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Chapter 1

Trajectory Generation and Tracking

This chapter expands on Section 7.5 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the use of feedforward compensation in
control system design. We begin with a review of the two degree of freedom
design approach and then focus on the problem of generating feasible tra-
jectories for a (nonlinear) control system. We make use of the concept of
differential flatness as a tool for generating feasible trajectories.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment. Although this material supplements
concepts introduced in the context of output feedback and state estimation,
no knowledge of observers is required.

1.1 Two Degree of Freedom Design

A large class of control problems consist of planning and following a trajec-
tory in the presence of noise and uncertainty. Examples include autonomous
vehicles maneuvering in city streets, mobile robots performing tasks on fac-
tor floors (or other planets), manufacturing systems that regulate the flow
of parts and materials through a plant or factory, and supply chain manage-
ment systems that balance orders and inventories across an enterprise. All
of these systems are highly nonlinear and demand accurate performance.

To control such systems, we make use of the notion of two degree of free-

dom controller design. This is a standard technique in linear control theory
that separates a controller into a feedforward compensator and a feedback
compensator. The feedforward compensator generates the nominal input
required to track a given reference trajectory. The feedback compensator
corrects for errors between the desired and actual trajectories. This is shown
schematically in Figure 1.1.

In a nonlinear setting, two degree of freedom controller design decouples
the trajectory generation and asymptotic tracking problems. Given a de-
sired output trajectory, we first construct a state space trajectory xd and
a nominal input ud that satisfy the equations of motion. The error system
can then be written as a time-varying control system in terms of the er-
ror, e = x − xd. Under the assumption that that tracking error remains
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Figure 1.1: Two degree of freedom controller design for a process P with uncer-
tainty ∆. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block ∆, representing unmodeled dynamics, as well as dis-
turbances and noise.

small, we can linearize this time-varying system about e = 0 and stabilize
the e = 0 state. (Note: in ÅM08 the notation uff was used for the desired
[feedforward] input. We use ud here to match the desired state xd.)

More formally, we assume that our process dynamics can be described
by a nonlinear differential equation of the form

ẋ = f(x, u) x ∈ R
n, u ∈ R

p,

y = h(x, u) y ∈ R
q,

(1.1)

where x is the system state, u is a vector of inputs and f is a smooth function
describing the dynamics of the process. The smooth function h describes
the output y that we wish to control. We are particularly interested in the
class of control problems in which we wish to track a time-varying reference
trajectory r(t), called the trajectory tracking problem. In particular, we wish
to find a control law u = α(x, r(·)) such that

lim
t→∞

(
y(t) − r(t)

)
= 0.

We use the notation r(·) to indicate that the control law can depend not
only on the reference signal r(t) but also derivatives of the reference signal.

A feasible trajectory for the system (1.1) is a pair (xd(t), ud(t)) that sat-
isfies the differential equation and generates the desired trajectory:

ẋd(t) = f
(
xd(t), ud(t)

)
r(t) = h

(
xd(t), ud(t)

)
.

The problem of finding a feasible trajectory for a system is called the tra-

jectory generation problem, with xd representing the desired state for the
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(nominal) system and ud representing the desired input or the feedforward
control. If we can find a feasible trajectory for the system, we can search
for controllers of the form u = α(x, xd, ud) that track the desired reference
trajectory.

In many applications, it is possible to attach a cost function to trajec-
tories that describe how well they balance trajectory tracking with other
factors, such as the magnitude of the inputs required. In such applications,
it is natural to ask that we find the optimal controller with respect to some
cost function. We can again use the two degree of freedom paradigm with
an optimal control computation for generating the feasible trajectory. This
subject is examined in more detail in Chapter 2. In addition, we can take
the extra step of updating the generated trajectory based on the current
state of the system. This additional feedback path is denoted by a dashed
line in Figure 1.1 and allows the use of so-called receding horizon control

techniques: a (optimal) feasible trajectory is computed from the current po-
sition to the desired position over a finite time T horizon, used for a short
period of time δ < T , and then recomputed based on the new system state.
Receding horizon control is described in more detail in Chapter 3.

A key advantage of optimization-based approaches is that they allow the
potential for customization of the controller based on changes in mission,
condition and environment. Because the controller is solving the optimiza-
tion problem online, updates can be made to the cost function, to change
the desired operation of the system; to the model, to reflect changes in pa-
rameter values or damage to sensors and actuators; and to the constraints,
to reflect new regions of the state space that must be avoided due to exter-
nal influences. Thus, many of the challenges of designing controllers that
are robust to a large set of possible uncertainties become embedded in the
online optimization.

1.2 Trajectory Tracking and Gain Scheduling

We begin by considering the problem of tracking a feasible trajectory. As-
sume that a trajectory generator is able to generate a trajectory (xd, ud) that
satisfies the dynamics (1.1) and satisfies r(t) = h(xd(t), ud(t)). To design
the controller, we construct the error system. Let e = x−xd and v = u−ud

and compute the dynamics for the error:

ė = ẋ− ẋd = f(x, u) − f(xd, ud)

= f(e+ xd, v + ud) − f(xd) =: F (e, v, xd(t), ud(t)).

The function F represents the dynamics of the error, with control input
v and external inputs xd and ud. In general, this system is time-varying
through the desired state and input.

For trajectory tracking, we can assume that e is small (if our controller
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is doing a good job), and so we can linearize around e = 0:

de

dt
≈ A(t)e+B(t)v, A(t) =

∂F

∂e

∣
∣
∣
∣
(xd(t),ud(t))

, B(t) =
∂F

∂v

∣
∣
∣
∣
(xd(t),ud(t)

.

It is often the case that A(t) and B(t) depend only on xd, in which case it
is convenient to write A(t) = A(xd) and B(t) = B(xd).

We start by reviewing the case where A(t) and B(t) are constant, in
which case our error dynamics become

ė = Ae+Bv.

This occurs, for example, if the original nonlinear system is linear. We can
then search for a control system of the form

v = −Ke+ krr.

In the case where r is constant, we can apply the results of Chapter 6 of
ÅM08 and solve the problem by finding a gain matrix K that gives the
desired close loop dynamics (e.g., by eigenvalue assignment) and choosing
kr to give the desired output value at equilibrium. The equilibrium point is
given by

xe = −(A−BK)−1Bkrr =⇒ ye = −C(A−BK)−1Bkrr

and if we wish the output to be y = r it follows that

kr = −1/
(
C(A−BK)−1B

)
.

It can be shown that this formulation is equivalent to a two degree of freedom
design where xd and ud are chosen to give the desired reference output
(Exercise 1.1).

Returning to the full nonlinear system, assume now that xd and ud are
either constant or slowly varying (with respect to the performance criterion).
This allows us to consider just the (constant) linearized system given by
(A(xd), B(xd)). If we design a state feedback controller K(xd) for each xd,
then we can regulate the system using the feedback

v = K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u = −K(xd)(x− xd) + ud.

Note that the controller u = α(x, xd, ud) depends on (xd, ud), which them-
selves depend on the desired reference trajectory. This form of controller is
called a gain scheduled linear controller with feedforward ud.

More generally, the term gain scheduling is used to describe any con-
troller that depends on a set of measured parameters in the system. So, for
example, we might write

u = −K(x, µ) · (x− xd) + ud,
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Figure 1.2: Vehicle steering using gain scheduling.

where K(x, µ) depends on the current system state (or some portion of it)
and an external parameter µ. The dependence on the current state x (as
opposed to the desired state xd) allows us to modify the closed loop dynamics
differently depending on our location in the state space. This is particularly
useful when the dynamics of the process vary depending on some subset of
the states (such as the altitude for an aircraft or the internal temperature
for a chemical reaction). The dependence on µ can be used to capture the
dependence on the reference trajectory, or they can reflect changes in the
environment or performance specifications that are not modeled in the state
of the controller.

Example 1.1 Steering control with velocity scheduling

Consider the problem of controlling the motion of a automobile so that it
follows a given trajectory on the ground, as shown in Figure 1.2. We use
the model derived in ÅM08, choosing the reference point to be the center of
the rear wheels. This gives dynamics of the form

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
v

l
tanφ,

(1.2)

where (x, y, θ) is the position and orientation of the vehicle, v is the veloc-
ity and φ is the steering angle, both considered to be inputs, and l is the
wheelbase.

A simple feasible trajectory for the system is to follow a straight line in
the x direction at lateral position yr and fixed velocity vr. This corresponds
to a desired state xd = (vrt, yr, 0) and nominal input ud = (vr, 0). Note that
(xd, ud) is not an equilibrium point for the system, but it does satisfy the
equations of motion.
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Linearizing the system about the desired trajectory, we obtain

Ad =
∂f

∂x

∣
∣
∣
∣
(xd,ud)

=





0 0 − sin θ
0 0 cos θ
0 0 0





∣
∣
∣
∣
∣
∣
(xd,ud)

=





0 0 0
0 0 1
0 0 0



 ,

Bd =
∂f

∂u

∣
∣
∣
∣
(xd,ud)

=





1 0
0 0
0 vr/l



 .

We form the error dynamics by setting e = x− xd and w = u− ud:

ėx = w1, ėy = eθ, ėθ =
vr

l
w2.

We see that the first state is decoupled from the second two states and
hence we can design a controller by treating these two subsystems separately.
Suppose that we wish to place the closed loop eigenvalues of the longitudinal
dynamics (ex) at λ1 and place the closed loop eigenvalues of the lateral
dynamics (ey, eθ) at the roots of the polynomial equation s2 + a1s+ a2 = 0.
This can accomplished by setting

w1 = −λ1ex

w2 =
l

vr

(a1ey + a2eθ).

Note that the gains depend on the velocity vr (or equivalently on the nominal
input ud), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the form

[
v
φ

]

= −





λ1 0 0

0
a1l

vr

a2l

vr





︸ ︷︷ ︸

Kd





x− vrt
y − yr

θ





︸ ︷︷ ︸

e

+

[
vr

0

]

︸ ︷︷ ︸

ud

.

The form of the controller shows that at low speeds the gains in the steering
angle will be high, meaning that we must turn the wheel harder to achieve
the same effect. As the speed increases, the gains become smaller. This
matches the usual experience that at high speed a very small amount of
actuation is required to control the lateral position of a car. Note that the
gains go to infinity when the vehicle is stopped (vr = 0), corresponding to
the fact that the system is not reachable at this point. ∇

One limitation of gain scheduling as we have described it is that a separate
set of gains must be designed for each operating condition xd. In practice,
gain scheduled controllers are often implemented by designing controllers at
a fixed number of operating points and then interpolating the gains between
these points, as illustrated in Figure 1.3. Suppose that we have a set of
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Figure 1.3: Gain scheduling. A general gain scheduling design involves finding a
gain K at each desired operating point. This can be thought of as a gain surface,
as shown on the left (for the case of a scalar gain). An approximation to this gain
can be obtained by computing the gains at a fixed number of operating points
and then interpolated between those gains. This gives an approximation of the
continuous gain surface, as shown on the right.

operating points xd,j , j = 1, . . . , N . Then we can write our controller as

u = ud −K(x)e K(x) =
N∑

j=1

(αj(x)Kj),

where Kj is a set of gains designed around the operating point xd,j and αj(x)
is a weighting factor. For example, we might choose the weights αj(x) such
that we take the gains corresponding to the nearest two operating points
and weight them according to the Euclidean distance of the current state
from that operating point; if the distance is small then we use a weight very
near to 1 and if the distance is far then we use a weight very near to 0.

While the intuition behind gain scheduled controllers is fairly clear, some
caution in required in using them. In particular, a gain scheduled controller
is not guaranteed to be stable even if K(x, µ) locally stabilizes the system
around a given equilibrium point. Gain scheduling can be proven to work
in the case when the gain varies sufficiently slowly (Exercise 1.3).

1.3 Trajectory Generation and Differential Flatness

We now return to the problem of generating a trajectory for a nonlinear
system. Consider first the case of finding a trajectory xd(t) that steers the
system from an initial condition x0 to a final condition xf . We seek a feasible
solution (xd(t), ud(t) that satisfies the dynamics of the process:

ẋd = f(xd, ud), xd(0) = x0, xd(T ) = xf . (1.3)

Formally, this problem corresponds to a two-point boundary value problem
and can be quite difficult to solve in general.
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input constraints → curvature constraints

Figure 1.4: Simple model for an automobile. We wish to find a trajectory from an
initial state to a final state that satisfies the dynamics of the system and constraints
on the curvature (imposed by the limited travel of the front wheels).

In addition, we may wish to satisfy additional constraints on the dy-
namics. These can include input saturation constraints |u(t)| < M , state
constraints g(x) ≤ 0 and tracking constraints h(x) = r(t), each of which
gives an algebraic constraint on the states or inputs at each instant in time.
We can also attempt to optimize a function by choosing (xd(t), ud(t)) to
minimize ∫ T

0
L(x, u)dt+ V (x(T ), u(T )).

As an example of the type of problem we would like to study, consider
the problem of steering a car from an initial condition to a final condition,
as show in Figure 1.4. To solve this problem, we must find a solution to
the differential equations (1.2) that satisfies the endpoint conditions. Given
the nonlinear nature of the dynamics, it seems unlikely that one could find
explicit solutions that satisfy the dynamics except in very special cases (such
as driving in a straight line).

A closer inspection of this system shows that it is possible to understand
the trajectories of the system by exploiting the particular structure of the
dynamics. Suppose that we are given a trajectory for the rear wheels of the
system, xd(t) and yd(t). From equation (1.2), we see that we can use this
solution to solve for the angle of the car by writing

ẏ

ẋ
=

sin θ

cos θ
=⇒ θd = tan−1(ẏd/ẋd).

Furthermore, given θ we can solve for the velocity using the equation

ẋ = v cos θ =⇒ vd = ẋd/ cos θd,

assuming cos θd 6= 0 (if it is, use v = ẏ/ sin θ). And given θ, we can solve for
φ using the relationship

θ̇ =
v

l
tanφ =⇒ φd = tan−1(

lθ̇d

vd

).

Hence all of the state variables and the inputs can be determined by the
trajectory of the rear wheels and its derivatives. This property of a system
is known as differential flatness.
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Definition 1.1 (Differential flatness). A nonlinear system (1.1) is differen-

tially flat if there exists a function α such that

z = α(x, u, u̇ . . . , u(p))

and we can write the solutions of the nonlinear system as functions of z and
an finite number of derivatives

x = β(z, ż, . . . , z(q)),

u = γ(z, ż, . . . , z(q)).

For a differentially flat system, all of the feasible trajectories for the
system can be written as functions of a flat output z(·) and its derivatives.
The number of flat outputs is always equal to the number of system inputs.
The kinematic car is differentially flat with the position of the rear wheels as
the flat output. Differentially flat systems were originally studied by Fliess
et al. [FLMR92].

Differentially flat systems are useful in situations where explicit trajec-
tory generation is required. Since the behavior of a flat system is determined
by the flat outputs, we can plan trajectories in output space, and then map
these to appropriate inputs. Suppose we wish to generate a feasible trajec-
tory for the the nonlinear system

ẋ = f(x, u), x(0) = x0, x(T ) = xf .

If the system is differentially flat then

x(0) = β
(
z(0), ż(0), . . . , z(q)(0)

)
= x0,

x(T ) = γ
(
z(T ), ż(T ), . . . , z(q)(T )

)
= xf

(1.4)

and any trajectory for z that satisfies these boundary conditions will be a
feasible trajectory for the system.

In particular, given initial and final conditions on z and its derivatives
that satisfy equation (1.4), any curve z(·) satisfying those conditions will
correspond to a feasible trajectory of the system. We can parameterize the
flat output trajectory using a set of smooth basis functions ψi(t):

z(t) =

N∑

i=1

αiψi(t), αi ∈ R.

We seek a set of coefficients αi, i = 1, . . . , N such that z(t) satisfies the
boundary conditions (1.4). The derivatives of the flat output can be com-
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puted in terms of the derivatives of the basis functions:

ż(t) =
N∑

i=1

αiψ̇i(t)

...

ż(q)(t) =
N∑

i=1

αiψ
(q)
i (t).

We can thus write the conditions on the flat outputs and their derivatives
as 
















ψ1(0) ψ2(0) . . . ψN (0)

ψ̇1(0) ψ̇2(0) . . . ψ̇N (0)
...

...
...

ψ
(q)
1 (0) ψ

(q)
2 (0) . . . ψ

(q)
N (0)

ψ1(T ) ψ2(T ) . . . ψN (T )

ψ̇1(T ) ψ̇2(T ) . . . ψ̇N (T )
...

...
...

ψ
(q)
1 (T ) ψ

(q)
2 (T ) . . . ψ

(q)
N (T )























α1
...
αN




 =

















z(0)
ż(0)

...

z(q)(0)

z(T )
ż(T )

...

z(q)(T )

















This equation is a linear equation of the form Mα = z̄. Assuming that
M has a sufficient number of columns and that it is full column rank, we
can solve for a (possibly non-unique) α that solves the trajectory generation
problem.

Example 1.2 Nonholonomic integrator

A simple nonlinear system called a nonholonomic integrator [Bro81] is given
by the differential equations

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2u1.

This system is differentially flat with flat output z = (x1, x3). The relation-
ship between the flat variables and the states is given by

x1 = z1,

x2 = ẋ3/ẋ1 = ż2/ż1,

x3 = z2.

(1.5)

Using simple polynomials as our basis functions,

ψ1,1(t) = 1, ψ1,2(t) = t, ψ1,3(t) = t2, ψ1,4(t) = t3,

ψ2,1(t) = 1 ψ2,2(t) = t, ψ2,3(t) = t2, ψ2,4(t) = t3,
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the equations for the feasible (flat) trajectory become














1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 T T 2 T 3 0 0 0 0
0 1 2T 3T 2 0 0 0 0
0 0 0 0 1 T T 2 T 3

0 0 0 0 0 1 2T 3T 2





























α11

α12

α13

α14

α21

α22

α23

α24















=















x1,0

1
x3,0

x2,0

x1,f

1
x3,f

x2,f















.

This is a set of 8 linear equations in 8 variables. It can be shown that the
matrix M is full rank when T 6= 0 and the system can be solved numerically.

∇

Note that no ODEs need to be integrated in order to compute the feasible
trajectories for a differentially flat system (unlike optimal control methods
that we will consider in the next chapter, which involve parameterizing the
input and then solving the ODEs). This is the defining feature of differ-
entially flat systems. The practical implication is that nominal trajectories
and inputs that satisfy the equations of motion for a differentially flat sys-
tem can be computed in a computationally efficient way (solving a set of
algebraic equations). Since the flat output functions do not have to obey a
set of differential equations, the only constraints that must be satisfied are
the initial and final conditions on the endpoints, their tangents, and higher
order derivatives. Any other constraints on the system, such as bounds on
the inputs, can be transformed into the flat output space and (typically)
become limits on the curvature or higher order derivative properties of the
curve.

If there is a performance index for the system, this index can be trans-
formed and becomes a functional depending on the flat outputs and their
derivatives up to some order. By approximating the performance index we
can achieve paths for the system that are suboptimal but still feasible. This
approach is often much more appealing than the traditional method of ap-
proximating the system (for example by its linearization) and then using
the exact performance index, which yields optimal paths but for the wrong
system.

In light of the techniques that are available for differentially flat systems,
the characterization of flat systems becomes particularly important. Unfor-
tunately, general conditions for flatness are not known, but many important
class of nonlinear systems, including feedback linearizable systems, are dif-
ferential flat. One large class of flat systems are those in “pure feedback
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(a) Kinematic car (b) Ducted fan

(c) N trailers

(d) Towed cable

Figure 1.5: Examples of flat systems.

form”:
ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...

ẋn = fn(x1, . . . , xn, u).

Under certain regularity conditions these systems are differentially flat with
output y = x1. These systems have been used for so-called “integrator back-
stepping” approaches to nonlinear control by Kokotovic et al. [KKM91] and
constructive controllability techniques for nonholonomic systems in chained
form [vNRM98]. Figure 1.5 shows some additional systems that are differ-
entially flat.

Example 1.3 Vectored thrust aircraft

Consider the dynamics of a planar, vectored thrust flight control system as
shown in Figure 1.6. This system consists of a rigid body with body fixed
forces and is a simplified model for a vertical take-off and landing aircraft
(see Example 2.9 in ÅM08). Let (x, y, θ) denote the position and orientation
of the center of mass of the aircraft. We assume that the forces acting on the
vehicle consist of a force F1 perpendicular to the axis of the vehicle acting
at a distance r from the center of mass, and a force F2 parallel to the axis of
the vehicle. Let m be the mass of the vehicle, J the moment of inertia, and
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y

θ

F1

F2

r

x

Figure 1.6: Vectored thrust aircraft (from ÅM08). The net thrust on the aircraft
can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

g the gravitational constant. We ignore aerodynamic forces for the purpose
of this example.

The dynamics for the system are

mẍ = F1 cos θ − F2 sin θ,

mÿ = F1 sin θ + F2 cos θ −mg,

Jθ̈ = rF1.

(1.6)

Martin et al. [MDP94] showed that this system is differentially flat and that
one set of flat outputs is given by

z1 = x− (J/mr) sin θ,

z2 = y + (J/mr) cos θ.
(1.7)

Using the system dynamics, it can be shown that

z̈1 cos θ + (z̈2 + g) sin θ = 0 (1.8)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of
π and away from the singularity z̈1 = z̈2 + g = 0. The remaining states and
the forces F1(t) and F2(t) can then be obtained from the dynamic equations,
all in terms of z1, z2, and their higher order derivatives. ∇

1.4 Further Reading

The two degree of freedom controller structure introduced in this chapter is
described in a bit more detail in ÅM08 (in the context of output feedback
control) and a description of some of the origins of this structure are provided
in the “Further Reading” section of Chapter 8. Gain scheduling is a classical
technique that is often omitted from introductory control texts, but a good
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description can be found in the survey article by Rugh [Rug90] and the work
of Shamma [Sha90]. Differential flatness was originally developed by Fliess,
Levin, Martin and Rouchon [FLMR92]. See [Mur97] for a description of
the role of flatness in control of mechanical systems and [vNM98] for more
information on flatness applied to flight control systems.

Exercises

1.1 (Feasible trajectory for constant reference) Consider a linear input/output
system of the form

Ȧx+Bu, y = Cx (1.9)

in which we wish to track a constant reference r. A feasible (steady state)
trajectory for the system is given by solving the equation

[
0
r

]

=

[
A B
C 0

] [
xd

ud

]

for xd and ud.

(a) Show that these equations always have a solution as long as the linear
system (1.9) is reachable.

(b) In Section 6.2 of ÅM08 we showed that the reference tracking problem
could be solved using a control law of the form u = −Kx+ krr. Show that
this is equivalent to a two degree of freedom control design using xd and ud

and give a formula for kr in terms of xd and ud. Show that this formula
matches that given in ÅM08.

1.2 A simplified model of the steering control problem is described in
Åström and Murray, Example 2.8. The lateral dynamics can be approxi-
mated by the linearized dynamics

ż =

[
0 v
0 0

]

z +

[
0
1

]

u

y = z1,

where z = (y, θ) ∈ R
2 is the state of the system and v is the speed of

the vehicle. Suppose that we wish to track a piecewise constant reference
trajectory

r = square(2πt/20),

where square is the square wave function in MATLAB. Suppose further
that the speed of the vehicle varies according to the formula

v = 5 + 3 sin(2πt/50).

Design and implement a gain-scheduled controller for this system by first
designing a state space controller that places the closed loop poles of the
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system at the roots of s2+2ζω0s+ω
2
0, where ζ = 0.7 and ω0 = 1. You should

design controllers for three different parameter values: v = 2, 5, 10. Then
use linear interpolation to compute the gain for values of v between these
fixed values. Compare the performance of the gain scheduled controller to
a simple controller that assumes v = 5 for the purpose of the control design
(but leaving v time-varying in your simulation).

1.3 (Stability of gain scheduled controllers for slowly varying systems) Con-
sider a nonlinear control system with gain scheduled feedback

ė = f(e, v) v = k(µ)e,

where µ(t) ∈ R is an externally specified parameter (e.g., the desired tra-
jectory) and k(µ) is chosen such that the linearization of the closed loop
system around the origin is stable for each fixed µ.

Show that if |µ̇| is sufficiently small then the equilibrium point is locally
asymptotically stable for the full nonlinear, time-varying system. (Hint: find
a Lyapunov function of the form V = xTP (µ)x based on the linearization of
the system dynamics for fixed µ and then show this is a Lyapunov function
for the full system.)

1.4 (Flatness of systems in reachable canonical form) Consider a single input
system in reachable canonical form [ÅM08, Sec. 6.1]:

dx

dt
=










−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0










x+










1
0
0
...
0










u,

y =
[
b1 b2 b3 . . . bn

]
x+ du.

(1.10)

Suppose that we wish to find an input u that moves the system from x0 to
xf . This system is differentially flat with flat output given by z = xn and
hence we can parameterize the solutions by a curve of the form

xn(t) =
N∑

k=0

αkt
k, (1.11)

where N is a sufficiently large integer.

(a) Compute the state space trajectory x(t) and input u(t) corresponding to
equation (1.11) and satisfying the differential equation (1.10). Your answer
should be an equation similar to equation (1.5) for each state xi and the
input u.

(b) Find an explicit input that steers a double integrator system between
any two equilibrium points x0 ∈ R

2 and xf ∈ R
2.
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(c) Show that all reachable systems are differentially flat and give a formula
for finding the flat output in terms of the dynamics matrix A and control
matrix B.

1.5 Consider the lateral control problem for an autonomous ground vehicle
as described in Example 1.1 and Section 1.3. Using the fact that the sys-
tem is differentially flat, find an explicit trajectory that solves the following
parallel parking maneuver:

x0 = (0, 4)

xf = (0, 0)

xi = (6, 2)

Your solution should consist of two segments: a curve from x0 to xi with
v > 0 and a curve from xi to xf with v < 0. For the trajectory that you
determine, plot the trajectory in the plane (x versus y) and also the inputs
v and φ as a function of time.

1.6 Consider first the problem of controlling a truck with trailer, as shown
in the figure below:

ẋ = cos θ u1

ẏ = sin θ u1

φ̇ = u2

θ̇ =
1

l
tan φ u1

θ̇1 =
1

d
cos(θ − θ1) sin(θ − θ1)u1,

The dynamics are given above, where (x, y, θ) is the position and orientation
of the truck, φ is the angle of the steering wheels, θ1 is the angle of the trailer,
and l and d are the length of the truck and trailer. We want to generate
a trajectory for the truck to move it from a given initial position to the
loading dock. We ignore the role of obstacles and concentrate on generation
of feasible trajectories.

(a) Show that the system is differentially flat using the center of the rear
wheels of the trailer as the flat output.

(b) Generate a trajectory for the system that steers the vehicle from an
initial condition with the truck and trailer perpendicular to the loading
dock into the loading dock.
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(c) Write a simulation of the system stabilizes the desired trajectory and
demonstrate your two-degree of freedom control system maneuvering from
several different initial conditions into the parking space, with either distur-
bances or modeling errors included in the simulation.


