Example

- $S = \{q_0, q_1\}$
- $Act = \{\text{rear, front, both, neither}\}$
- $\rightarrow = \{(q_0, \text{front}, q_1), (q_1, \text{neither}, q_0), (q_1, \text{rear}, q_1), \ldots\}$
- $I = \{q_0\}$
- $L(q_0) = \{\text{door is not open}\}$
- $L(q_1) = \{\text{door is open}\}$
Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:
- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1, ϕ_2, and ϕ are formulas, so are $\neg \phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

From “Specifying Systems” by L. Lamport: Propositional logic is the math of the Boolean values, true and false, and the operators \neg, \land, \lor, \to
Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:
- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1, ϕ_2, and ϕ are formulas, so are $\neg\phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

Notation

• Connectives:
 - \neg (negation), \land (and), \lor (or), \rightarrow (implies)

 • 1 for “true” and 0 for “false.”

Example propositional logic formulas obtained by applying the above four rules:

$$\phi_1 \lor \phi_2 := \neg(\neg\phi_1 \land \neg\phi_2)$$

$$\phi_1 \rightarrow \phi_2 := \neg\phi_1 \lor \phi_2$$
Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:
- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1, ϕ_2, and ϕ are formulas, so are $\neg \phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

Notation

- Connectives:
 - \neg (negation), \land (and), \lor (or), \rightarrow (implies)
- 1 for “true” and 0 for “false.”

Example propositional logic formulas obtained by applying the above four rules:

$$\phi_1 \lor \phi_2 := \neg(\neg \phi_1 \land \neg \phi_2)$$
$$\phi_1 \rightarrow \phi_2 := \neg \phi_1 \lor \phi_2$$

The evaluation function $\mu : AP \rightarrow \{0, 1\}$ assigns a truth value to each $a \in AP$.

The truth value $\mu(\Phi)$ of a formula Φ is determined by substituting the values for the atomic propositions specified by μ.

Given: $AP = \{a, b, c\}$, $\mu(a) = 0$ and $\mu(b) = \mu(c) = 1$.

$$\Phi_1 = (a \land \neg b) \lor c, \quad \mu(\Phi_1) = 1$$
$$\Phi_2 = (a \land \neg b) \land c, \quad \mu(\Phi_2) = 0$$
Logical dynamical system as a finite transition system

\[
x_1[k+1] = x_2[k] \lor u[k], \quad x_1[0] = 0,
\]
\[
x_2[k+1] = x_1[k] \land u[k], \quad x_2[0] = 1,
\]
\[
y[k] = x_1[k] \oplus x_2[k]
\]

\[\phi_1 \oplus \phi_2 := (\neg \phi_1 \land \phi_2) \lor (\phi_1 \land \neg \phi_2)\]

XOR (exclusive or) gives true only if exactly one of the operands is true.

\[
S = \{0, 1\}^2
\]
\[
Act = \{0, 1\}
\]
\[
I = \{(0, 1)\}
\]
\[
AP = \{y\}
\]

\[
L(x_1, x_2) = \begin{cases}
\{y\} \text{ (indicating 1) if } x_1 \oplus x_2 = 1 \\
\emptyset \text{ (indicating 0) otherwise}
\end{cases}
\]
Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task communication and resource sharing.
Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task communication and resource sharing.

Example: multi-threaded control

- Separate code into independent threads
- Switch between threads, allowing each to run simultaneously
- Potential problems: deadlocks, race conditions

Modes of communication between the subsystems:

- hand-shaking (leads to synchrony)
- changing the values of shared variables (leads to asynchrony)
Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, Act_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1 || TS_2$ is the transition system defined by

$$TS_1 || TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rules:

- If $\alpha \in Act_1 \cap Act_2$, $s_1 \xrightarrow{\alpha_1} s_1'$, and $s_2 \xrightarrow{\alpha_2} s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2' \rangle$.
- If $\alpha \in Act_1 \setminus Act_2$ and $s_1 \xrightarrow{\alpha_1} s_1'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2 \rangle$.
- If $\alpha \in Act_2 \setminus Act_1$ and $s_2 \xrightarrow{\alpha_2} s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s_2' \rangle$.
Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, \text{Act}_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, \text{Act}_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1||TS_2$ is the transition system defined by

$$TS_1||TS_2 = (S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rules:

- If $\alpha \in \text{Act}_1 \cap \text{Act}_2$, $s_1 \xrightarrow{\alpha_1} s_1'$, and $s_2 \xrightarrow{\alpha_2} s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2' \rangle$.
- If $\alpha \in \text{Act}_1 \setminus \text{Act}_2$ and $s_1 \xrightarrow{\alpha_1} s_1'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2 \rangle$.
- If $\alpha \in \text{Act}_2 \setminus \text{Act}_1$ and $s_2 \xrightarrow{\alpha_2} s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s_2' \rangle$.

![Diagram](attachment:diagram.png)
Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, Act_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1 \parallel TS_2$ is the transition system defined by

$$TS_1 \parallel TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(⟨s_1, s_2⟩) = L_1(s_1) \cup L_2(s_2)$ and $→$ is defined by the following rules:

- If $α ∈ Act_1 \cap Act_2$, $s_1 \xrightarrow{α} s'_1$, and $s_2 \xrightarrow{α} s'_2$, then $⟨s_1, s_2⟩ \xrightarrow{α} ⟨s'_1, s'_2⟩$.
- If $α ∈ Act_1 \setminus Act_2$ and $s_1 \xrightarrow{α} s'_1$, then $⟨s_1, s_2⟩ \xrightarrow{α} ⟨s'_1, s_2⟩$.
- If $α ∈ Act_2 \setminus Act_1$ and $s_2 \xrightarrow{α} s'_2$, then $⟨s_1, s_2⟩ \xrightarrow{α} ⟨s_1, s'_2⟩$.

![Diagrams of traffic light 1, traffic light 2, and "controller" systems with unreachable states.](image-url)
Paths of a finite transition system

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$. For $s \in S$,

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}$.
- A state s is terminal iff $Post(s)$ is empty.
Paths of a finite transition system

Given a transition system \(TS = (S, Act, \rightarrow, I, AP, L) \). For \(s \in S \),

\[
Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}
\]

- Example: \(Post((0,0)) = \{(0,0),(1,0)\} \).
- A state \(s \) is *terminal* iff \(Post(s) \) is empty.
Paths of a finite transition system

Given a transition system $TS = (S, Act, \to, I, AP, L)$. For $s \in S$,

$$Post(s) := \left\{ s' \in S : \exists a \in Act \; s.t. \; s \xrightarrow{a} s' \right\}$$

- **Example:** $Post((0,0)) = \{(0,0),(1,0)\}$.
- A state s is **terminal** iff $Post(s)$ is empty.
- A sequence of states, either finite $\pi = s_0 s_1 s_2 \ldots s_n$ or infinite $\pi = s_0 s_1 s_2 \ldots$, is a **path fragment** if $s_{i+1} \in Post(s_i), \; \forall i \geq 0$.

\[
\begin{align*}
(0,1) \xrightarrow{1} (1,0) \xrightarrow{1} (1,1) \xrightarrow{1} (1,1) \xrightarrow{0} \cdots \\
(1,0) \xrightarrow{0} (0,0) \xrightarrow{0} (0,0) \xrightarrow{1} (1,0) \xrightarrow{0} \cdots \\
(0,1) \xrightarrow{1} (1,0) \xrightarrow{1} (1,1).
\end{align*}
\]
Paths of a finite transition system

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$. For $s \in S$,

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}$.
- A state s is terminal iff $Post(s)$ is empty.

- A sequence of states, either finite $\pi = s_0s_1s_2 \ldots s_n$ or infinite $\pi = s_0s_1s_2 \ldots$, is a path fragment if $s_{i+1} \in Post(s_i)$, $\forall i \geq 0$.

- A path is a path fragment s.t. $s_0 \in I$ and it is
 - either finite with terminal s_n
 - or infinite.
- Denote the set of paths in TS by $Path(TS)$.

A path:

$$(0, 1) \xrightarrow{1} (1, 0) \xrightarrow{1} (1, 1) \xrightarrow{1} (1, 1) \xrightarrow{0} \ldots$$

Not a path:

$$(1, 0) \xrightarrow{0} (0, 0) \xrightarrow{0} (0, 0) \xrightarrow{1} (1, 0) \xrightarrow{0} \ldots$$

Not a path:

$$(0, 1) \xrightarrow{1} (1, 0) \xrightarrow{1} (1, 1).$$
Traces of a finite transition system

Consider a finite transition system

\[TS = (S, Act, \rightarrow, I, AP, L) \]
with no terminal states (wlog).

The trace of an infinite path fragment \(\pi = s_0s_1s_2 \ldots \) is defined by

\[\text{trace}(\pi) = L(s_0)L(s_1)L(s_2) \ldots \]

The set, \(\text{Traces}(TS) \), of traces of TS is defined by

\[\text{Traces}(TS) = \{\text{trace}(\pi) : \pi \in \text{Paths}(TS)\} \]
Traces of a finite transition system

Consider a finite transition system

\[TS = (S, Act, \rightarrow, I, AP, L) \]

with no terminal states (wlog).

The trace of an infinite path fragment \(\pi = s_0 s_1 s_2 \ldots \) is defined by

\[\text{trace}(\pi) = L(s_0) L(s_1) L(s_2) \ldots \]

The set, \(Traces(TS) \), of traces of TS is defined by

\[Traces(TS) = \{ \text{trace}(\pi) : \pi \in Paths(TS) \} \]

Equivalent FSMs w/ and w/o terminal state

Sequence of sets of atomic propositions that are valid in the states along the path

Actions: \(f, f, n, b, f, f, b, \ldots \)
Path: \(q_0 q_1 q_1 q_0 q_0 q_1 q_1 q_1 \ldots \)
Trace: \(\neg o, o, o, \neg o, \neg o, o, o, o, o, \ldots \)

(with some abuse of notation)
Linear-time properties

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP}.

Let P be an LT property over AP and $TS = (S, Act, \to, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.
Linear-time properties

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP}.

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.

traces of TS

admissible, desired, undesired, etc. behavior
Linear-time properties

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP}.

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $\text{Traces}(TS) \subseteq P$.

Example: $AP = \{\text{red}1, \text{green}1, \text{red}2, \text{green}2\}$

$P1 = \text{“The first light is infinitely often green.”}$

$[A_0A_1A_2\ldots \text{ with \text{green}1} \in A_i \subseteq 2^{AP} \text{ holds for infinitely many } i]$

$\checkmark \{r1, g2\}\{g1, r2\}\{r1, g2\}\{g1, r2\}\ldots$

$\checkmark \emptyset \{g1\}\emptyset \{g1\}\emptyset \{g1\}\emptyset \ldots$

$\checkmark \{g1, g2\}\{g1, g2\}\{g1, g2\}\ldots$

$\times \{r1, g2\}\{r1g1\}\emptyset \emptyset \ldots$

$P2 = \text{“The lights are never both green simultaneously.”}$

$[A_0A_1A_2\ldots \text{ with \text{green}1} \notin A_i \text{ or \text{green}2} \notin A_i, \text{ for all } i \geq 0]$
Linear-time properties

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP}.

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $\text{Traces}(TS) \subseteq P$.

Example: $AP = \{\text{red}_1, \text{green}_1, \text{red}_2, \text{green}_2\}$

P_1 = “The first light is infinitely often green.”

$[A_0A_1A_2\ldots \text{ with } \text{green}_1 \in A_i \subseteq 2^{AP} \text{ holds for infinitely many } i]$

$\checkmark \ \{r_1, g_2\}\{g_1, r_2\}\{r_1, g_2\}\{g_1, r_2\}\ldots$

$\checkmark \ \emptyset\{g_1\}\emptyset\{g_1\}\emptyset\{g_1\}\emptyset\ldots$

$\checkmark \ \{g_1, g_2\}\{g_1, g_2\}\{g_1, g_2\}\ldots$

$\times \ \{r_1, g_2\}\{r_1g_1\}\emptyset\emptyset\ldots$

P_2 = “The lights are never both green simultaneously.”

$[A_0A_1A_2\ldots \text{ with } \text{green}_1 \notin A_i \text{ or } \text{green}_2 \notin A_i, \text{ for all } i \geq 0]$
Linear-time properties

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP}.

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $\text{Traces}(TS) \subseteq P$.

Example: $AP = \{\text{red}1, \text{green}1, \text{red}2, \text{green}2\}$

$P1 =$ “The first light is infinitely often green.”

$[A_0A_1A_2\ldots \text{ with } \text{green}1 \in A_i \subseteq 2^{AP} \text{ holds for infinitely many } i]$

$\sqrt{\{r1, g2\}\{g1, r2\}\{r1, g2\}\{g1, r2\}\ldots}$

$\sqrt{\emptyset\{g1\}\emptyset\{g1\}\emptyset\{g1\}\emptyset\ldots}$

$\sqrt{\{g1, g2\}\{g1, g2\}\{g1, g2\}\ldots}$

$\times \{r1, g2\}\{r1g1\}\emptyset\emptyset\ldots$

$P2 =$ “The lights are never both green simultaneously.”

$[A_0A_1A_2\ldots \text{ with } \text{green}1 \notin A_i \text{ or } \text{green}2 \notin A_i, \text{ for all } i \geq 0]$
An LT property P_Φ over AP is an invariant with respect to a propositional logic formula Φ over AP if

$$P_\Phi = \{ A_0 A_1 A_2 \ldots \in (2^AP)^\omega : A_j \models \Phi \forall j \geq 0 \}.$$
Invariants

An LT property P_Φ over AP is an invariant with respect to a propositional logic formula Φ over AP if

$$P_\Phi = \{A_0A_1A_2\ldots \in (2^{AP})^\omega : A_j \models \Phi \ \forall j \geq 0\}.$$
Invariants

An LT property P_Φ over AP is an invariant with respect to a propositional logic formula Φ over AP if

$$P_\Phi = \{A_0A_1A_2\ldots \in (2^{AP})^\omega : A_j \models \Phi \ \forall j \geq 0\}.$$

Example: The LT property “the lights are never both green simultaneously” is an invariant with respect to $\Phi = \neg green_1 \lor \neg green_2$.

Notation: repeat infinitely many times

For $A \subseteq AP$, let the evaluation μ_A be the characteristic function of A.

$A \models \Phi$ iff $\mu_A(\Phi) = 1$.
Invariants

An LT property \(P_\Phi \) over \(AP \) is an invariant with respect to a propositional logic formula \(\Phi \) over \(AP \) if

\[
P_\Phi = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^\omega : A_j \models \Phi \ \forall j \geq 0 \}.
\]

Example: The LT property “the lights are never both green simultaneously” is an invariant with respect to \(\Phi = \neg \text{green}1 \lor \neg \text{green}2 \).

Given \(TS, \Phi, \) and \(P_\Phi \), \(TS \models P_\Phi \)?

The following four statements are equivalent.
1. \(TS \models P_\Phi \)
2. \(\text{trace}(\pi) \in P_\Phi, \ \forall \pi \in \text{Path}(TS) \)
3. \(L(s) \models \Phi, \ \forall s \in S \) on a path of \(TS \)
4. \(L(s) \models \Phi, \ \forall s \in \text{Reach}(TS) \)

A state \(s \) is reachable if there exists an execution fragment s.t. \(s_0 \in I \) and

\[
s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} s_n = s
\]

\(\text{Reach}(TS) \) : set of reachable states in TS

Invariants are state properties. That is, for verification, find the reachable states and check \(\Phi \).
Safety properties

An LT property P_{safe} is a safety property if for all words $\sigma \in (2^{AP})^\omega \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

$$P_{safe} \cap \{ \sigma' \in (2^{AP})^\omega : \hat{\sigma} \text{ is a finite prefix of } \sigma' \} = \emptyset.$$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe}.
Safety properties

An LT property P_{safe} is a safety property if for all words $\sigma \in (2^{AP})^\omega \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

$$P_{safe} \cap \{\sigma' \in (2^{AP})^\omega : \hat{\sigma} \text{ is a finite prefix of } \sigma'\} = \emptyset.$$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe}.

Example: $AP = \{\text{red, green, yellow}\}$

• “At least one of the lights is always on” is a safety property.

 $$\{\sigma = A_0A_1\ldots : A_j \subseteq AP \land A_j \neq \emptyset\}$$

 Bad prefixes: finite words that contain \emptyset.

• “Two lights are never on at the same time” is a safety property.

 $$\{\sigma = A_0A_1\ldots : A_j \subseteq AP \land \text{card}(A_j) \leq 1\}$$

 Bad prefixes: finite words that contain $\{\text{red,green}\}, \{\text{red,yellow}\}$, and so on.
Safety properties

An LT property P_{safe} is a safety property if for all words $\sigma \in (2^{AP})^\omega \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

$$P_{safe} \cap \{\sigma' \in (2^{AP})^\omega : \hat{\sigma} \text{ is a finite prefix of } \sigma'\} = \emptyset.$$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe}.

Example: $AP = \{\text{red, green, yellow}\}$

- “At least one of the lights is always on” is a safety property.
 $$\{\sigma = A_0A_1 \ldots : A_j \subseteq AP \land A_j \neq \emptyset\}$$
 Bad prefixes: finite words that contain \emptyset.

- “Two lights are never on at the same time” is a safety property.
 $$\{\sigma = A_0A_1 \ldots : A_j \subseteq AP \land card(A_j) \leq 1\}$$
 Bad prefixes: finite words that contain $\{\text{red,green}\}$, $\{\text{red,yellow}\}$, and so on.

Any invariant is a safety property. There are safety properties that are not invariant.

Example: $AP = \{\text{red, yellow}\}$

“Each red is immediately preceded by a yellow” is a safety property, but not invariant (because it is not a state property).

Sample bad prefixes:

- $\emptyset \emptyset \{r\}$
- $\{y\} \{y\} \{r\} \{r\} \emptyset \{r\}$

Liveness properties

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^\omega$ satisfying $w\sigma \in P$.

Example: Two traffic lights with $AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green *infinitely often*
Liveness properties

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^\omega$ satisfying $w\sigma \in P$.

Example: Two traffic lights with $AP = \{red_1, green_1, red_2, green_2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

- specify the absence of (undesired) infinite loops or progress toward a goal.
- rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous execution, every process is activate infinitely often.
Liveness properties

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^\omega$ satisfying $w\sigma \in P$.

Example: Two traffic lights with $AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

- specify the absence of (undesired) infinite loops or progress toward a goal.
- rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

"the first light is eventually green after it is initially red three time instances in a row"
Liveness properties

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^\omega$ satisfying $w\sigma \in P$.

Example: Two traffic lights with $AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

- specify the absence of (undesired) infinite loops or progress toward a goal.
- rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

“the first light is eventually green after it is initially red three time instances in a row”

Answer: It is a combination of a safety and a liveness property.

- Liveness: any finite word can be extended by an infinite word $A_0A_1A_2\ldots$ with $green1 \in A_j$ for some $j \geq 0$.
- Safety: any finite word $A_0A_1A_2$ with $red1 \notin A_i$ for any $i \in \{0, 1, 2\}$ is a bad prefix.
<table>
<thead>
<tr>
<th>Invariant</th>
<th>Safety</th>
<th>Liveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>state condition</td>
<td>something bad</td>
<td>something good</td>
</tr>
<tr>
<td></td>
<td>never happens</td>
<td>will happen</td>
</tr>
<tr>
<td>violated at</td>
<td>any infinite run</td>
<td>violated only by infinite</td>
</tr>
<tr>
<td>individual states</td>
<td>violating the property</td>
<td>runs</td>
</tr>
<tr>
<td></td>
<td>has a finite prefix</td>
<td></td>
</tr>
<tr>
<td>verification: find</td>
<td>verification:</td>
<td>verification:</td>
</tr>
<tr>
<td>the reachable states and check</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>the invariant condition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton $A = (Q, \Sigma, \delta, Q_0, F)$ is a tuple with
- Q is a set of states,
- Σ is an alphabet,
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- $F \subseteq Q$ is a set of accept (or: final) states.

$\delta(q_0, A) = \{q_0\}$, $\delta(q_0, B) = \{q_0, q_1\}$
$\delta(q_1, A) = \{q_2\}$, $\delta(q_1, B) = \{q_2\}$
$\delta(q_2, A) = \emptyset$, $\delta(q_0, B) = \emptyset$

$Q = \{q_0, q_1, q_2\}$, $\Sigma = \{A, B\}$
$Q_0 = \{q_0\}$, $F = \{q_2\}$
A nondeterministic finite automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is a tuple with

- Q is a set of states,
- Σ is an alphabet,
- $\delta : Q \times \Sigma \to 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- $F \subseteq Q$ is a set of accept (or: final) states.

Let $w = A_1 \ldots A_n \in \Sigma^*$ be a finite word. A run for w in \mathcal{A} is a finite sequence of states $q_0q_1 \ldots q_n$ s.t.

- $q_0 \in Q_0$
- $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leq i < n$.

set of finite words

$Q = \{q_0, q_1, q_2\}$, $\Sigma = \{A, B\}$
$Q_0 = \{q_0\}$, $F = \{q_2\}$

$\delta(q_0, A) = \{q_0\}$, $\delta(q_0, B) = \{q_0, q_1\}$
$\delta(q_1, A) = \{q_2\}$, $\delta(q_1, B) = \{q_2\}$
$\delta(q_2, A) = \emptyset$, $\delta(q_0, B) = \emptyset$

word
run

empty word

<table>
<thead>
<tr>
<th>word</th>
<th>run</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>q_0</td>
</tr>
<tr>
<td>ABA</td>
<td>$q_0q_0q_0q_0$</td>
</tr>
<tr>
<td>BBA</td>
<td>$q_0q_0q_0q_0$</td>
</tr>
<tr>
<td>BA</td>
<td>$q_0q_1q_2$</td>
</tr>
<tr>
<td>BBA</td>
<td>$q_0q_0q_1q_2$</td>
</tr>
</tbody>
</table>
Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton \(\mathcal{A} = (Q, \Sigma, \delta, Q_0, F) \) is a tuple with
- \(Q \) is a set of states,
- \(\Sigma \) is an alphabet,
- \(\delta : Q \times \Sigma \rightarrow 2^Q \) is a transition function,
- \(Q_0 \subseteq Q \) is a set of initial states, and
- \(F \subseteq Q \) is a set of accept (or: final) states.

\[
\delta(q_0, A) = \{q_0\}, \quad \delta(q_0, B) = \{q_0, q_1\}
\]
\[
\delta(q_1, A) = \{q_2\}, \quad \delta(q_1, B) = \{q_2\}
\]
\[
\delta(q_2, A) = \emptyset, \quad \delta(q_0, B) = \emptyset
\]

Let \(w = A_1 \ldots A_n \in \Sigma^* \) be a finite word. A run for \(w \) in \(\mathcal{A} \) is a finite sequence of states \(q_0q_1 \ldots q_n \) s.t.
- \(q_0 \in Q_0 \)
- \(q_i \xrightarrow{A_{i+1}} q_{i+1} \) for all \(0 \leq i < n \).

A run \(q_0q_1 \ldots q_n \) is called accepting if \(q_n \in F \).

A finite word in accepted if it leads to an accepting run.

The accepted language \(\mathcal{L}(\mathcal{A}) \) of \(\mathcal{A} \) is the set of finite words in \(\Sigma^* \) accepted by \(\mathcal{A} \).
Regular safety properties

A set $\mathcal{L} \subseteq \Sigma^*$ of finite strings is called a regular language if there is a nondeterministic finite automaton \mathcal{A} s.t. $\mathcal{L} = \mathcal{L}(\mathcal{A})$.

NFA: $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

language (set of finite words) accepted by the NFA
Regular safety properties

A set $\mathcal{L} \subseteq \Sigma^*$ of finite strings is called a regular language if there is a nondeterministic finite automaton \mathcal{A} s.t. $\mathcal{L} = \mathcal{L}(\mathcal{A})$.

A safety property P_{safe} over AP is called regular if its set of bad prefixes constitutes a regular language over 2^AP.

That is: \exists NFA \mathcal{A} s.t. $\mathcal{L}(\mathcal{A})$ = bad prefixes of P_{safe}
Regular safety properties

A set \(\mathcal{L} \subseteq \Sigma^* \) of finite strings is called a regular language if there is a nondeterministic finite automaton \(A \) s.t. \(\mathcal{L} = \mathcal{L}(A) \).

A safety property \(P_{safe} \) over \(AP \) is called regular if its set of bad prefixes constitutes a regular language over \(2^{AP} \).

That is: \(\exists \) NFA \(A \) s.t. \(\mathcal{L}(A) = \) bad prefixes of \(P_{safe} \)

Example: \(AP = \{\text{red}, \text{green}, \text{yellow}\} \)
“Each red must be preceded immediately by a yellow” is a regular safety property.

Sample bad prefixes:
- \{\}\{\}\{\text{red}\}
- \{\}\{\text{red}\}
- \{\text{yellow}\}\{\text{yellow}\}\{\text{green}\}\{\text{red}\}
- A_0 A_1 \ldots A_n \text{ s.t. } n > 0, \text{red} \in A_n, \text{and} \text{yellow} \notin A_{n-1}

General form of minimal bad prefixes
Verifying regular safety properties

Given a transition system TS and a regular safety property P_{safe}, both over the atomic propositions AP.

Let A be an NFA s.t. $\mathcal{L}(A) = BadPref(P_{safe})$.

Verifying regular safety properties

Given a transition system TS and a regular safety property P_{safe}, both over the atomic propositions AP.

Let A be an NFA s.t. $\mathcal{L}(A) = BadPref(P_{safe})$.

\begin{center}
\begin{tikzpicture}
 \node[draw, ellipse, fill=blue!50] at (0,0) {$Traces(TS)$};
 \node[draw, ellipse, fill=white!50] at (3,0) {P_{safe}};
\end{tikzpicture}
\end{center}
Verifying regular safety properties

Given a transition system TS and a regular safety property P_{safe}, both over the atomic propositions AP.

Let A be an NFA s.t. $\mathcal{L}(A) = \text{BadPref}(P_{safe})$.

$$TS \models P_{safe} \iff \text{Traces}(TS) \subseteq P_{safe}$$
$$\iff \text{Traces}(TS) \cap ((2^AP)^\omega \setminus P_{safe}) = \emptyset$$
$$\iff \text{Traces}(TS) \cap \text{BadPref}(P_{safe}).(2^AP)^\omega = \emptyset$$
$$\iff \text{pref}(\text{Traces}(TS)) \cap \text{BadPref}(P_{safe}) = \emptyset$$
$$\iff \text{pref}(\text{Traces}(TS)) \cap \mathcal{L}(A) = \emptyset$$

finite prefixes

For words w and σ, $w.\sigma$ denotes their concatenation.
Verifying regular safety properties

Given a transition system TS and a regular safety property P_{safe}, both over the atomic propositions AP.

Let A be an NFA s.t. $\mathcal{L}(A) = \text{BadPref}(P_{safe})$.

$$TS \models P_{safe} \text{ iff } \text{Traces}(TS) \subseteq P_{safe}$$
$$\text{iff } \text{Traces}(TS) \cap ((2^AP)^\omega \setminus P_{safe}) = \emptyset$$
$$\text{iff } \text{Traces}(TS) \cap \text{BadPref}(P_{safe}).(2^AP)^\omega = \emptyset$$
$$\text{iff } \text{pref(Traces}(TS)) \cap \text{BadPref}(P_{safe}) = \emptyset$$
$$\text{iff } \text{pref(Traces}(TS)) \cap \mathcal{L}(A) = \emptyset$$

finite prefixes

For words w and σ, $w.\sigma$ denotes their concatenation.
<table>
<thead>
<tr>
<th>Invariant</th>
<th>Safety</th>
<th>Liveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>state condition</td>
<td>something bad never happens</td>
<td>something good will happen eventually</td>
</tr>
<tr>
<td>violated at individual states</td>
<td>any infinite run violating the property has a finite prefix</td>
<td>violated only by infinite runs</td>
</tr>
<tr>
<td>verification: find the reachable states and check the invariant condition</td>
<td>verification: based on nondeterministic finite automaton which accepts “finite runs”</td>
<td>verification: ?</td>
</tr>
</tbody>
</table>
Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA \(A = (Q, \Sigma, \delta, Q_0, F) \) with its runs interpreted differently.

Let \(w = A_1A_2 \ldots \in \Sigma^\omega \) be an infinite string. A run for \(w \) in \(A \) is an infinite sequence \(q_0q_1 \ldots \) of states s.t.

- \(q_0 \in Q_0 \) and
- \(q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \ldots \).
A nondeterministic Buchi automaton is same as an NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with its runs interpreted differently.

Let $w = A_1 A_2 \ldots \in \Sigma^\omega$ be an infinite string. A run for w in \mathcal{A} is an infinite sequence $q_0 q_1 \ldots$ of states s.t.
- $q_0 \in Q_0$ and
- $q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \ldots$.

A run is accepting if $q_j \in F$ for infinitely many j.

A string w is accepted by \mathcal{A} if there is an accepting run of w in \mathcal{A}.

$L^\omega(\mathcal{A})$: set of infinite strings accepted by \mathcal{A}.
Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA \(\mathcal{A} = (Q, \Sigma, \delta, Q_0, F) \) with its runs interpreted differently.

Let \(w = A_1 A_2 \ldots \in \Sigma^\omega \) be an infinite string. A run for \(w \) in \(\mathcal{A} \) is an infinite sequence \(q_0 q_1 \ldots \) of states s.t.
- \(q_0 \in Q_0 \) and
- \(q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \ldots \).

A run is accepting if \(q_j \in F \) for infinitely many \(j \).

A string \(w \) is accepted by \(\mathcal{A} \) if there is an accepting run of \(w \) in \(\mathcal{A} \).

\(\mathcal{L}_\omega(\mathcal{A}) \): set of infinite strings accepted by \(\mathcal{A} \).

A set of infinite string \(\mathcal{L}_\omega \subseteq \Sigma^\omega \) is called an \(\omega \)-regular language if there is an NBA \(\mathcal{A} \) s.t. \(\mathcal{L}_\omega = \mathcal{L}_\omega(\mathcal{A}) \).

The NBA on the right accepts the infinite words satisfying the LT property: “infinitely often green.”
ω-Regular Properties

An LT property P over AP is called ω-regular if P is an ω-regular language over 2^{AP}.

Invariant, regular safety, and various liveness properties are ω-regular.

Let P be an ω-regular property and A be an NBA that represents the "bad traces" for P.

Basic idea behind model checking ω-regular properties:

$$TS \not\models P \quad \text{if and only if} \quad \text{Traces}(TS) \not\subseteq P$$

$$\quad \text{if and only if} \quad \text{Traces}(TS) \cap (2^{AP})^\omega \setminus P \neq \emptyset$$

$$\quad \text{if and only if} \quad \text{Traces}(TS) \cap \overline{P} \neq \emptyset$$

$$\quad \text{if and only if} \quad \text{Traces}(TS) \cap L_\omega(A) \neq \emptyset$$
<table>
<thead>
<tr>
<th>Invariant</th>
<th>Safety</th>
<th>Liveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>state condition</td>
<td>something bad never happens</td>
<td>something good will happen eventually</td>
</tr>
<tr>
<td>violated at individual states</td>
<td>any infinite run violating the property has a finite prefix</td>
<td>violated only by infinite runs</td>
</tr>
<tr>
<td>verification: find the reachable states and check the invariant condition</td>
<td>verification: based on nondeterministic finite automaton which accepts “finite runs”</td>
<td>verification: based on nondeterministic Buchi automaton which accepts infinite runs</td>
</tr>
</tbody>
</table>