





# Cross Disciplinary Research and the Role of Industry



Richard Murray John Baras Bob Mike Grimble Leni

Bob Barmish Lennart Lung



#### <u>Outline</u>

- I. CDS Panel Overview
- **II. Findings and Recommendations**
- III. Workshop Agenda and Goals





http://www.cds.caltech.edu/~murray/cdspanel





#### Panel on Future Directions in Control, Dynamics, and **Systems**

#### Goals

- Articulate the challenges and opportunities for the field
- Respond to the changing nature of control, dynamics, and systems research

#### Approach

- Workshops and discussions
- SIAM report

Karl Åström Siva Banda Munther Dahleh John Doyle P. R. Kumar P. S. Krishnaprasad William Powers **Richard Murray** 

Stephen Boyd J. Guckenheimer Jerrold Marsden Gunter Stein

**Roger Brockett** 

**Charles Holland** Greg McRae Pravin Varaiya

CDC, 8 Dec 03

R. M. Murray, Caltech

2

John Burns

P. Khargonekar

George Meyer

### **Panel Organization and Timeline**



### **Transportation and Aerospace**

#### Themes

- Autonomy
- Real-time, global, dynamic networks
- Ultra-reliable embedded systems
- Multi-disciplinary teams
- Modeling for control
  - more than just  $\dot{x} = f(x, u, p, w)$
  - analyzable accurate hybrid models



#### **Technology Areas**

- Air traffic control, vehicle management
- Mission/multi-vehicle management
- Command & control, human in the loop
- Ground traffic control (air & ground)
- Automotive vehicle & engine control
- Space vehicle clusters
- Autonomous control for deep space



R. M. Murray, Caltech

### **Information and Networks**

#### Pervasive, ubiquitous, convergent networking

- Heterogeneous networks merging communications, computing, transportation, finance, utilities, manufacturing, health, entertainment, ...
- Robustness/reliability are dominant challenges
- Need "unified field theory" of communications, computing, and control

#### Many applications

- Congestion control on the internet
- Power and transportation systems
- Financial and economic systems
- Quantum networks and computation
- Biological regulatory networks and evolution
- Ecosystems and global change

Control <u>of</u> the network Control <u>over</u> the network



### **Robotics and Intelligent Machines**

#### Wiener, 1948: Cybernetics

• Goal: implement systems capable of exhibiting highly flexible or ``intelligent'' responses to changing circumstances

#### DARPA, 2003: Grand Challenge

- LA to Las Vegas (400 km) in 10 hours or less
- Goal: implement systems capable of exhibiting highly flexible or ``intelligent" responses to changing circumstances









# **Biology and Medicine**

#### "Systems Biology"

- Many molecular mechanisms for biological organisms are characterized
- Missing piece: understanding of how network interconnection creates robust behavior from uncertain components in an uncertain environment
- Transition from organisms as genes, to organisms as networks of integrated chemical, electrical, fluid, and structural elements

#### Key features of biological systems

- Integrated control, communications, computing
- Reconfigurable, distributed control, at molecular level

#### Design and analysis of biological systems

- Apply engineering principles to biological systems
- Systems level analysis is required
- Processing and flow of information is key







### **Materials and Processing**



# Multi-scale, multi-disciplinary modeling and simulation

- Coupling between macro-scale actuation and microscale physics
- Models suitable for control analysis and design

#### Increased use of in situ measurements

• Many new sensors available that generate real-time data about microstructural properties



# **Control in an Information Rich World**

#### Control remains an exciting area, with many new applications

- Community needs to get involved in new applications (already happening!)
- Need to maintain support for control research by government, industry

#### **Panel Recommendations**

- 1. Increase research aimed at the integration of control, computer science, & communications
- 2. Increase research in control at higher levels of decision making, moving toward enterprise level systems
- 3. Explore high-risk, long-range applications of control in nanotechnology, quantum mechanics, electromagnetics, biology, environmental science, etc
- 4. Maintain support for theory and interaction with mathematics
- 5. New approaches to education to disseminate control concepts and tools to non-traditional audiences



CDC, 8 Dec 03

# **Education and Outreach (Ch 4 of report)**

#### Expanding applications placing new demands on education

- Must continue to unify and compact the knowledge base
- Material needs to be more accessible to broad range of potential user
- Eg, computer scientists, biologists, physicists, medical researchers

#### Increased interaction with industry

- Cooperative Ph.D. programs: industrial researchers by companies and universities to pursue Ph.D.'s (full-time)
- Industry leaders from the control community should continue to interact and help communicate needs of their constituencies

#### Additional steps

- New textbooks, teaching materials, pedagogy
- Better education of the public about relevant technical areas

### **Cross-Disciplinary Research**

#### Need for increased cross-disciplineary research and eduction



#### Challenges of cross-disciplinary research

- Educational programs often defined by traditional disciplines (esp in US)
- Control is small part of discussions on curriculum in these disciplines
- Additionally, many new applications are outside the current boundaries

#### Education and research programs may need to be restructured

- Step 1: cross-disciplinary research centers (eg, ISR, CSL, CCEC)
- Step 2: cross-departmental graduate courses, seminars, projects
- Step 3: undergraduate minors and MS/PhD programs in systems and control
- Additional possibilities: regional alliances DISC, SoCal NLC, etc

# The Role of Industry

#### Role of control in industry

- Industry has substantial experience in cross-disciplinary projects (eg IPTs)
- Increasingly, control engineers are serving as systems engineers
- Requires strong interdisciplinary skills and interpersonal (team) skills



#### Increased need for interaction with industry

- Best practices in team-oriented, systems engineering integrated into courses
- Transition of new ideas and tools to industry; new problems to universities

#### Obstacles

- Intellectual property, publishing restrictions, ITAR, competition
- Low priority on funding universities for long range, fundamental research
- Industry researchers often too busy to attend workshops (like this one!)

## Workshop Goals

Explore mechanisms for cross-disciplinary research, particularly through interaction with industry

- Discussion of obstacles and issues that must be overcome
- Examples of success stories and models from around the world
- Information on programs that can be used to support interaction

#### Short term goal: provide ideas for things to try when you go home

- Copies of presentations will be placed on CDS Panel web site
- Summary report for NSF will be generated and distributed to praticipants

#### Long term goal: increase role of control in cross-disciplinary research

- Get students excited about control courses and research opportunities
- Provide students with training that makes them in high demand by industry
- Increase the support for control research by industry and within industry

### http://www.cds.caltech.edu/~murray/cdspanel

### Workshop Agenda

| 8:30 am  | <b>Richard Murray</b> | Welcome and Introduction                                                         |
|----------|-----------------------|----------------------------------------------------------------------------------|
| 9:00 am  | P. Khargonekar        | Issues and Perspectives on Cross Disciplinary<br>Research                        |
| 9:30 am  | Bob Barmish           | Cross-Disciplinary Research and Industrial Col-<br>laboration: A Two-Edged Sword |
| 10:00 am |                       | Discussion and break                                                             |
| 10:30 am | Richard Murray        | Three Views on Industry/University Collabora-<br>tion                            |
| 11:00 am | Mike Grimble          | Integrated International Services for Industry                                   |
| 11:30 am | Lennart Ljung         | ISIS A center for industry-university coopera-<br>tion at Linkoping University   |
| 12:00 pm |                       | Lunch                                                                            |
| 1:30 pm  | Kishan Baheti         | NSF Grants Opportunity for Academic Liason with Industry (GOALI)                 |
| 2:00 pm  | Panel discussion      | Recommendations for future activities                                            |