Lecture 2 Automata Theory

Ufuk Topcu

Nok Wongpiromsarn

Richard M. Murray

EECI, 14 May 2012

Outline:

- Transition systems
- Linear-time properties
- Regular propereties

This short-course is on this picture applied to a particular class of systems/problems.

requirements (on the system behavior) assumptions (on the unknowns, e.g., environment behavior)

complete system or some of its components

This short-course is on this picture applied to a particular class of systems/problems.

This short-course is on this picture applied to a particular class of systems/problems.

- inputs,
- outputs, and
- internal states and transitions between the states.

- inputs,
- outputs, and
- internal states and transitions between the states.

- inputs,
- outputs, and
- internal states and transitions between the states.

- inputs,
- outputs, and
- internal states and transitions between the states.

- inputs,
- outputs, and
- internal states and transitions between the states.

102 102

Example: Traffic logic planner in Alice.

Partial nomenclature:

DR = drive.

STO = stop.

NP = no passing, no reversing.

P = passing, no reversing.

PR = passing, reversing allowed.

S = safe clearance with obstacle.

A = aggressive clearance with obstacle.

B = no clearance with obstacle.

Example: Traffic lights.

Preliminaries

A **proposition** is a statement that can be either true or false, but not both.

Examples:

- "Traffic light is green" is a proposition.
- "The front pad is occupied" is a proposition.
- "Is the front pad?" is not a proposition.

Preliminaries

A **proposition** is a statement that can be either true or false, but not both.

Examples:

- "Traffic light is green" is a proposition.
- "The front pad is occupied" is a proposition.
- "Is the front pad?" is not a proposition.

An **atomic proposition** is one whose truth or falsity does not depend on the truth or falsity of any other proposition.

Examples:

- All propositions above are atomic propositions.
- "If traffic light is green, the car can drive" is not an atomic proposition.

Preliminaries

A **proposition** is a statement that can be either true or false, but not both.

Examples:

- "Traffic light is green" is a proposition.
- "The front pad is occupied" is a proposition.
- "Is the front pad?" is not a proposition.

An **atomic proposition** is one whose truth or falsity does not depend on the truth or falsity of any other proposition.

Examples:

- All propositions above are atomic propositions.
- "If traffic light is green, the car can drive" is not an atomic proposition.

For notational brevity, use propositional variables to abbreviate propositions. For example,

```
p \equiv \text{Traffic light is green}
```

 $q \equiv$ Front pad is occupied

A transition system TS is a tuple $TS = (S, Act, \rightarrow, I, AP, L)$, where

- S is a set of states,
- Act is a set of actions,
- $\bullet \rightarrow \subseteq S \times Act \times S$ is a transition relation,
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions,
- $L: S \to 2^{AP}$ is a labeling function, and

TS is called finite if S, Act, and AP are finite.

rear, both, neither front, rear, both $q_0 = q_1$ $\{ \text{door is not open} \}$ $\{ \text{neither front open} \}$

example

$$S = \{q_0, q_1\}$$

$$Act = \{rear, front, both, neither\}$$

$$\rightarrow = \{(q_0, front, q_1), (q_1, neither, q_0), (q_1, rear, q_1), \ldots\}$$

$$I = \{q_0\}$$

$$L(q_0) = \{door \ is \ not \ open\}$$

$$L(q_1) = \{door \ is \ open\}$$

A transition system TS is a tuple $TS = (S, Act, \rightarrow, I, AP, L)$, where

- S is a set of states,
- Act is a set of actions,
- $\bullet \rightarrow \subseteq S \times Act \times S$ is a transition relation,
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions,
- $L: S \to 2^{AP}$ is a labeling function, and

TS is called finite if S, Act, and AP are finite.

- AP depends on the characteristics of the system of interest.
- For state s, L(s) is the set of atomic propositions that are satisfied at s.
- Labels model outputs or observables.
- Actions model inputs or "communication."

example


```
S = \{q_0, q_1\}
Act = \{rear, front, both, neither\}
\rightarrow = \{(q_0, front, q_1), (q_1, neither, q_0), (q_1, rear, q_1), \ldots\}
I = \{q_0\}
L(q_0) = \{door \ is \ not \ open\}
L(q_1) = \{door \ is \ open\}
```

Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:

- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1 , ϕ_2 , and ϕ are formulas, so are $\neg \phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

From "Specifying Systems" by L. Lamport: Propositional logic is the math of the Boolean values, true and false, and the operators $\neg, \land, \lor, \rightarrow$

Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:

- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1 , ϕ_2 , and ϕ are formulas, so are $\neg \phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

Notation

•Connectives:

$$\neg \text{ (negation)}, \qquad \land \text{ (and)}$$
$$\lor \text{ (or)}, \qquad \rightarrow \text{ (implies)}$$

•1 for "true" and 0 for "false."

Example propositional logic formulas obtained by applying the above four rules:

$$\phi_1 \lor \phi_2 := \neg(\neg \phi_1 \land \neg \phi_2)$$
$$\phi_1 \to \phi_2 := \neg \phi_1 \lor \phi_2$$

From "Specifying Systems" by L. Lamport: Propositional logic is the math of the Boolean values, true and false, and the operators $\neg, \land, \lor, \rightarrow$

Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:

- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1 , ϕ_2 , and ϕ are formulas, so are $\neg \phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

Notation

•Connectives:

$$\neg \text{ (negation)}, \qquad \land \text{ (and)}$$
$$\lor \text{ (or)}, \qquad \rightarrow \text{ (implies)}$$

•1 for "true" and 0 for "false."

Example propositional logic formulas obtained by applying the above four rules:

$$\phi_1 \lor \phi_2 := \neg(\neg \phi_1 \land \neg \phi_2)$$
$$\phi_1 \to \phi_2 := \neg \phi_1 \lor \phi_2$$

From "Specifying Systems" by L. Lamport: Propositional logic is the math of the Boolean values, true and false, and the operators $\neg, \land, \lor, \rightarrow$

The evaluation function $\mu: AP \to \{0, 1\}$ assigns a truth value to each $a \in AP$.

The truth value $\mu(\Phi)$ of a formula Φ is determined by substituting the values for the atomic propositions specified by μ .

Given:
$$AP = \{a, b, c\}$$
, $\mu(a) = 0$ and $\mu(b) = \mu(c) = 1$.

$$\Phi_1 = (a \land \neg b) \lor c, \quad \mu(\Phi_1) = 1$$

$$\Phi_1 = (a \land \neg b) \lor c, \quad \mu(\Phi_1) = 0$$

$$\Phi_2 = (a \land \neg b) \land c, \quad \mu(\Phi_2) = 0$$

Logical dynamical system as a finite transition system

$$x_1[k+1] = x_2[k] \lor u[k], \quad x_1[0] = 0,$$
 $x_2[k+1] = x_1[k] \land u[k], \quad x_2[0] = 1,$
 $y[k] = x_1[k] \oplus x_2[k]$
 $\phi_1 \oplus \phi_2 := (\neg \phi_1 \land \phi_2) \lor (\phi_1 \land \neg \phi_2)$

XOR (exclusive or) gives true only if exactly one of the operands is true.

$$S = \{0, 1\}^2$$

$$Act = \{0, 1\}$$

$$I = \{(0, 1)\}$$

$$AP = \{y\}$$

$$L(x_1, x_2) = \begin{cases} \{y\} \text{ (indicating 1) if } x_1 \oplus x_2 = 1 \\ \emptyset \text{ (indicating 0) otherwise} \end{cases}$$

Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task communication and resource sharing.

Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task communication and resource sharing.

Example: multi-threaded control

- Separate code into independent threads
- Switch between threads, allowing each to run simultaneously
- Potential problems: deadlocks, race conditions

Modes of communication between the subsystems:

- hand-shaking (leads to synchrony)
- changing the values of shared variables (leads to asynchrony)

Thread Usage in Alice (DGC05)

Module	Threads
adrive (actuation)	19
trajFollower	10
astate (state estimator)	10
plannerModule	4
fusionMapper	16

Module	Threads
ladarFeeder (5)	8
stereoFeeder (2)	7
road (road follower)	5
superCon	3
DBS	3

^{*} doesn't count heartbeat and logging threads

Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, Act_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1||TS_2|$ is the transition system defined by

$$TS_1||TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rules:

- If $\alpha \in Act_1 \cap Act_2$, $s_1 \xrightarrow{\alpha}_1 s'_1$, and $s_2 \xrightarrow{\alpha}_2 s'_2$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s'_2 \rangle$.
- If $\alpha \in Act_1 \setminus Act_2$ and $s_1 \xrightarrow{\alpha}_1 s'_1$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s_2 \rangle$.
- If $\alpha \in Act_2 \setminus Act_1$ and $s_2 \xrightarrow{\alpha}_2 s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_3 \langle s_1, s_2' \rangle$.

light I

light 2

Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, Act_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1||TS_2|$ is the transition system defined by

$$TS_1||TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rules:

- If $\alpha \in Act_1 \cap Act_2$, $s_1 \xrightarrow{\alpha}_1 s'_1$, and $s_2 \xrightarrow{\alpha}_2 s'_2$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s'_2 \rangle$.
- If $\alpha \in Act_1 \setminus Act_2$ and $s_1 \xrightarrow{\alpha}_1 s'_1$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s_2 \rangle$.
- If $\alpha \in Act_2 \setminus Act_1$ and $s_2 \xrightarrow{\alpha}_2 s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_3 \langle s_1, s_2' \rangle$.

traffic light l

traffic light 2

Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, Act_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1||TS_2|$ is the transition system defined by

$$TS_1||TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rules:

- If $\alpha \in Act_1 \cap Act_2$, $s_1 \xrightarrow{\alpha}_1 s'_1$, and $s_2 \xrightarrow{\alpha}_2 s'_2$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s'_2 \rangle$.
- If $\alpha \in Act_1 \setminus Act_2$ and $s_1 \xrightarrow{\alpha}_1 s'_1$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s_2 \rangle$.
- If $\alpha \in Act_2 \setminus Act_1$ and $s_2 \xrightarrow{\alpha}_2 s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}_3 \langle s_1, s_2' \rangle$.

Given a transition system $TS=(S,Act,\rightarrow,I,AP,L)$. For $s\in S,$

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}.$
- A state s is terminal iff Post(s) is empty.

Given a transition system $TS=(S,Act,\rightarrow,I,AP,L)$. For $s\in S,$

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}.$
- A state s is terminal iff Post(s) is empty.

Given a transition system $TS=(S,Act,\rightarrow,I,AP,L)$. For $s\in S,$

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}.$
- A state s is terminal iff Post(s) is empty.
- A sequence of states, either finite $\pi = s_0 s_1 s_2 \dots s_n$ or infinite $\pi = s_0 s_1 s_2 \dots$, is a path fragment if $s_{i+1} \in Post(s_i), \ \forall i \geq 0$.

$$(0,1) \xrightarrow{,1} (1,0) \xrightarrow{1} (1,1) \xrightarrow{1} (1,1) \xrightarrow{0} \cdots$$

$$(1,0) \xrightarrow{0} (0,0) \xrightarrow{0} (0,0) \xrightarrow{1} (1,0) \xrightarrow{0} \cdots$$

$$(0,1) \xrightarrow{1} (1,0) \xrightarrow{1} (1,1).$$

Given a transition system $TS=(S,Act,\rightarrow,I,AP,L)$. For $s\in S,$

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}.$
- A state s is terminal iff Post(s) is empty.
- A sequence of states, either finite $\pi = s_0 s_1 s_2 \dots s_n$ or infinite $\pi = s_0 s_1 s_2 \dots$, is a path fragment if $s_{i+1} \in Post(s_i), \ \forall i \geq 0$.

- A path is a path fragment s.t. $s_0 \in I$ and it is
 - •either finite with terminal s_n
 - or infinite.
- Denote the set of paths in TS by Path(TS).

a path:

$$(0,1) \xrightarrow{,1} (1,0) \xrightarrow{1} (1,1) \xrightarrow{1} (1,1) \xrightarrow{0} \cdots$$

not a path:

$$(1,0) \xrightarrow{0} (0,0) \xrightarrow{0} (0,0) \xrightarrow{1} (1,0) \xrightarrow{0} \cdots$$

not a path:

$$(0,1) \xrightarrow{1} (1,0) \xrightarrow{1} (1,1).$$

Consider a finite transition system

$$TS = (S, Act, \rightarrow, I, AP, L)$$

with no terminal states (wlog).

Equivalent FSMs w/ and w/o terminal state

The trace of an infinite path fragment $\pi = s_0 s_1 s_2 \dots$ is defined by

$$trace(\pi) = L(s_0)L(s_1)L(s_2)\dots$$

The set, Traces(TS), of traces of TS is defined by

$$Traces(TS) = \{trace(\pi) : \pi \in Paths(TS)\}$$

sequence of sets of atomic propositions that are valid in the states along the path

Consider a finite transition system

$$TS = (S, Act, \rightarrow, I, AP, L)$$

with no terminal states (wlog).

Equivalent FSMs w/ and w/o terminal state

The trace of an infinite path fragment $\pi = s_0 s_1 s_2 \dots$ is defined by

$$trace(\pi) = L(s_0)L(s_1)L(s_2)\dots$$

The set, Traces(TS), of traces of TS is defined by

$$Traces(TS) = \{trace(\pi) : \pi \in Paths(TS)\}\$$

sequence of sets of atomic propositions that are valid in the states along the path

Actions: $f, f, n, b, f, f, b, \ldots$

Path: $q_0q_1q_1q_0q_0q_1q_1q_1...$

Trace: $\neg o, o, o, o, \neg o, o, o, o, o, \dots$

(with some abuse of notation)

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP} .

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP} .

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.

traces of TS-

admissible, desired, undesired, etc. behavior

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP} .

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.

traces of TS-

admissible, desired, undesired, etc. behavior

Example: $AP = \{red1, green1, red2, green2\}$

PI = "The first light is infinitely often green."

 $[A_0A_1A_2... \text{ with } green1 \in A_i \subseteq 2^{AP} \text{ holds}]$ for infinitely many i

- $\sqrt{\{r1,g2\}\{g1,r2\}\{r1,g2\}\{g1,r2\}\dots}$
- $\checkmark \emptyset \{g1\}\emptyset \{g1\}\emptyset \{g1\}\emptyset \dots$
- $\checkmark \{g1,g2\}\{g1,g2\}\{g1,g2\}\dots$
- \times $\{r1,g2\}\{r1g1\}\emptyset\emptyset\dots$

P2 = "The lights are never both green simultaneously."

 $[A_0A_1A_2... \text{ with } green1 \notin A_i \text{ or } green2 \notin A_i,$ for all $i \geq 0$]

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP} .

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.

traces of TS

admissible, desired, undesired, etc. behavior

Example: $AP = \{red1, green1, red2, green2\}$

PI = "The first light is infinitely often green."

 $[A_0A_1A_2... \text{ with } green1 \in A_i \subseteq 2^{AP} \text{ holds}$ for infinitely many i]

- $\sqrt{\{r1,g2\}\{g1,r2\}\{r1,g2\}\{g1,r2\}\dots}$
- $\checkmark \emptyset \{g1\}\emptyset \{g1\}\emptyset \{g1\}\emptyset \dots$
- $\checkmark \{g1,g2\}\{g1,g2\}\{g1,g2\}\dots$
- \times $\{r1,g2\}\{r1g1\}\emptyset\emptyset\dots$

P2 = "The lights are never both green simultaneously."

 $[A_0A_1A_2... \text{ with } green1 \notin A_i \text{ or } green2 \notin A_i,$ for all $i \geq 0$

+ Unreachable states

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP} .

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff $Traces(TS) \subseteq P$.

traces of TS

admissible, desired, undesired, etc. behavior

Example: $AP = \{red1, green1, red2, green2\}$

PI = "The first light is infinitely often green."

 $[A_0A_1A_2... \text{ with } green1 \in A_i \subseteq 2^{AP} \text{ holds}$ for infinitely many i]

- $\sqrt{\{r1,g2\}\{g1,r2\}\{r1,g2\}\{g1,r2\}\dots}$
- $\checkmark \emptyset \{g1\}\emptyset \{g1\}\emptyset \{g1\}\emptyset \dots$
- $\checkmark \{g1,g2\}\{g1,g2\}\{g1,g2\}\dots$
- \times $\{r1,g2\}\{r1g1\}\emptyset\emptyset\dots$

P2 = "The lights are never both green simultaneously."

 $[A_0A_1A_2... \text{ with } green1 \notin A_i \text{ or } green2 \notin A_i,$ for all $i \geq 0$

The transition system satisfies P2, but it does not satisfy P1.

states

An LT property P_{Φ} over AP is an *invariant* with respect to a propositional logic formula Φ over AP if

$$P_{\Phi} = \{ A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} : A_j \models \Phi \ \forall j \ge 0 \}.$$

An LT property P_{Φ} over AP is an *invariant* with respect to a propositional logic formula Φ over AP if

$$P_{\Phi} = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega'} : A_j \models \Phi \ \forall j \ge 0\}.$$

Notation: repeat infinitely many times

For $A \subseteq AP$, let the evaluation μ_A be the characteristic function of A.

$$A \models \Phi \text{ iff } \mu_A(\Phi) = 1$$

An LT property P_{Φ} over AP is an *invariant* with respect to a propositional logic formula Φ over AP if

$$P_{\Phi} = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega'} : A_j \models \Phi \, \forall j \ge 0\}.$$

Notation: repeat infinitely many times

For $A \subseteq AP$, let the evaluation μ_A be the characteristic function of A.

$$A \models \Phi \text{ iff } \mu_A(\Phi) = 1$$

Example: The LT property "the lights are never both green simultaneously" is an invariant with respect to $\Phi = \neg green1 \lor \neg green2$.

An LT property P_{Φ} over AP is an *invariant* with respect to a propositional logic formula Φ over AP if

$$P_{\Phi} = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega'} : A_j \models \Phi \ \forall j \ge 0\}.$$

Notation: repeat infinitely many times

For $A \subseteq AP$, let the evaluation μ_A be the characteristic function of A.

$$A \models \Phi \text{ iff } \mu_A(\Phi) = 1$$

Example: The LT property "the lights are never both green simultaneously" is an invariant with respect to $\Phi = \neg green1 \lor \neg green2$.

Given TS, Φ , and P_{Φ} , $TS \models P_{\Phi}$?

The following four statements are equivalent.

- $I.TS \models P_{\Phi}$
- **2.** $trace(\pi) \in P_{\Phi}, \ \forall \pi \in Path(TS)$
- **3.** $L(s) \models \Phi$, $\forall s \in S$ on a path of TS
- **4.** $L(s) \models \Phi, \ \forall s \in Reach(TS)$

A state s is reachable if there exists an execution fragment s.t. $s_0 \in I$ and

$$s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} s_n = s$$

Reach(TS): set of reachable states in TS

Invariants are state properties. That is, for verification, find the reachable states and check Φ .

Safety properties

An LT property P_{safe} is a safety property if for all words $\sigma \in (2^{AP})^{\omega} \backslash P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

$$P_{safe} \cap \{\sigma' \in (2^{AP})^{\omega} : \hat{\sigma} \text{ is a finite prefix of } \sigma'\} = \emptyset.$$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe} .

Safety properties

An LT property P_{safe} is a safety property if for all words $\sigma \in (2^{AP})^{\omega} \backslash P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

$$P_{safe} \cap \{\sigma' \in (2^{AP})^{\omega} : \hat{\sigma} \text{ is a finite prefix of } \sigma'\} = \emptyset.$$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe} .

Example: $AP = \{\text{red}, \text{green}, \text{yellow}\}$

 "At least one of the lights is always on" is a safety property.

$$\{\sigma = A_0 A_1 \dots : A_j \subseteq AP \land A_j \neq \emptyset\}$$

Bad prefixes: finite words that contain \emptyset .

• "Two lights are never on at the same time" is a safety property.

$$\{\sigma = A_0 A_1 \dots : A_j \subseteq AP \land card(A_j) \le 1\}$$

Bad prefixes: finite words that contain {red,green}, {red,yellow}, and so on.

Safety properties

An LT property P_{safe} is a safety property if for all words $\sigma \in (2^{AP})^{\omega} \backslash P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

$$P_{safe} \cap \{\sigma' \in (2^{AP})^{\omega} : \hat{\sigma} \text{ is a finite prefix of } \sigma'\} = \emptyset.$$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe} .

Example: $AP = \{\text{red}, \text{green}, \text{yellow}\}$

• "At least one of the lights is always on" is a safety property.

$$\{\sigma = A_0 A_1 \dots : A_j \subseteq AP \land A_j \neq \emptyset\}$$

Bad prefixes: finite words that contain \emptyset .

• "Two lights are never on at the same time" is a safety property.

$$\{\sigma = A_0 A_1 \dots : A_j \subseteq AP \land card(A_j) \le 1\}$$

Bad prefixes: finite words that contain {red,green}, {red,yellow}, and so on.

Any invariant is a safety property. There are safety properties that are not invariant.

Example: $AP = \{\text{red}, \text{yellow}\}$

"Each red is immediately preceded by a yellow" is a safety property, but not invariant (because it is not a state property).

Sample bad prefixes:

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^{\omega}$ satisfying $w\sigma \in P$.

 $\underline{\textbf{Example}} : \textbf{Two traffic lights with} \quad AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^{\omega}$ satisfying $w\sigma \in P$.

 $\underline{\textbf{Example}} : \textbf{Two traffic lights with} \quad AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

- specify the absence of (undesired) infinite loops or progress toward a goal.
- rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous execution, every process is activate infinitely often.

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^{\omega}$ satisfying $w\sigma \in P$.

 $\underline{\textbf{Example}} : \textbf{Two traffic lights with} \quad AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

- specify the absence of (undesired) infinite loops or progress toward a goal.
- rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

"the first light is eventually green after it is initially red three time instances in a row"

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^{\omega}$ satisfying $w\sigma \in P$.

 $\underline{\textbf{Example}} : \textbf{Two traffic lights with} \quad AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

• specify the absence of (undesired) infinite loops or progress toward a goal.

· rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous

execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

"the first light is eventually green after it is initially red three time instances in a row"

Answer: It is a combination of a safety and a liveness property.

- Liveness: any finite word can be extended by an infinite word $A_0A_1A_2\dots$ with $green1\in A_j$ for some $j\geq 0$.
- Safety: any finite word $A_0A_1A_2$ with $red1 \notin A_i$ for any $i \in \{0, 1, 2\}$ is a bad prefix.

liveness

safety

<u>Safety</u> <u>Invariant</u> Liveness state condition something bad something good never happens will happen eventually violated at any infinite run violated only by infinite individual states violating the property runs has a finite prefix verification: find the verification: verification: reachable states and check the invariant condition

Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is a tuple with

- A is a set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- $F \subseteq Q$ is a set of accept (or: final) states.

$$Q = \{q0, q1, q2\}, \qquad \Sigma = \{A, B\}$$

 $Q_0 = \{q0\}, \qquad F = \{q2\}$

$$\begin{array}{ll} \delta(q0,A) = \{q0\}, & \delta(q0,B) = \{q0,q1\} \\ \delta(q1,A) = \{q2\}, & \delta(q1,B) = \{q2\} \\ \delta(q2,A) = \emptyset, & \delta(q0,B) = \emptyset \end{array}$$

Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is a tuple with

- A is a set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- $F \subseteq Q$ is a set of accept (or: final) states.

set of finite words

Let $w = A_1 \dots A_n \in \Sigma^*$ be a finite word. A run for w in \mathcal{A} is a finite sequence of states $q_0 q_1 \dots q_n$ s.t.

- $-q_0 \in Q_0$
- $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i < n$.

Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is a tuple with

- A is a set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- $F \subseteq Q$ is a set of accept (or: final) states.

set of finite words

Let $w = A_1 \dots A_n \in \Sigma^*$ be a finite word. A run for w in \mathcal{A} is a finite sequence of states $q_0 q_1 \dots q_n$ s.t.

- $-q_0 \in Q_0$
- $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i < n$.

A run $q_0q_1 \dots q_n$ is called accepting if $q_n \in F$.

A finite word in accepted if it leads to an accepting run.

The accepted language $\mathcal{L}(\mathcal{A})$ of \mathcal{A} is the set of finite words in Σ^* accepted by \mathcal{A} .

NFA: $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

Regular safety properties

A set $\mathcal{L} \subseteq \Sigma^*$ of finite strings is called a regular language if there is a nondeterministic finite automaton \mathcal{A} s.t. $\mathcal{L} = \mathcal{L}(\mathcal{A})$.

language (set of finite words) accepted by the NFA

NFA: $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

Regular safety properties

A set $\mathcal{L} \subseteq \Sigma^*$ of finite strings is called a regular language if there is a nondeterministic finite automaton \mathcal{A} s.t. $\mathcal{L} = \mathcal{L}(\mathcal{A})$.

language (set of finite words) accepted by the NFA

A safety property P_{safe} over AP is called regular if its set of bad prefixes constitutes a regular language over 2^{AP} .

That is: \exists NFA \mathcal{A} s.t. $\mathcal{L}(\mathcal{A}) = \text{bad prefixes of } P_{safe}$

NFA: $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

Regular safety properties

A set $\mathcal{L} \subseteq \Sigma^*$ of finite strings is called a regular language if there is a nondeterministic finite automaton \mathcal{A} s.t. $\mathcal{L} = \mathcal{L}(\mathcal{A})$. language (set of finite words) accepted by the NFA

A safety property P_{safe} over AP is called regular if its set of bad prefixes constitutes a regular language over 2^{AP} .

That is: $\exists \text{ NFA } \mathcal{A} \text{ s.t. } \mathcal{L}(\mathcal{A}) = \text{bad prefixes of } P_{safe}$

Example: $AP = \{\text{red}, \text{green}, \text{yellow}\}$ "Each red must be preceded immediately by a yellow" is a regular safety property.

Sample bad prefixes:

- {}{}{red}
- {}{red}
- {yellow}{yellow}{green}{red}
- • $A_0A_1 \dots A_n$ s.t. $n > 0, red \in A_n$, and $yellow \notin A_{n-1}$ general form of minimal bad prefixes

yellow

Given a transition system TS and a regular safety property P_{safe} , both over the atomic propositions AP.

Let \mathcal{A} be an NFA s.t. $\mathcal{L}(\mathcal{A}) = BadPref(P_{safe})$.

Given a transition system TS and a regular safety property P_{safe} , both over the atomic propositions AP.

Let \mathcal{A} be an NFA s.t. $\mathcal{L}(\mathcal{A}) = BadPref(P_{safe})$.

Given a transition system TS and a regular safety property P_{safe} , both over the atomic propositions AP.

Let \mathcal{A} be an NFA s.t. $\mathcal{L}(\mathcal{A}) = BadPref(P_{safe})$.

```
TS \models P_{safe} \quad \text{iff} \quad Traces(TS) \subseteq P_{safe} \\ \quad \text{iff} \quad Traces(TS) \cap ((2^{AP})^{\omega} \backslash P_{safe}) = \emptyset \\ \quad \text{iff} \quad Traces(TS) \cap BadPref(P_{safe}).(2^{AP})^{\omega} = \emptyset \\ \quad \text{iff} \quad pref(Traces(TS)) \cap BadPref(P_{safe}) = \emptyset \\ \quad \text{iff} \quad pref(Traces(TS)) \cap \mathcal{L}(\mathcal{A}) = \emptyset \\ \end{cases} finite prefixes
```


For words w and σ , w. σ denotes their concatenation.

Given a transition system TS and a regular safety property P_{safe} , both over the atomic propositions AP.

Let \mathcal{A} be an NFA s.t. $\mathcal{L}(\mathcal{A}) = BadPref(P_{safe})$.

$$TS \models P_{safe} \quad \text{iff} \quad Traces(TS) \subseteq P_{safe} \\ \quad \text{iff} \quad Traces(TS) \cap ((2^{AP})^{\omega} \backslash P_{safe}) = \emptyset \\ \quad \text{iff} \quad Traces(TS) \cap BadPref(P_{safe}).(2^{AP})^{\omega} = \emptyset \\ \quad \text{iff} \quad pref(Traces(TS)) \cap BadPref(P_{safe}) = \emptyset \\ \quad \text{iff} \quad pref(Traces(TS)) \cap \mathcal{L}(\mathcal{A}) = \emptyset$$

finite prefixes

For words w and σ , w. σ denotes their concatenation.

<u>Safety</u> <u>Invariant</u> Liveness state condition something bad something good will happen never happens eventually violated at any infinite run violated only by infinite individual states violating the property runs has a finite prefix verification: find the verification: based on verification: reachable states and check nondeterministic finite the invariant condition automaton which accepts "finite runs"

Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$ with its runs interpreted differently.

Let $w = A_1 A_2 \dots \in \Sigma^{\omega}$ be an infinite string. A run for w in \mathcal{A} is an infinite sequence $q_0 q_1 \dots$ of states s.t.

- $-q_0 \in Q_0$ and
- $q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \dots$

Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with its runs interpreted differently.

Let $w = A_1 A_2 \ldots \in \Sigma^{\omega}$ be an infinite string. A run for w in \mathcal{A} is an infinite sequence $q_0q_1\ldots$ of states s.t.

- $-q_0 \in Q_0$ and
- $-q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \dots$

A run is accepting if $q_i \in F$ for infinitely many j.

A string w is accepted by \mathcal{A} if there is an accepting run of w in A.

 $\mathcal{L}_{\omega}(\mathcal{A})$: set of infinite strings accepted by \mathcal{A} .

Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$ with its runs interpreted differently.

Let $w = A_1 A_2 \dots \in \Sigma^{\omega}$ be an infinite string. A run for w in \mathcal{A} is an infinite sequence $q_0 q_1 \dots$ of states s.t.

- $-q_0 \in Q_0$ and
- $-q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \dots$

A run is accepting if $q_j \in F$ for infinitely many j.

A string w is accepted by \mathcal{A} if there is an accepting run of w in \mathcal{A} .

 $\mathcal{L}_{\omega}(\mathcal{A})$: set of infinite strings accepted by \mathcal{A} .

A set of infinite string $\mathcal{L}_{\omega} \subseteq \Sigma^{\omega}$ is called an ω -regular language if there is an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega} = \mathcal{L}_{\omega}(\mathcal{A})$.

The NBA on the right accepts the infinite words satisfying the LT property: "infinitely often green."

 $q_0q_1q_0q_1q_0q_1\dots$

run:

ω -Regular Properties

An LT property P over AP is called ω -regular if P is an ω -regular language over 2^{AP} .

Invariant, regular safety, and various liveness properties are ω -regular.

Let P be an ω -regular property and \mathcal{A} be an NBA that represents the "bad traces" for P.

Basic idea behind model checking ω -regular properties:

$$TS \not\models P$$
 if and only if $Traces(TS) \not\subseteq P$ if and only if $Traces(TS) \cap \left((2^{AP})^{\omega} \setminus P \right) \neq \emptyset$ if and only if $Traces(TS) \cap \overline{P} \neq \emptyset$ if and only if $Traces(TS) \cap \overline{P} \neq \emptyset$

<u>Invariant</u>	<u>Safety</u>	<u>Liveness</u>
state condition	something bad never happens	something good will happen eventually
violated at individual states	any infinite run violating the property has a finite prefix	violated only by infinite runs
verification: find the reachable states and check the invariant condition	verification: based on nondeterministic finite automaton which accepts	verification: based on nondeterministic Buchi automaton which

"finite runs"

accepts infinite runs