MATERIALS AND ENVIRONMENT

Richard Braatz
John A. Burns
Pramod Khargonekar
PS Krishnaprasad
Tariq Samad
Ben Shapiro
Jerry Marsden
Brian Farrell
Igor Mezic
Navin Khaneja
Greg McRae

Big Problem Areas

- control of clusters
- process and manufacturing control
- nano-technology
- thin films
- economic control
- supply chain management
- flow control
- geophysics (weather, environment, etc)

Overarching Themes

FOR MATERIALS / PROCESSING ENVIRONMENT / SOCIAL-ECONOMICS

CONTROL = EVERYTHING

- Modeling
- Computation
- Paradigm shifts
- Experiment/Verification

Modeling

- multi-scale, time and space
- model reduction
- model identification
- heterogeneous model integration
- hierarchical
- uncertainty
- role of data/statistics/noise
- complex systems
- exploiting problem structure

Computation

- algorithmic and software interfacing
- structured algorithms
- distributed computing
- dynamic resource allocation
- algorithmic development
 - » ADIFOR
 - » optimization
 - » sensitivity
- hierarchical/multiscale
- uncertainty/verification

Paradigm Shifts

- data centric
- coordinated control
- complex systems
- spatially distributed (control, sensors...)
- multidisciplinary teaming
- control configured design (and other things, up front)

Experiment/Verification

- physical
- computational
- interface (with modeling, computation)
- new technology (sensor, etc)

Possible Vignettes

- up front design of chemical plants
- process control
- space applications
- sensitivity tools
- combustion modeling
- meteorology

TECH AREAS

PAYOFFS

- Nano Technology
 - » Nano Electronics
 - » Designer Chemistry
 - » Biological Materials
- Flow Control
 - » Chemically Reacting
 - » Aerodymanic
- Thin Films
 - » RCVD
 - » MBE
 - » IBD

- The "Future"
 - » "Smart Dust"
 - » The Next "Transistor"
 - » Embedded Intelligence
 - » Combustion
 - » GMR Devices
 - » Thin Film is \$300 Billion Industry

TECH AREAS

- DESIGN OF MEMS
- Process Control
 - » Web
 - » Chemical
 - » Power Generation
 - » Pharmaceutical
 - » Injection Molding
- Supply Chain Management

PAYOFFS

- Enabling New Products
 - » Component Integration
- Economic & Others
 - » \$ Billions Per Year
 - » Trees
 - » \$ Competitiveness
 - » Health

AREAS

- Nano Technology
 - » Nano Electronics
 - » Designer Chemistry
 - » Biological Materials
- Flow Control
 - » Chemically Reacting
 - » Aerodymanic
- Thin Films
 - » RCVD
 - » MBE
 - » IBD

ISSUES

- Modeling for Control
 - » Quantum, MD, FE?
 - » Reduced Order Models?
 - » Interaction of Devices
- Modeling
 - » Computational Methods
- Process Sensor Based Control of Product Parameters
 - » Associated Modeling
 - » Model Reduction

AREAS

- DESIGN OF MEMS
- Process Control
 - » Web
 - » Chemical
 - » Power Generation
 - » Pharmaceutical
 - » Injection Molding
- Supply Chain Management

ISSUES

- Model Reduction & ID
 - » Component Integration
- Large Scale Systems
 - » Modeling of Big Systems
 - » Integrated Health Management & Control
 - » Distributed PS
- Optimization

EDUCATION

EXPOSURE TO COMPUTING

!!! INTERDISCIPLINARY !!!

MANUFACTURING PROCESS KNOWLEDGE

RESEARCH NEEDS

- BETTER SOLUTION METHODS FOR MULTIDISCIPLINARY SYSTEMS (FASTER, CHEAPER, MORE ACCURATE)
 - » CHEMICALLY REACTING FLOWS
 - » AEROELASTIC SYSTEMS
 - » COMPUTATIONAL CHEMISTRY
 - » TIME DEPENDENT PROBLEMS
 - » MOLECULAR DYNAMICS (MD CODES, ETC.)
- NUMERICAL METHODS THAT TRAVERSE DISPARATE TIME AND LENGTH SCALES
 - » CONTINUUM MODELS (FINITE ELEMENTS, ETC.)
 - » MOLECULAR DYNAMICS (MD and QM CODES, ETC.)
- LARGE-SCALE COMPUTATIONAL METHODS FOR DESIGNING, CONTROLLING AND OPTIMIZING UNDER UNCERTAINTY

RESEARCH NEEDS - SIMULATION FOR DESIGN -

- NEW COMPUTATIONAL METHODS THAT ARE "DESIGN SPECIFIC"
 - » A NUMERICAL METHOD "GOOD FOR SIMULATION" ... MAY <u>NOT</u> BE GOOD FOR OPTIMIZATION OR CONTROL
- GEOMETRIC MODELING AND MESH GENERATION TOOLS
- MESH INDEPENDENT COMPUTATIONAL TOOLS FOR
 - » SENSITIVITY ANALYSIS
 - » OPTIMIZATION BASED DESIGN
- INTEGRATED PROBLEM SOLVING ENVIRONMENTS
 - » ARCHITECTURE SPECIFIC ALGORITHMS
 - » HIERARCHICAL ADAPTIVE MODELING FOR DESIGN & CONTROL
 - » VISUALIZATION