

ACM/EE 116 Introduction and Course Admin

Richard M. Murray 27 September 2011

Goals

- Give an overview of ACM/EE 116: course structure & administration
- Describe some of the types of applications that we will be able to solve using the tools taught in this course

Reading (for the week)

- Grimmett and Stirzaker, Chapters 1 and 2 (24 pp; see web for sections)
- (optional) Grimmett and Stirzaker, Appendices III and IV (history; 4 pp)
- (optional) Gubner, Chapter 1 (applications)

Course Overview								
	page discussion view source history	🤱 Log in						
Avigation = Main Page = Events = Projects = Projects = Courses = ACM/EE 116 = BVBE 2500 = CDS 90abc = CDS 90abc = earch Co Search Co Search = What links here = Nelated chances	ACM/EE 116, Fall 2011 (Redirected from ACWEE 116) Introduction to Probability and Instructors Action Probability and Instructors Action Probability and Instructors Action Interpretation (CDS/BE) Action Introduction to fundamental ideas and techniques of stochastic and expectation, joint distributions, covariance, moment generating fundiscributions, ion to fundamental ideas and techniques of stochastic and expectation, joint distributions, covariance, moment generating fundiscributions, covariance, moment generating fundiscributions, queuing and waiting line theory, and finance. Announcements To Jul 2011: web page creation Lecture Schedule	Course administration • Lectures: Tu/Th, 9-10:30, 105 ANB • Office hours: Fri, 3-4; Mon 7-9 • Grading: homework + final + OH • Homework policy (+ grace period) • Course text and references • Signup sheet, mailing list • Surveys: background, midterm • Course load: keep track of hours! • Course ombuds: send e-mail by Tue evening to volunteer						
Pretable Cranges Special pages Printable version Permanent link	W Date Topic 1 27 Sep 29 Sep Events, probabilities and random variables = σ fields and probability spaces = Conditional probability, independence, Bayes' = The law of large numbers = Random variables (discrete and continuous)	 Ombuds can provide anony- mous feedback to instructor Instructor + TAs will meet with ombuds around midterm to identify possible improvements 						

ACM/EE 116, Fall 2011

Piazza

ριαzza	SANDBOX CLASS	Searcl	Q&A forum for students to ask (and answer)
All Unread Updated Ur	nresolved Archived » 📰 📕		questions
✓ PINNED			 Students can post questions for others to see
This is a sample que	This is a sample question.		
- QUESTIONS		Last upo	 Student posts can be named or anonymous
How do I ask a question?		Good	 Can post about homework, lectures or
How do I answer a question?			anything else related to the course
How do I search for a question or an sr		stude respo	 Students can respond to questions by other
What is a followup discussion?		Piaz	students, or post followup questions
Who marks a follow	Who marks a followup discussion re		
Why the name Piazz		instr	
What does an unans		Goo	response or provide an instructor response
How do I use LaTeX			Important notes
How do I format co		instru respo	-
Can I ask a question	Can I ask a question anonymously?		Your questions and answers are stored on a
Can I answer or edi	Can I answer or edit anonymously? S		non-Caltech machine => we have limited contro
Is anonymous really anonymous?			 Information posted should only be viewable by
How do I attach a fi	<u> </u>	followup	other students + instructors
Can I embed image	s? sr		 Use of Piazza is optional, but we would like to
Can I post announce	ements?		try it out and get feedback
Can I post so only in	nstructors see my 📴	Average R	, ,
How do I tag my que	_		 If you use Piazza to post a question or
Can I view edit histo	ory? sr		followup, you don't have to sign it at OH
CM/EE 116, Fall 2011		Rich	ard M. Murray, Caltech CDS/BE

- Tests: take home, open book, limited time, non-proctored
- Violations: student centered investigated by the BoC or GRB

Richard M. Murray, Caltech CDS/BE

3

Application: Autonomous Driving

Computing

- 6 Dell 750 PowerEdge Servers (P4, 3GHz)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

Sensing

- 5 cameras: 2 stereo pairs, roadfinding
- 5 LADARs: long, med*2, short, bumper
- 2 GPS units + 1 IMU (LN 200)
- 0.5-1 Gb/s raw data rates

ACM/EE 116, Fall 2011

Richard M. Murray, Caltech CDS/BE

5

Optimal Estimation (Kalman Filtering)

System description

$$x[k+1] = Ax[k] + Bu[k] + Fv[k]$$
$$y[k] = Cx[k] + w[k],$$

$$E\{v[k]\} = 0$$
$$E\{v[k]v[j]^T\} = \begin{cases} 0 & k \neq j \\ R_v & k = j \end{cases}$$

7

• Disturbances and noise are multi-variable Gaussians with covariance R_{ν} , R_{w}

Problem statement: Find the estimate that minimizes the mean square error $E\{(x[k] - \hat{x}[k])(x[k] - \hat{x}[k])^T\}$

Proposition

• For Gaussian noise, optimal estimate is the expectation of the random process *x* given the *constraint* of the observed output:

$$\hat{x}[k] = E\{X[k] \mid Y[l], l \le k\}$$

• Can think of this as a *least squares* problem: given all previous y[k], find the estimate $\hat{x}[k]$ that satisfies the dynamics and minimizes the square error with the measured data.

ACM/EE 116, Fall 2011

Richard M. Murray, Caltech CDS/BE

Example: Kalman Filtering for Terrain (Gillula) High **Covariance Map:** Covariance A: All sensors **B:** Just LADARs C: LADAR in place **D:** Long-range LADAR E: LADAR in place F: Sparse measurements Low Covariance 19 Aug 2006 Jeremy Gillula (Caltech CDS) 8

Course Outline

Week	Торіс	Reading	HW
1	Introduction; probability spaces	GS, Ch 1,2	1
2	Discrete random variables	GS, Ch 3	2
3	Continuous random variables	GS, Ch 4	3
4	Generating functions	GS, Ch 5	4
5	Convergence of sequences of random variables	GS, Chapter 7	5
6	Introduction to random processes	GS, Ch 8 + notes	6
7	Discrete time random processes	GS, Ch 9 + notes	7
8	Continuous time random processes	GS, Ch 9 + notes	8
9	Advanced topics: diffusion processes, Ito's formula	GS, Ch 13	9
10	Review for final		F

Goal: Balance between theory and applications

- Build on a rigorous mathematical basis (sigma fields)
- Develop useful techniques and show how these can be applied to real problems
- Challenge: broad set of backgrounds and interests => will try to use various feedback mechanisms to insure that we are covering the distribution well