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Chapter 4

Stochastic Systems

In this chapter we present a focused review of stochastic systems, oriented
toward the material that is required in Chapters 5 and 6. After a brief review
of random variables, we define discrete-time and continuous-time random
processes, including the expectation, (co-)variance and correlation functions
for a random process. These definitions are used to describe linear stochastic
systems (in continuous time) and the stochastic response of a linear system
to a random process (e.g., noise). We initially derive the relevant quantities
in the state space, followed by a presentation of the equivalent frequency
domain concepts.

Prerequisites. Readers should be familiar with basic concepts in probability,
including random variables and standard distributions. We do not assume
any prior familiarity with random processes.

Caveats. This chapter is written to provide a brief introduction to stochastic
processes that can be used to derive the results in the following chapters. In
order to keep the presentation compact, we gloss over several mathematical
details that are required for rigoroous presentation of the results. A more
detailed (and rigorous) derivation of this material is available in the book
by Åström [Åst06].

4.1 Review of Random Variables

A (continuous) random variable X is a variable that can take on any value
according to a probability distribution P :

P (xl ≤ X ≤ xu) = probability that x takes on a value in the range xl, xu.

More generally, we write P (A) as the probability that an event A will occur
(e.g., A = {xl ≤ X ≤ xu}). It follows from the definition that if X is a
random variable in the range [L, U ] then P (L ≤ X ≤ U) = 1. Similarly, if
Y ∈ [L, U ] then P (L ≤ X ≤ Y ) = 1 − P (Y ≤ X ≤ U).

We characterize a random variable in terms of the probability density
function (pdf), p(x):

P (xl ≤ X ≤ xu) =

∫ xu

xl

p(x)dx (4.1)

This can be taken as the definition of the pdf. We will sometimes write
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Figure 4.1: Probability density function (pdf) for a Gaussian distribution.

pX(x) when we wish to make explicit that the pdf is associated with the
random variable X. Note that we use capital letters to refer to a random
variable and lower case letters to refer to a specific value.

Some standard probability distributions include a uniform distribution,

p(x) =
1

U − L
, (4.2)

and a Gaussian distribution (also called a normal distribution),

p(x) =
1√

2πσ2
e
−

1
2

„

x−µ
σ

«

2

. (4.3)

In the normal distribution, the parameter µ is called the mean of the distri-
bution and σ is called the standard deviation of the distribution. Figure 4.1
gives a graphical representation of a Gaussian pdf. There many other dis-
tributions that arise in applications, but for the purpose of these notes we
focus on uniform distributions and Gaussian distributions.

If two random variables are related, we can talk about their joint prob-
ability: PX,Y (A, B) is the probability that both event A occurs for X and
B occurs for Y . This is sometimes written as P (A ∩ B). For continuous
random variables, these can be characterized in terms of a joint probability
density function

P (xl ≤ X ≤ xu, yl ≤ Y ≤ yu) =

∫ yu

yl

∫ xu

xl

p(x, y) dxdy. (4.4)

The joint pdf thust describes the relationship between X and Y . We say
that X and Y are independent if p(x, y) = p(x)p(y), which implies that
PX,Y (A, B) = PX(A)PY (B) for events A associated with X and B associated
with Y .

The conditional probability for an event A given that an event B has
occurred, written as P (A|B), is given by

P (A|B) =
P (A ∩ B)

P (B)
. (4.5)

If the events A and B are independent, then P (A|B) = P (A). Note that the
individual, joint and conditional probability distributions are all different,
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so we should really write PX,Y (A ∩ B), PX|Y (A|B) and PY (B).
If X is dependendent on Y then Y is also dependent on X. Bayes’ rule

relates the conditional and individual probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
. (4.6)

The analog of the probability density function for conditional probability
is the conditional probability density function p(x|y)

p(x|y) =







p(x, y)

p(y)
0 < p(y) < ∞

0 otherwise.
(4.7)

It follows that
p(x, y) = p(x|y)p(y) (4.8)

and

P (xl ≤ X ≤ xu|y) =

∫ xu

xl

p(x|y)dx =

∫ xu

xl
p(x, y)dx

p(y)
. (4.9)

If X and Y are independent than p(x|y) = p(x) and p(y|x) = p(y). Note that
p(x, y) and p(x|y) are different density functions, though they are related
through equation (4.8). If X and Y are related with conditional probability
distribution p(x|y) then

p(x) =

∫ ∞

−∞
p(x, y)dy =

∫ ∞

−∞
p(x|y)p(y)dy.

Example 4.1 Conditional probability for sum

Consider three random variables X, Y and Z related by the expression

Z = X + Y.

In other words, the value of the random variable Z is given by choosing
values from two random variables X and Y and adding them. We assume
that X and Y are independent Gaussian random variables with mean µ1

and µ2 and standard deviation σ = 1 (the same for both variables).
Clearly the random variable Z is not independent of X (or Y ) since if

we know the values of X then it provides information about the likely value
of Z. To see this, we compute the joint probability between Z and X. Let

A = {xl ≤ x ≤ xu}, B = {zl ≤ z ≤ zu}.
The joint probability of both events A and B occurring is given by

P (A ∩ B) = P (xl ≤ x ≤ xu, zl ≤ x + y ≤ zu)

= P (xl ≤ x ≤ xu, zl − x ≤ y ≤ zu − x).

We can compute this probability by using the probability density functions
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for X and Y :

P (A ∩ B) =

∫ xu

xl

(

∫ zu−x

zl−x

pY (y)dy
)

pX(x)dx

=

∫ xu

xl

∫ zu

zl

pY (z − x)pX(x)dzdx =:

∫ zu

zl

∫ xu

xl

pZ,X(z, x)dxdz.

Using Gaussians for X and Y we have

pZ,X(z, x) =
1√
2π

e−
1
2(z − x − µY )2 · 1√

2π
e−

1
2(x − µX)2

=
1

2π
e−

1
2

(

(z − x − µY )2 + (x − µX)2
)

.

∇

Given a random variable X, we can define various standard measures of
the distribution. The expectation of a random variable is defined as

E{X} =

∫ ∞

−∞
x p(x) dx,

and the mean square of a random variable is

E{X2} =

∫ ∞

−∞
x2 p(x) dx.

If we let µ represent the expectation (or mean) of X then we define the
variance of X as

E{(X − µ)} =

∫ ∞

−∞
(x − µ)2 p(x) dx.

We will often write the variance as σ2. As the notation indicates, if we have
a Gaussian random variable with mean µ and variance σ2, then the expec-
tation and variance as computed above return precisely those quantities.

The following properties follow from the definitions.

Proposition 4.1.

1. E{αX + βY } = αE{X} + βE{Y }

2. If X and Y are Gaussian random processes/variables with

p(x) =
1

√

2πσ2
x

e
− 1

2

“

x−µx
σx

”

2

p(y) =
1

√

2πσ2
y

e
− 1

2

“

y−µy

σy

”

2

then X + Y is a Gaussian random process/variable with

p(x + y) =
1

√

2πσ2
z

e
− 1

2

“

x+y−µz
σz

”

2
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where
µz = µx + µy σ2

z = σ2
x + σ2

y

3. If X is a Gaussian random variable with means µ and variance σ2,
then αX is Gaussian with mean αX and variance α2σ2.

Proof. The first item follows directly from the definition of expection. The
second item is left as an exercise. The third statement is proved using the
definitions:

P (xl ≤ αX ≤ xu) = P (
xl

α
≤ X ≤ xu

α
)

=

∫ xu
α

xl
α

1√
2πσ2

e−
1

2
( x−µ

σ )
2

dx

=

∫ xu

xl

1

α
√

2πσ2
e−

1

2
( y/α−µ

σ )
2

dy

=

∫ xu

xl

1√
2πα2σ2

e−
1

2
( y−αµ

ασ )
2

dy =

∫ xu

xl

p(y) dy

4.2 Introduction to Random Processes

In this section we generalize the concept of a random variable to that of a
random process. We focus on the scalar state, discrete-time case and try to
build up some intuition for the basic concepts that can later be extended to
the continuous-time, multi-state case.

A discrete-time random process is a stochastic system characterized by
the evolution of a sequence of random variables X[k]. As an example, con-
sider a discrete-time linear system with dynamics

x[k + 1] = Ax[k] + Bu[k] + Fv[k]. (4.10)

As in ÅM08, x ∈ R
n represents the state of the system, u ∈ R

p is the vec-
tor of inputs and y ∈ R

q is the vector of outputs. The signal v represents
the process disturbances. The (possibly vector-valued) signal v represents
disturbances to the process dynamics and w represents noise in the mea-
surements. For simplicity, we will take u = 0, n = 1 (single state) and
F = 1.

We wish to describe the evolution of the dynamics when the disturbances
and noise are not given as deterministic signals, but rather are chosen from
some probability distribution. Thus we will let V [k] be random variables
where the values at each instant k are chosen from the probability distri-
bution PV,k. As the notation indicates, the distributions might depend on
the time instant k, although the most common case is to have a stationary
distribution in which the distributions are independent of k.
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In addition to stationarity, we will often also assume that distribution of
values of V at time k is independent of the values of V at time l if k 6= l.
In other words, V [k] and V [l] are two separate random variables that are
independent of each other. We say that the corresponding random process
is uncorrelated (defined more formally below). As a consequence of our
independence assumption, we have that

E{V [k]V [l]} = δ(k − l)E{V 2[k]} =

{

E{V 2[k]} k = l

0 k 6= l.

In the case that V [k] is a Gaussian with mean zero and standard deviation
σ, then E{V [k]V [l]} = δ(k − l)σ2.

We next wish to describe the evolution of the state x in equation (4.10)
in the case when V is a random variable. In order to do this, we describe
the state x as a sequence of random variables X[k], k = 1, · · · , N . Looking
back at equation (4.10), we see that even if V [k] is an uncorrelated sequence
of random variables, then the states X[k] are not uncorrelated since

X[k + 1] = AX[k] + FV [k],

and hence the probability distribution for X at time k + 1 depends on the
value of X at time k (as well as the value of V at time k), similar to the
situation in Example 4.1.

Since each X[k] is a random variable, we can define the mean and variance
as µ[k] and σ2[k] using the previous definitions at each time k:

µ[k] = E{X[k]} =

∫ ∞

−∞
x p(x, k) dx,

σ2]k] = E{(X[k] − µ[k])2} =

∫ ∞

−∞
(x − µ[k])2 p(x, k) dx.

To capture the relationship between the current state and the future state,
we define the correlation function for a random process as

ρ(k1, k2) = E{X[k1]X[k2]} =

∫ ∞

−∞
x1x2 p(x1, x2; k1, k2) dx1dx2

The function p(x1, x2; k1, k2) is the joint density function, which depends on
the times k1 and k2. A process is stationary if p(x, k + κ) = p(x, κ) for all
k, p(x1, x2; k1 + κ, k2 + κ) = p(x1, x2; k1, k2), etc. In this case we can write
p(x1, x2; κ) for the joint probability distribution. We will almost always
restrict to this case. Similarly, we will write p(k1, k2) as p(κ) = p(κ, k + κ).

We can compute the the correlation function by explicitly computing
the joint pdf (see Example 4.1) or by directly computing the expectation.
Suppose that we take a random process of the form (4.10) with x[0] = 0 and
V having zero mean and standard deviation σ. The correlation function is
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given by

E{x[k1]x[k2]} = E
{

(

k1−1
∑

i=0

Ak1−iBV [i]
)(

k2−1
∑

j=0

Ak2−jBV [j]
)

}

= E
{

k1−1
∑

i=0

k2−1
∑

j=0

Ak1−iBV [i]V [j]BAk2−j
}

.

We can now use the linearity of the expectation operator to pull this inside
the summations:

E{x[k1]x[k2]} =

k1−1
∑

i=0

k2−1
∑

j=0

Ak1−iBE{V [i]V [j]}BAk2−j

=

k1−1
∑

i=0

k2−1
∑

j=0

Ak1−iBσ2δ(i − j)BAk2−j

=

k1−1
∑

i=0

Ak1−iBσ2BAk2−i.

Note that the correlation function depends on k1 and k2.
We can see the dependence of the correlation function on the time more

clearly by letting d = k2 − k1 and writing

ρ(k, k + d) = E{x[k]x[kd]} =

k1−1
∑

i=0

Ak−iBσ2BAd+k−i

=
k

∑

j=1

AjBσ2BAj+d =
(

k
∑

j=1

AjBσ2BAj
)

Ad.

In particular, if the discrete time system is stable then |A| < 1 and the
correlation function decays as we take points that are further departed in
time (d large). Furthermore, if we let k → ∞ (i.e., look at the steady state
solution) then the correlation function only depends d (assuming the sum
converges) and hence the steady state random process is stationary.

4.3 Continuous-Time, Vector-Valued Random Processes

A continuous-time random process is a stochastic system characterized by
the evolution of a random variable X(t), t ∈ [0, T ]. As in the case of the a
discrete-time random process, we are interested in understanding how the
(random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X(t1) with X(t2).

We call X(t) ∈ R
n the state of the random process. For the case n > 1,
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we have a vector of random processes:

X(t) =







X1(t)
...

Xn(t)







We can characterize the state in terms of a (vector-valued) time-varying pdf,

P (xl ≤ Xi(t) ≤ xu) =

∫ xu

xl

pXi
(x; t)dx.

Note that the state of a random process is not enough to determine the
next state (otherwise it would be a deterministic process). We typically
omit indexing of the individual states unless the meaning is not clear from
context.

We can characterize the dynamics of a random process by its statistical
characteristics, written in terms of joint probability density functions:

P (x1l ≤ X(t1) ≤ x1u, x2l ≤ X(t2) ≤ x2u) =

∫ x2u

x2l

∫ x1u

x1l

p(x1, x2; t1, t2) dx1dx2

The function p(x1, x2; t1, t2) is called a joint probability density function and
depends both on the individual states that are being compared and the
time instants over which they are compared. In practice, pdf’s are not
available for most random processes, so this formulation is mainly useful for
analytical derivations. Typically we will assume a certain pdf (or class of
pdfs) as a model and then do our calculations across this class. One of the
most common classes of random variables are Gaussian distributions and,
as we shall see, one can often compute closed for solutions in this case.

In general, the distributions used to describe a random process depend on
the specific time or times that we evaluate the random variables. However,
in some cases the relationship only depends on the different in time and not
the absolute times (similar to the notion of time invariance in deterministic
systems, as described in ÅM08). A process is stationary if p(x, t+τ) = p(x, t)
for all τ , p(x1, x2; t1 + τ, t2 + τ) = p(x1, x2; t1, t2), etc. In this case we
can write p(x1, x2; τ) for the joint probability distribution and we write
R(τ) := R(t, t + τ). Stationary distributions roughly correspond to the
steady state properties of a random process and we will often restrict our
attention to this case.

In practice we don’t usually specify random processes via the joint prob-
ability distribution p(xi, xj ; t1, t2) but instead describe them in terms of
their mean, covariance and correlation function. The previous definitions
for mean, variance and correlation can be extended to the continuous time,
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ρ(t1 − t2)

τ = t1 − t2

Figure 4.2: Correlation function for a first-order Markov process.

vector-valued case by indexing the individual state:

E{X(t)} =







E{X1(t)}
...

E{Xn(t)}







E{X(t)XT (t)} =







E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}
. . .

...
E{Xn(t)Xn(s)}






=: R(t, s)

As in the discrete time case, the random variables and their statistical prop-
erties are all indexed by the time t (and s). The matrix R(t, s) is called the
correlation matrix for X(t) ∈ R

n. If t = s then R(t, t) describes how the
elements of x are correlated at time t (with each other) and is called the
covariance matrix. Note that the elements on the diagonal of R(t, t) are the
variances of the corresponding scalar variables.

Example 4.2 First-order Markov process

Consider a first order Markov process defined by a Gaussian pdf with µ = 0,

p(x, t) =
1√

2πσ2
e−

1

2

x2

σ2 ,

and a correlation function given by

ρ(t1, t2) =
Q

2ω0
e−ω0|t2−t1|

The correlation function is illustrated in Figure 4.2. This is a stationary
process. ∇

The terminology and notation for covariance and correlation varies be-
tween disciplines. In some communities (e.g., statistics), the term “cross-
covariance” is used to refer to the covariance between two random vectors
X and Y , to distinguish this from the covariance of the elements of X with
each other. The term “cross-correlation” is sometimes also used. MATLAB

has a number of functions to implement covariance and correlation, which
mostly match the terminology here:

• cov(X) - this returns the variance of the vector X that represents sam-
ples of a given random variable.



4.4. LINEAR STOCHASTIC SYSTEMS 10

• cov(X, Y) - I’m not sure what this means yet.

• xcorr(X, Y) - the “cross-correlation” between two random sequences.
If these sequences came from a random process, this is basically the
correlation function.

• xcov(X, Y) - this returns the “cross-covariance”, which MATLAB de-
fines as the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main
point here is to be careful to make sure you know what you really want.

4.4 Linear Stochastic Systems

We now consider the problem of how to compute the response of a linear
system to a random variable. We assume we have a linear system described
either in state space or as a transfer function:

Ẋ = AX + FV

Y = CX
Hyv(s) = C(sI − A)−1F.

Given an input V which is itself a random process with mean µ(t), variance
σ2(t) and correlation ρ(t), what is the description of the random process Y ?

Let V be an uncorrelated, Gaussian random process, with zero mean and
covariance Q:

ρ(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y (t) =

∫ t

0
h(t − τ)V (τ) dτ,

where h(t − τ) is the impulse response for the sytem

h(t − τ) = CeA(t−τ)B + Dδ(t − τ).

We now compute the statistics of the output, starting with the mean:

E{Y } = E{
∫ t

0
h(t − η)V (η) dη}

=

∫ t

0
h(t − η)E{V (η)} dη = 0.

Note here that we have relied on the linearity of the convolution integral to
pull the expectation inside the integral.

We can compute the covariance of the output by computing the correla-
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tion ρ(τ) and setting σ2 = ρ(0). The correlation function for y is

ρY (t, s) = E{Y (t)Y (s)} = E{
∫ t

0
h(t − η)V (η) dη ·

∫ s

0
h(s − ξ)V (ξ) dξ}

= E{
∫ t

0

∫ s

0
h(t − η)V (η)V (ξ)h(s − ξ) dηdξ}

Once again linearity allows us to exchange expectation and integration

ρy(t, s) =

∫ t

0

∫ s

0
h(t − η)E{V (η)V (ξ)}h(s − ξ) dηdξ

=

∫ t

0

∫ s

0
h(t − η)Qδ(η − ξ)h(s − ξ) dηdξ

=

∫ t

0
h(t − η)Qh(s − η) dη

Now let τ = s − t and write

ρy(τ) = ρy(t, t + τ) =

∫ t

0
h(t − η)Qh(t + τ − η) dη

=

∫ t

0
h(ξ)Qh(ξ + τ) dξ (setting ξ = t − η)

Finally, we let t → ∞ (steady state)

lim
t→∞

ρy(t, t + τ) = ρ̄y(τ) =

∫ ∞

0
h(ξ)Qh(ξ + τ)dξ (4.11)

If this integral exists, then we can compute the second order statistics for
the output Y .

We can provide a more explicit formula for the correlation function ρ in
terms of the matrices A, F and C by expanding equation (4.11). We will
consider the general case where V ∈ R

m and Y ∈ R
p and use the correlation

matrix R(t, s) instead of the correlation function ρ(t, s). Define the state
transition matrix Φ(t, t0) = eA(t−t0) so that the solution of system (??) is
given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, λ)Fv(λ)dλ

We will also make use of a special type of random process refered to
as “white noise”. A white noise process X(t) satisfies E{X(t)} = 0 and
R(t, s) = Wδ(s − t), where δ(τ) is the impulse function. White noise is an
idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that ρ(0) = E{X2(t)} = ∞,
so we never see this signal in practce. However, like the step function, it is
very useful for characterizing the responds of a linear system, as described
in the following proposition. A more formal definition of white noise, which
gives better insight into the terminology, is given in the next section.
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Proposition 4.2 (Stochastic reponse to white noise). Let E{X(t0)X
T (t0)} =

P (t0) and V be white noise with E{V (λ)V T (ξ)} = RV δ(λ − ξ). Then the
correlation matrix for X is given by

RX(t, s) = P (t)ΦT (s, t)

where P (t) satisfies the linear matrix differential equation

Ṗ (t) = AP + PAT + FRV F, P (0) = P0.

Proof. Using the definition of the correlation matrix, we have

E{X(t)XT (s)} = E
{

Φ(t, 0)X(0)XT (0)ΦT (t, 0) + cross terms

+

∫ t

0
Φ(t, ξ)FV (ξ) dξ

∫ s

0
V t(λ)F T Φ(s, λ) dλ

}

= Φ(t, 0)E{X(0)XT (0)}Φ(s, 0)

+

∫ t

0

∫ s

0
Φ(t, ξ)FE{V (ξ)V T (λ)}F T Φ(s, λ) dξ dλ

= Φ(t, 0)P (0)φT (s, 0) +

∫ t

0
Φ(t, λ)FRV (λ)F T Φ(s, λ) dλ.

Now use the fact that Φ(s, 0) = Φ(s, t)Φ(t, 0) (and similar relations) to
obtain

RX(t, s) = P (t)ΦT (s, t)

where

P (t) = Φ(t, 0)P (0)ΦT (t, 0) +

∫ T

0
Φ(t, λ)FRV F T (λ)ΦT (t, λ)dλ

Finally, differentiate to obtain

Ṗ (t) = AP + PAT + FRV F, P (0) = P0

(see Friedland for details).

The correlation matrix for the output Y can be computing using the
fact that Y = CX and hence RY = CT RXC. We will often be interested
in the steady state properties of the output, which given by the following
proposition.

Proposition 4.3 (Steady state response to white noise). For a time-invariant
linear system driven by white noise, the correlation matrices for the state
and output are given by

RX(τ) = RX(t, t + τ) = PeAT τ , RY (τ) = CRX(τ)CT

where P satisfies the algebraic equation

AP + PAT + FRV F T = 0 P > 0. (4.12)
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Equation (4.12) is called the Lyapunov equation and can be solved in
MATLAB using the function lyap.

Example 4.3 First-order system

Consider a scalar linear process

Ẋ = −aX + V, Y = cX,

where V is a white, Gaussian random process with variance σ2. Using the
results of Proposition 4.2, the correlation function for X is given by

RX(t, t + τ) = p(t)e−aτ

where p(t) > 0 satisfies
p(t) = −2ap + σ2.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear dif-
ferential equation:

p(t) = e−2atp(0) + (1 − e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

ρ(t, t + τ) = c2(e−2atp(0) + (1 − e−2at)
σ2

2a
)e−aτ .

In steady state, the correlation function for the output becomes

ρ(τ) =
c2σ2

2a
e−aτ .

Note correlation function has the same form as the first-order Markov pro-
cess in Example 4.2 (with Q = c2σ2). ∇

4.5 Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic
linear system either in the state space or the frequency domain. The fre-
quency domain approach provides a very rich set of tools for modeling and
analysis of interconnected systems, relying on the frequency response and
transfer functions to represent the flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the
properties of the response. In particular, if we let ρ(τ) be the correlation
function for a random process, then we define the power spectral density
function as the Fourier transform of ρ:

S(ω) =

∫ ∞

−∞
ρ(τ)e−jωτ dτ, ρ(τ) =

1

2π

∫ ∞

−∞
S(ω)ejωτ dτ.

The power spectral density provides an indication of how quickly the values
of a random process can change through the frequency content: if there
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log ω

log S(ω)

ω0

Figure 4.3: Spectral power density for a first-order Markov process.
.

is high frequency content in the power spectral density, the values of the
random variable can change quickly in time.

Example 4.4 First-order Markov process

To illustrate the use of these measures, consider a first-order Markov process
as defined in Example 4.2. The correlation function is

ρ(τ) =
Q

2ω0
e−ω0(τ).

The power spectral density becomes

S(ω) =

∫ ∞

−∞

Q

2ω0
e−ω|τ |e−jωτ dτ

=

∫ 0

−∞

Q

2ω0
e(ω−jω)τ dτ +

∫ ∞

0

Q

2ω0
e(−ω−jω)τ dτ =

Q

ω2 + ω2
0

We see that the power spectral density is similar to a transfer function and
we can plot S(ω) as a function of ω in a manner similar to a Bode plot,
as shown in Figure 4.3. Note that although S(ω) has a form similar to
a transfer function, it is a real-valued function and is defined for complex
s. ∇

Using the power spectral density, we can more formally define “white
noise”: a white noise process is a zero-mean, random process with power
spectral density S(ω) = W = constant for all ω. If X(t) ∈ R

n (a ran-
dom vector), then W ∈ R

n×n. We see that a random process is white if
all frequencies are equally represented in its power spectral density. This
spectral property is the reason for the terminology “white”. The following
proposition verifies that this formal definition agrees with our previous (time
domain) definition.

Proposition 4.4. For a white noise process,

ρ(τ) =
1

2π

∫ ∞

−∞
S(ω)ejωτ dτ = Wδ(τ),

where δ(τ) is the unit impulse function.



4.5. RANDOM PROCESSES IN THE FREQUENCY DOMAIN 15

Proof. If τ 6= 0 then

ρ(τ) =
1

2π

∫ ∞

−∞
W (cos(ωτ) + j sin(ωτ) dτ = 0

If τ = 0 then ρ(τ) = ∞. Can show that
∫ ǫ

−ǫ

∫ ∞

−∞
(· · · ) dωdτ = W

Given a linear system

Ẋ = AX + FV, Y = CX,

with V given by white noise, we can compute the spectral density func-
tion corresponding to the output Y . We start by computing the Fourier
transform of the steady state correlation function 4.11:

Sy(ω) =

∫ ∞

−∞

[
∫ ∞

0
h(ξ)Qh(ξ + τ)dξ

]

e−jωτ dτ

=

∫ ∞

0
h(ξ)Q

[
∫ ∞

−∞
h(ξ + τ)e−jωτ dτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[
∫ ∞

0
h(λ)e−jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)ejωξ dξ · QH(jω) = H(−jω)QuH(jω)

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in

the frequency domain is that the composition of two linear systems can be
represented by multiplication. In the case of the power spectral density, if we
pass white noise through a system with transfer function H1(s) followed by
transfer function H2(s), the resulting power spectral density of the output
is Composition:

Sy(ω) = H1(−jω)H2(−jω)QuH2(jω)H1(jω).

As stated earlier, white noise is an idealizd signal that is not seen in
practice. One of the ways to produced more realistic models of noise and
disturbances it to apply a filter to white noise that matches a measured
power spectral density function. Thus, we wish to find a covariance W

and filter H(s) such that we match the statistics S(ω) of a measured noise
or disturbance signal. In other words, given S(ω), find W > 0 and H(s)
such that S(ω) = H(−jω)WH(jω). This problem is know as the spectral
factorization problem.

Figure 4.4 summarizes the relationship between the time and frequency
domains.
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p(v) =
1

√
2πRV

e
−

x
2

2RV

SV (ω) = RV

V −→ H −→ Y
p(y) =

1
√

2πRY

e
−

x
2

2RY

SY (ω) = H(−jω)RV H(jω)

ρV (τ) = RV δ(τ)
Ẋ = AX + FV

Y = CX

ρY (τ) = RY (τ) = CPe
−Aτ

C
T

AP + PA
T + FRV F

T = 0

Figure 4.4: Summary of steady state stochastic response.

4.6 Further Reading

There are several excellent books on stochastic systems that cover the re-
sults in this chapter in much more detail. For discrete-time systems, the
textbook by Kumar and Varaiya [KV86] provides an derivation of the key
results. Results for continuous-time systems can be found in the textbook by
Friedland [Fri04]. Åström [Åst06] gives a very elegant derivation in a unified
framework that integrates discrete-time and continuous-time systems.

Exercises

4.1 A random variable Y is the sum of two independent normally (Gaussian)
distributed random variables having means m1, m2 and variances σ2

1, σ2
2

respectively. Show that the probability density function for Y is

p(y) =
1

2πσ1σ2

∫ ∞

−∞
exp

{

−(y − x − m1)
2

2σ2
1

− (x − m2)
2

2σ2
2

}

dx

and confirm that this is normal (Gaussian) with mean m1+m2 and variance
σ2

1 + σ2
2. (Hint: Use the fact that p(z|y) = px(x) = px(z − y).)

4.2 (ÅM08, Exercise 7.13) Consider the motion of a particle that is under-
going a random walk in one dimension (i.e., along a line). We model the
position of the particle as

x[k + 1] = x[k] + u[k],

where x is the position of the particle and u is a white noise processes with
E{u[i]} = 0 and E{u[i] u[j]}Ruδ(i − j). We assume that we can measure
x subject to additive, zero-mean, Gaussian white noise with covariance 1.
Show that the expected value of the particle as a function of k is given by

E{x[k]} = E{x[0]} +
k−1
∑

i=0

E{u[i]} = E{x[0]} =: µx
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and the coveriance E{(x[k] − µx)2} is given by

E{(x[k] − µx)2} =

k−1
∑

i=0

E{u2[i]} = kRu

4.3 Consider a second order system with dynamics
[

ẋ1

ẋ2

]

=

[

−a 0
0 −b

] [

x1

x2

]

+

[

1
1

]

v, y =
[

1 1
]

[

x1

x2

]

that is forced by Gaussian white noise with zero mean and variance σ2.
Assume a, b > 0.

(a) Compute the correlation function ρ(τ) for the output of the system.
Your answer should be an explicit formula in terms of a, b and σ.

(b) Assuming that the input transients have died out, compute the mean
and variance of the output.

4.4 Find a constant matrix A and vectors F and C such that for

ẋ = Ax + Fw, y = Cx

the power spectrum of y is given by

S(ω) =
1 + ω2

(1 − 7ω2)2 + 1

Describe the sense in which your answer is unique.
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