Goals

• Give an overview of ACM/EE 116: course structure & administration
• Describe some of the types of applications that we will be able to solve using the tools taught in this course

Reading (for the week)

• Grimmett and Stirzaker, Chapters 1 and 2 (24 pp; see web for sections)
• (optional) Grimmett and Stirzaker, Appendices III and IV (history; 4 pp)
• (optional) Gubner, Chapter 1 (applications)
Piazza

Q&A forum for students to ask (and answer) questions

- Students can post questions for others to see
 - Student posts can be named or anonymous
 - Can post about homework, lectures or anything else related to the course
- Students can respond to questions by other students, or post followup questions
- TAs and instructor can endorse a student response or provide an instructor response

Important notes

- Your questions and answers are stored on a non-Caltech machine => we have limited control
- Information posted should only be viewable by other students + instructors
- Use of Piazza is optional, but we would like to try it out and get feedback
 - If you use Piazza to post a question or followup, you don't have to sign it at OH

Honor System

What is it?

No member of the Caltech community shall take unfair advantage of any other member of the Caltech community

Why is it important?

- Provides a framework for ethical conduct in an academic setting
- Supports a community of scholars, working together to learn and educate
- Allows greater academic freedom through mutual trust and respect

How does it apply to this class?

- Homework: full collaboration allowed, but write up your own results
 - Plan to re-use material, tuned to what we are trying to teach
 - Not allowed to use solutions sets from previous years, other sources
- Tests: take home, open book, limited time, non-proctored
- Violations: student centered – investigated by the BoC or GRB
Application: Autonomous Driving

Computing
- 6 Dell 750 PowerEdge Servers (P4, 3GHz)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

Sensing
- 5 cameras: 2 stereo pairs, roadfinding
- 5 LADARs: long, med*2, short, bumper
- 2 GPS units + 1 IMU (LN 200)
- 0.5-1 Gb/s raw data rates

Terrain Estimation

Sensor processing
- Construct local elevation based on measurements and state estimate
- Compute speed based on gradients

Sensor fusion
- Combine individual speed maps
- Process “missing data” cells

Road finding
- Identify regions with road features
- Increase allowable speed along roads

LadarFeeder, StereoFeeder
- HW: LADAR (serial), stereo (firewire)
- In: Vehicle state
- Out: Speed map (deltas)
- Multiple computers to maintain speed

FusionMapper
- In: Sensor speed maps (deltas)
- Output: fused speed map
- Run on quadcore AMD64
Optimal Estimation (Kalman Filtering)

System description

\[x[k + 1] = Ax[k] + Bu[k] + Fv[k] \]
\[y[k] = Cx[k] + w[k], \]

- Disturbances and noise are multi-variable Gaussians with covariance \(R_v, R_w \)

Problem statement: Find the estimate that minimizes the mean square error \(E\{(x[k] - \hat{x}[k])(x[k] - \hat{x}[k])^T\} \)

Proposition

- For Gaussian noise, optimal estimate is the expectation of the random process \(x \) given the constraint of the observed output:
 \[\hat{x}[k] = E\{X[k] | Y[l], l \leq k\} \]

- Can think of this as a least squares problem: given all previous \(y[k] \), find the estimate \(\hat{x}[k] \) that satisfies the dynamics and minimizes the square error with the measured data.

Example: Kalman Filtering for Terrain (Gillula)

- **Elevation Map:**
 - Individual sensors
 - Fused map

- **Covariance Map:**
 - A: All sensors
 - B: Just LADARs
 - C: LADAR in place
 - D: Long-range LADAR
 - E: LADAR in place
 - F: Sparse measurements
Cell Noise (Elowitz et al, 2002)

Noise in cells
- Put RFP and GFP under identical promoters; should get yellow
- Results: get range of colors

Extrinsic Noise:
- Global to a single cell, but varies from one cell to the next (e.g. cell volume, plasmid copy number)

Intrinsic Noise:
- Inherent stochasticity in gene expression (e.g. what order reactions occur in)

\[\dot{x}_i = E(t) \cdot f_i(x_i, I_i(t)) \]

System Identification Using Cell Noise

Traditional systems identification
- Engineering: forced response. Difficult to do in vivo (e.g. sinusoids are tricky)
- Biology: gene knockouts; steady state measurements using gene arrays

Idea: use noise as a forcing function
- Steady state distributions are not enough if extrinsic noise is present
- Need to use correlation data instead
System ID of a Synthetic Circuit (Dunlop, Elowitz & M)

E. coli

Plasmid
(7,500 base pairs)
~10 copies per cell

Chromosome
(4,600,000 base pairs)
1 copy per cell

Course Outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction; probability spaces</td>
<td>GS, Ch 1,2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Discrete random variables</td>
<td>GS, Ch 3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Continuous random variables</td>
<td>GS, Ch 4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Generating functions</td>
<td>GS, Ch 5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Convergence of sequences of random variables</td>
<td>GS, Chapter 7</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to random processes</td>
<td>GS, Ch 8 + notes</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Discrete time random processes</td>
<td>GS, Ch 9 + notes</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Continuous time random processes</td>
<td>GS, Ch 9 + notes</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Advanced topics: diffusion processes, Itô’s formula</td>
<td>GS, Ch 13</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Review for final</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

Goal: Balance between theory and applications
- Build on a rigorous mathematical basis (sigma fields)
- Develop useful techniques and show how these can be applied to real problems
- Challenge: broad set of backgrounds and interests => will try to use various feedback mechanisms to insure that we are covering the distribution well