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Chapter 2

Optimal Control

This set of notes expands on Chapter 6 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the concepts of reachability and state
feedback. We also expand on topics in Section 7.5 of ÅM08 in the area
of feedforward compensation. Beginning with a review of optimization, we
introduce the notion of Lagrange multipliers and provide a summary of the
Pontryagin’s maximum principle. Using these tools we derive the linear
quadratic regulator for linear systems and describe its usage.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment.

2.1 Review: Optimization

Consider first the problem of finding the maximum of a smooth function F :
R

n → R. That is, we wish to find a point x∗ ∈ R
n such that F (x∗) ≥ F (x)

for all x ∈ R
n. A necessary condition for x∗ to be a maximum is that the

gradient of the function be zero at x∗,

∂F

∂x
(x∗) = 0.

Figure 2.1 gives a graphical interpretation of this condition. Note that these
are not sufficient conditions; the points x1 and x2 and x∗ in the figure all

x2

x
∗

x1

Figure 2.1: Optimization of functions. The maximum of a function occurs at a
point where the gradient is zero.
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x
∗

F (x)

G(x) = 0

(a) Constrained optimization

G(x) = 0

∂G
∂x

(normal)

(b) Constraint normal vectors

Figure 2.2: Optimization with constraints. (a) We seek a point x
∗ that maximizes

F (x) while lying on the surface G(x) = 0. (b) We can parameterize the constrained
directions by computing the gradient of the constraint G.

satisfy the necessary condition but only one is the (global) maximum.
The situation is more complicated if constraints are present. Let Gi :

R
n → R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0 repre-

senting the constraints. Suppose that we wish to find x∗ ∈ R
n such that

Gi(x
∗) = 0 and F (x∗) ≥ F (x) for all x ∈ {x ∈ R

n : Gi(x) = 0, i = 1, . . . , k}.
This situation can be visualized as constraining the point to a surface (de-
fined by the constraints) and searching for the maximum of the cost function
along this surface, as illustrated in Figure 2.2.

A necessary condition for being at a maximum is that there are no di-
rections tangent to the constraints that also increase the cost. The normal
directions to the surface are spanned by ∂Gi/∂x, as shown in Figure ??.
A necessary condition is that the gradient of F is spanned by vectors that
are normal to the constraints, so that the only directions that increase the
cost violate the constraints. We thus require that there exist scalars λi,
i = 1, . . . , k such that

∂F

∂x
(x∗) +

k∑

i=1

λi
∂Gi

∂x
(x∗) = 0.

If we let G =
[
G1 G2 . . . Gk

]T
, then we can write this condition as

∂F

∂x
+ λT ∂G

∂x
= 0

the term ∂F
∂x

is the usual (gradient) optimality condition while the term ∂G
∂x

is used to “cancel” the gradient in the directions normal to the constraint.
An alternative condition can be derived by modifying the cost function

to incorporate the constraints. Defining F̃ = F +
∑
λiGi, the necessary

condition becomes
∂F̃

∂x
(x∗) = 0.
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The scalars λi are called Lagrange multipliers. Minimize F̃ is equivalent to
the optimization given by

min
x

(
F (x) + λTG(x)

)
.

The variables λ can be regarded as free variables, which implies that need
to choose x such that G(x) = 0. Otherwise, we could choose λ to generate
a large cost.

Example 2.1 Two free variables with a constraint

Consider the cost function given by

F (x) = F0 − (x1 − a)2 − (x2 − b)2,

which has an unconstrained maximum at x = (a, b). Suppose that we add
a constraint G(x) = 0 given by

G(x) = x1 − x2.

With this constrain, we seek to optimize F subject to x1 = x2. Although
in this case we could easily do this by simple substitution, we instead carry
out the more general procedure using Lagrange multipliers.

The augmented cost function is given by

F̃ (x) = F0 − (x1 − a)2 − (x2 − b)2 + λ(x1 − x2),

where λ is the Lagrange multiplier for the constraint. Taking the derivative
of F , we have

∂F

∂x
=

[
−2x1 + 2a+ λ −2x2 + 2b− λ

]
.

Setting each of these equations equal to zero, we have that at the maximum

x∗1 = a+ λ/2, x∗2 = b− λ/2.

The remaining equation that we need is the constraint, which requires that
x∗1 = x∗2. Using these three equations, we see that λ∗ = b− a and we have

x∗1 =
a+ b

2
, x∗2 =

a+ b

2
.

To verify the geometric view described above, note that the gradients of
F and G are given by

∂F

∂x
=

[
−2x1 + 2a −2x2 + 2b

]
,

∂G

∂x
=

[
1 −1

]
.

At the optimal value of the (constrained) optimization, we have

∂F

∂x
=

[
a− b b− a

]
,

∂G

∂x
=

[
1 −1

]
.
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Although the derivative of F is not zero, it is pointed in a direction that
is normal to the constraint, and hence we cannot decrease the cost while
staying on the constraint surface. ∇

We have focused on finding the maximum of a function. We can switch
back and forth between max and min by simply negating the cost function:

max
x

F (x) = min
x

(
−F (x)

)

We see that the conditions that we have derived are independent of the sign
of F since they only depend on the gradient begin zero in approximate di-
rections. Thus finding x∗ that satisfies the conditions corresponds to finding
an extremum for the function.

Very good software is available for solving optimization problems nu-
merically of this sort. The NPSOL and SNOPT libraries are available in
FORTRAN (and C). In MATLAB, the fmin function can be used to solve
a constrained optimization problem.

2.2 Optimal Control of Systems

Consider now the optimal control problem:

min
u

∫ T

0
L(x, u) dt

︸ ︷︷ ︸
integrated cost

+V
(
x(T ), u(T )

)

︸ ︷︷ ︸
final cost

subject to the constraint

ẋ = f(x, u) x ∈ R
n, u ∈ R

m.

Abstractly, this is a constrained optimization problem where we seek a fea-

sible trajectory (x(t), u(t)) that minimizes the cost function

J(x, u) =

∫ T

0
L(x, u) dt+ V

(
x(T ), u(T )

)
.

More formally, this problem is equivalent to the “standard” problem of min-
imizing a cost function J(x, u) where (x, u) ∈ L2[0, T ] (the set of square
integral functions) and h(z) = ẋ(t)−f(x(t), u(t)) = 0 models the dynamics.

There are many variations and special cases of the optimal control prob-
lem. We mention a few here:

Infinite Horizon. if we let T = ∞ and set V = 0, then we seek to optimize a
cost function over all time. This is called the infinite horizon optimal control
problem, versus the finite horizon problem with T <∞.

Linear Quadratic. If the dynamical system is linear and the cost function is
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quadratic, we obtain the linear quadratic optimal control problem:

ẋ = Ax+Bu J =

∫ T

0

(
xTQx+ uTRu

)
dt+ xT (T )P1x(T ).

In this formulation, Q ≥ 0 penalizes state error (assumes xd = 0), R > 0
penalizes the input (must be positive definite) and P1 > 0 penalizes terminal
state.

Terminal Constraints. It is often convenient to ask that the final value of
the trajectory, denoted xf , be specified. We can do this by requiring that
x(T ) = xf or by using a more general form of constraint:

ψi(x(T )) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining ψi(x(T )) =
xi(T ) − xi,f .

Time Optimal. If we constrain the terminal condition to x(T ) = xf , let
the terminal time T be free (so that we can optimize over it) and choose
L(x, u) = 1, we can find the time-optimal trajectory between an initial and
final condition. This problem is usually only well-posed if we additionally
constrain the inputs u to be bounded.

A very general set of conditions are available for the optimal control problem
that captures most of these special cases in a unifying framework. Consider
a nonlinear system

ẋ = f(x, u) x = R
n

x(0) given u ∈ Ω ⊂ R
p

where f(x, u) = (f1(x, u), . . . fn(x, u)) : R
n×R

p → R
n. We wish to minimize

a cost function J with terminal constraints:

J =

∫ T

0
L(x, u) dt+ V (x(T )), ψ(x(T )) = 0.

The function ψ : R
n → R

q gives a set of q terminal constraints. Analogous
to the case of optimizing a function subject to constraints, we construct the
Hamiltonian:

H = L+ λT f = L+
∑

λifi.

A set of necessary conditions for a solution to be optimal was derived by
Pontryagin [PBGM62].

Theorem 2.1 (Maximum Principle). If (x∗, u∗) is optimal, then there exists

λ∗(t) ∈ R
n and ν∗ ∈ R

q such that

ẋi =
∂H

∂λi
− λ̇i =

∂H

∂xi

x(0) given, ψ(x(T )) = 0

λ(T ) =
∂V

∂x
(x(T )) + νT ∂ψ

∂x
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and
H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u, λ∗(t)) for all u ∈ Ω

The form of the optimal solution is given by the solution of a differential
equation with boundary conditions. If u = argminH(x, u, λ) exists, we
can use this to choose the control law u and solve for the resulting feasible
trajectory that minimizes the cost. The boundary conditions are given by
the n initial states x(0), the q terminal constraints on the state ψ(x(T )) = 0
and the n− q final values for the Lagrange multipliers

λ(T ) =
∂V

∂x
(x(T )) + νT ∂ψ

∂x
.

In this last equation, ν is a free variable and so there are n equations in n+q
free variables, leaving n− q constraints on λ(T ). In total, we thus have 2n
boundary values.

The maximum principle is a very general (and elegant) theorem. It allows
the dynamics to be nonlinear and the input to be constrained to lie in a set
Ω, allowing the possibility of bounded inputs. If Ω = R

m (unconstrained
input) and H is differentiable, then a necessary condition for the optimal
input is

∂H

∂u
= 0.

We note that even though we are minimizing the cost, this is still usually
called the maximum principle (artifact of history).

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95],
omitting some of the details required for a fully rigorous proof. We use
the method of Lagrange multipliers, augmenting our cost function by the
dynamical constraints and the terminal constraints:

J̃(x(·), u(·)) = J(x, u) +

∫ T

0
λT (t)

(
ẋ(t) − f(x, u)

)
dt+ νTψ(x(T ), u(T ))

=

∫ T

0

(
L(x, u) + λT (t)

(
ẋ(t) − f(x, u)

)
dt

+ V (x(T ), u(T )) + νTψ(x(T ), u(T )).

Note that λ is a function of time, with each λ(t) corresponding to the instan-
taneous constraint imposed by the dynamics. The integral over the interval
[0, T ] plays the role of the sum of the finite constraints in the regular opti-
mization.

Making use of the definition of the Hamiltonian, the augmented cost
becomes

J̃(x(·), u(·)) =

∫ T

0

(
H(x, u)−λT (t)ẋ

)
dt+V (x(T ), u(T ))+νTψ(x(T ), u(T )).
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We can now “linearize” the cost function around the optimal solution x(t) =
x∗(t) + δx(t), u(t) = u∗(t) + δu(t). Using Leibnitz’s rule, we have

2.3 Examples

To illustrate the use of the maximum principle, we consider a number of
analytical examples. Additional examples are given in the exercises.

Example 2.2 Scalar linear system

Consider the optimal control problem for the system

ẋ = ax+ bu, (2.1)

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0)
is given, and a, b ∈ R are positive constants. We wish to find a trajectory
(x(t), u(t)) that minimizes the cost function

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c > 0 is a constant. This cost
function balances the final value of the state with the input required to get
to that position.

To solve the problem, we define the various elements used in the maxi-
mum principle. Our integrated and terminal costs are given by

L = 1
2u

2(t) V = 1
2cx

2(tf ).

We write the Hamiltonian of this system and derive the following expres-
sions:

H = L+ λf = 1
2u

2 + λ(ax+ bu)

λ̇ = −∂H
∂x

= −aλ, λ(tf ) =
∂V

∂x
= cx(tf ).

This is a final value problem for a linear differential equation and the solution
can be shown to be

λ(t) = cx(tf )ea(tf−t)

The optimal control is given by

∂H

∂u
= u+ bλ = 0 ⇒ u∗(t) = −bλ(t) = −bcx(tf )ea(tf−t).

Substituting this control into the dynamics given by equation (2.1) yields a
first-order ODE in x:

ẋ = ax− b2cx(tf )ea(tf−t).

This can be solved explicitly as

x∗(t) = x(to)e
a(t−to) +

b2c

2a
x∗(tf )

[
ea(tf−t) − ea(t+tf−2to)

]
.
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Setting t = tf and solving for x(tf ) gives

x∗(tf ) =
2a ea(tf−to)x(to)

2a− b2c
(
1 − e2a(tf−to)

)

and finally we can write

u∗(t) = − 2abc ea(2tf−to−t)x(to)

2a− b2c
(
1 − e2a(tf−to)

)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a− b2c
(
1 − e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

We can use the form of this expression to explore how our cost function
affects the optimal trajectory. For example, we can ask what happens to
the terminal state x∗(tf ) and c → ∞. Setting t = tf in equation (2.2) and
taking the limit we find that

lim
c→∞

x∗(tf ) = 0.

∇

Example 2.3 Bang-bang control

The time-optimal control program for a linear system has a particularly
simple solution. Consider a linear system with bounded input

ẋ = Ax+Bu, |u| ≤ 1

and suppose we wish to minimize the time required to move from an initial
state x0 to a final state xf . Without loss of generality we can take xf = 0.
We choose the cost functions and terminal constraints to satisfy

J =

∫ T

0
1 dt, ψ(x(T )) = x(T )

To find the optimal control, we form the Hamiltonian

H = 1 + λT (Ax+Bu) = 1 + (λTA)x+ (λTB)u.

Now apply the conditions in the maximum principle:

ẋ =
∂H

∂λ
= Ax+Bu

−λ̇ =
∂H

∂x
= ATλ

u = arg min H = −sgn(λTB)

The optimal solution always satisfies this equation (necessary condition)
with x(0) = x0 and x(T ) = 0. It follows that the input is always u =
±1 =⇒ “bang-bang”. ∇
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2.4 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a
system, we can also use optimal control theory to design a feedback law
u = α(x) that stabilizes a given equilibrium point. Roughly speaking, we do
this by continuously resolving the optimal control problem from our current
state x(t) and applying the resulting input u(t). Of course, this approach is
impractical unless we can solve explicitly for the optimal control and some-
how rewrite the optimal control as a function of the current state in a simple
way. In this section we explore exactly this approach for linear quadratic
regulator.

We begin with the the finite horizon, linear quadratic regulator (LQR)
problem, given by

ẋ = Ax+Bu x ∈ R
n, u ∈ R

n, x0 given

J̃ =
1

2

∫ T

0

(
xTQxx+ uTQuu

)
dt+

1

2
xT (T )P1x(T )

where Qx ≥ 0, Qu > 0, P1 ≥ 0 are symmetric, positive (semi-) definite
matrices. Note the factor of 1

2 is usually left out, but we included it here
to simplify the derivation. (The optimal control will be unchanged if we
multiply the entire cost function by two.)

To find the optimal control, we apply the maximum principle. We being
by computing the Hamiltonian H:

H = xTQxx+ uTQuu+ λT (Ax+Bu).

Applying the results of Theorem 2.1, we obtain the necessary conditions

ẋ =

(
∂H

∂λ

)T

= Ax+Bu x(0) = x0

−λ̇ =

(
∂H

∂x

)T

= Qxx+ATλ λ(T ) = P1x(T )

0 =
∂H

∂u
= Quu+ λTB.

(2.2)

The last condition can be solved to obtain the optimal controller

u = −Q−1
u BTλ,

which can be substituted into the dynamic equation (2.2) To solve for the
optimal control we must solve a two point boundary value problem using the
initial condition x(0) and the final condition λ(T ). Unfortunately, it is very
hard to solve such problem in general.

Given the linear nature of the dynamics, we attempt to find a solution
by setting λ(t) = P (t)x(t) where P (t) ∈ R

n×n. Substituting this into the
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necessary condition, we obtain

λ̇ = Ṗ x+ Pẋ = Ṗ x+ P (Ax−BQ−1
u BTP )x

−Ṗ x− PAx+ PBQ−1
u BPx = Qxx+ATPx.

This equation is satisfied if we can find P (t) such that

−Ṗ = PA+ATP − PBQ−1
u BTP +Qx P (T ) = P1 (2.3)

This is a matrix differential equation that defines the elements of P (t) from
a final value P (T ). Solving it is conceptually no different than solving the
initial value problem for vector-valued ordinary differential equations, except
that we must solve for the individual elements of the matrix P (t) backwards
in time (Exercise ??). Equation (2.3) is called the .

An important property of the solution to the optimal control problem
when written in this form is that P (t) can be solved without knowing either
x(t) or u(t). This allows the two point boundary value problem to be sepa-
rated into first solving a final-value problem and then solving a time-varying
initial-value problem. More specifically, given P (t) satisfying equation (??),
we can apply the optimal input

u(t) = −Q−1
u BTP (t)x.

and then solve the original dynamics of the system forward in time from
the initial condition x(0) = x0. Note that this is a (time-varying) feedback

control that describes how to move from any state to the origin.
An important variation of this problem is the case when we choose T = ∞

and eliminate the terminal cost (set P1 = 0). This gives us the cost function

J =

∫
∞

0
(xTQxx+ uTQuu) dt.

Since we don’t have a terminal cost, there is no constraint on the final value
of λ or, equivalently, P (t). We can thus seek to find a constant P satisfying
equation (2.3). In other words, we seek to find P such that

PA+ATP − PBQ−1
u BTP +Qx = 0. (2.4)

This equation is called the algebraic Riccati equation. Given a solution, we
can choose our input as

u = −Q−1
u BTPx.

This represents a constant gain K = Q−1
u BTP where P is the solution of

the algebraic Riccati equation.
The implications of this result are interesting and important. First, we

notice that if Qx > 0 and the control law corresponds to a finite minimum
of the cost, then we must have that limt→∞ x(t) = 0, otherwise the cost will
be unbounded. This means that the optimal control for moving from any
state x to the origin can be achieved by applying a feedback u = −Kx for
K chosen as described as above and letting the system evolve in closed loop.
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More amazingly, the gain matrix K can be written in terms of the solution
to a (matrix) quadratic equation (2.4). This quadratic equation can be
solved numerically: in MATLAB the command K = lqr(A, B, Q x, Q u)

provides the optimal feedback compensator.
In deriving the optimal quadratic regulator, we have glossed over a num-

ber of important details. It is clear from the form of the solution that we
must have Qu > 0 since its inverse appears in the solution. We would typ-
ically also have Qx > 0 so that the integral cost is only zero when x = 0,
but in some instances we might only case about certain states, which would
imply that Qx ≥ 0. For this case, if we let Qx = HTH (always possible),
our cost function becomes

L =

∫
∞

0
xTHTHx+ uTQuu dt =

∫
∞

0
‖Hx‖2 + uTQuu dt.

A technical condition for the optimal solution to exist is that the pair (A,H)
be observable. This makes sense intuitively by considering y = Hx as an
output. If y is not observable then there may be non-zero initial conditions
that produce no output and so the cost would be zero. This would lead to
an ill-conditioned problem and hence we will require that Qx ≥ 0 satisfy an
appropriate observability condition.

We summarize the main results as a theorem.

Example 2.4 Optimal control of a double integrator

Consider a double integrator system

dx

dt
=

[
0 1
0 0

]
x+

[
0
1

]
u.

with qudratic cost given by

Qx =

[
q2 0
0 0

]
, Qu = 1.

The optimal cotnrol is given by the solution of matrix Riccati equation (2.4).
Let P be a symmetric positive definite matrix of the form

P =

[
a b
b c

]
.

Then the Riccati equation becomes
[
−b2 + q2 a− bc
a− bc 2b− c2

]
=

[
0 0
0 0

]
,

which has solution

P =

[√
2q q

q
√

2q3

]
.

The controller is given by

K = R−1BTP = [1/q
√

2/q].
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The feedback law minimizing the given cost function is then u = −Kx.
To better understand the structure of the optimal solution, we examine

the eigenstructure of the closed loop system. The closed-loop dynamics
matrix is given by

Acl = A−BK =

[
0 1

−1/q −
√

2/q

]
.

The charactaristic polynomial of this matrix is

λ2 +

√
2

q
λ+

1

q
.

Comparing this to λ2 + 2ζω0λ+ ω2
0, we see that

ω0 =

√
1

q
, ζ =

1√
2
.

Thus the optimal controller gives a closed loop system with damping ratio
ζ = 0.707, giving a good tradeoff between rise time and overshoot (see
ÅM08). ∇

2.5 Choosing LQR weights

ẋ = Ax+Bu J =

∫
∞

0

L(x,u)︷ ︸︸ ︷(
xTQxx+ uTQuu+ xTSu

)
dt,

where the S term is almost always left out.
Q: How should we choose Qx and Qu?

1. Simplest choice: Qx = I, Qu = ρI =⇒ L = ‖x‖2 + ρ‖u‖2. Vary ρ to
get something that has good response.

2. Diagonal weights

Qx =



q1

. . .

qn


 Qu = ρ



r1

. . .

rn




Choose each qi to given equal effort for same “badness”. E.g., x1 =
distance in meters, x3 = angle in radians:

1 cm error OK =⇒ q1 =

(
1

100

)2

q1x
2
1 = 1 when x1 = 1 cm

1

60
rad error OK =⇒ q3 = (60)2 q3x

2
3 = 1 when x3 =

1

60
rad

Similarly with ri. Use ρ to adjust input/state balance.
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3. Output weighting. Let z = Hx be the output you want to keep small.
Assume (A,H) observable. Use

Qx = HTH Qu = ρI =⇒ trade off ‖z‖2 vs ρ‖u‖2

4. Trial and error (on weights)

2.6 Further Reading

Exercises

2.1 (a) Let G1, G2, . . . , Gk be a set of row vectors on a R
n. Let F be

another row vector on R
n such that for every x ∈ R

n satisfying Gix = 0,
i = 1, . . . , k, we have Fx = 0. Show that there are constants λ1, λ2, . . . , λk

such that

F =

k∑

i=1

λkGk.

(b) Let x∗ ∈ R
n be an the extremal point (maximum or minimum) of a

function f subject to the constraints gi(x) = 0, i = 1, . . . , k. Assuming that
the gradients ∂gi(x

∗)/∂x are linearly independent, show that there are k
scalers λk, i = 1, . . . , n such that the function

f̃(x) = f(x) +
n∑

i=1

λigi(x)

has an extremal point at x∗.

2.2 Consider the following control system

q̇ = u

Ẏ = quT − uqT

where u ∈ R
m and Y ∈ realsm×m is a skew symmetric matrix.

(a) For the fixed end point problem, derive the form of the optimal controller
minimizing the following integral

1

2

∫ 1

0
uTu dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =




0 −y3 y2

y3 0 −y1

−y2 y1 0




for some y ∈ R
3, give an explicit formula for the optimal inputs u.
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(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ ) ∈
R

m × R
m×m where Ỹ T = −Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

2.3 In this problem, you will use the maximum principle to show that the
shortest path between two points is a straight line. We model the problem
by constructing a control system

ẋ = u

where x ∈ R
2 is the position in the plane and u ∈ R

2 is the velocity vector
along the curve. Suppose we wish to find a curve of minimal length con-
necting x(0) = x0 and x(1) = xf . To minimize the length, we minimize the
integral of the velocity along the curve,

J =

∫ 1

0

√
‖ẋ‖ dt,

subject to to the initial and final state constraints. Use the maximum prin-
ciple to show that the minimal length path is indeed a straight line at maxi-
mum velocity. (Hint: minimizing

√
‖ẋ‖ is the same as minimizing ẋT ẋ; this

will simplify the algebra a bit.)

2.4 Consider the optimal control problem for the system

ẋ = −ax+ bu

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. (Note that this system is not
quite the same as the one in Example ??.) The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c is a constant.

(a) Solve explicitly for the optimal control u∗(t) and the corresponding state
x∗(t) in terms of t0, tf , x(t0) and t and describe what happens to the terminal
state x∗(tf ) as c→ ∞.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M − 1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and x(tf ).
Your answer should specify the explicit input ud(t) and state xd(t) in terms
of t0, tf , x(t0), x(tf ) and t.

(d) Let a = 1 and c = 1. Use your solution to the optimal control problem
and the flatness-based trajectory generation to find a trajectory between
x(0) = 0 and x(1) = 1. Plot the state and input trajectories for each
solution and compare the costs of the two approaches.
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(e) (Optional) Suppose that we choose more than the minimal number of
basis functions for the differentially flat output. Show how to use the ad-
ditional degrees of freedom to minimize the cost of the flat trajectory and
demonstrate that you can obtain a cost that is closer to the optimal.

2.5 Consider the optimal control problem for the system

ẋ = −ax3 + bu

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c is a constant.

(a) Derive a set of differential equations for the optimal control u∗(t) and the
corresponding state x∗(t) in terms of t0, tf , x(t0) and t. Be sure to provide
any initial or final conditions required for your equations to be solved.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M − 1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and x(tf ).
Your answer should specify the explicit input ud(t) and state xd(t) in terms
of t0, tf , x(t0), x(tf ) and t.

(d) Increase M by one and show how to choose the free parameter to min-
imize the cost function.

2.6 Consider the problem of moving a two-wheeled mobile robot (eg, a
Segway) from one position and orientation to another. The dynamics for
the system is given by the nonlinear differential equation

ẋ = cos θ v

ẏ = sin θ v

θ̇ = ω

where (x, y) is the position of the rear wheels, θ is the angle of the robot
with respect to the x axis, v is the forward velocity of the robot and ω is
spinning rate. We wish to choose an input (v, ω) that minimizes the time
that it takes to move between two configurations (x0, y0, θ0) and (xf , yf , θf ),
subject to input constraints |v| ≤ L and |ω| ≤M .

Use the maximum principle to show that any optimal trajectory consists
of segments in which the robot is traveling at maximum velocity in either the
forward or reverse direction, and going either straight, hard left (ω = −M)
or hard right (ω = +M).
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Note: one of the cases is a bit tricky and can’t be completely proven with
the tools we have learned so far. However, you should be able to show the
other cases and verify that the tricky case is possible.

2.7 Consider a linear system with input u and output y and suppose we
wish to minimize the quadratic cost function

J =

∫
∞

0

(
yT y + ρuTu

)
dt.

Show that if the corresponding linear system is observable, then the closed
loop system obtained by using the optimal feedback u = −Kx is guaranteed
to be stable.

2.8 Consider the control system transfer function

H(s) =
s+ b

s(s+ a)
a, b > 0

with state space representation

ẋ =

[
0 1
0 −a

]
x+

[
0
1

]
u

y =
[
b 1

]
x

and performance criterion

V =

∫
∞

0
(x2

1 + u2)dt.

(a) Let

P =

[
p11 p12

p21 p22

]

with p12 = p21 and P > 0 (positive definite). Write the steady state Riccati
equation as a system of four explicit equations in terms of the elements of
P and the constants a and b.

(b) Find the gains for the optimal controller assuming the full state is avail-
able for feedback.

(c) Find the closed loop natural frequency and damping ratio.

2.9 Consider the optimal control problem for the system

ẋ = ax+ bu J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. We take the terminal time tf as
given and let c > 0 be a constant that balances the final value of the state
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with the input required to get to that position. The optimal is derived in
the lecture notes for week 6 and is shown to be

u∗(t) = − 2abc ea(2tf−to−t)x(to)

2a− b2c
(
1 − e2a(tf−to)

)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a− b2c
(
1 − e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

(2.5)
Now consider the infinite horizon cost

J = 1
2

∫
∞

t0

u2(t) dt

with x(t) at t = ∞ constrained to be zero.

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution correspond-
ing to the algebraic Riccati equation. Note that this gives an explicit feed-
back law (u = −bPx).
(b) Plot the state solution of the finite time optimal controller for the fol-
lowing parameter values

a = 2 b = 0.5 x(t0) = 4

c = 0.1, 10 tf = 0.5, 1, 10

(This should give you a total of 6 curves.) Compare these to the infinite
time optimal control solution. Which finite time solution is closest to the
infinite time solution? Why?

2.10 In this problem we will explore the effect of constraints on control of
the linear unstable system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u

ẋ2 = x1 + 0.5u

subject to the constraint that |u| ≤ a where a is a postive constant.

(a) Ignore the constraint (a = ∞) and design an LQR controller to stabilize
the system. Plot the response of the closed system from the initial condition
given by x = (1, 0).

(b) Use SIMULINK or ode45 to simulate the the system for some finite
value of a with an initial condition x(0) = (1, 0). Numerically (trial and
error) determine the smallest value of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable
from x(0) = (ρ, 0). Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control
law for this system. Show that this controller has larger region of attraction
than the controller designed in part (b). (Hint: solve the finite horizon LQ
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problem analytically, using the bang-bang example as a guide to handle the
input constraint.)

2.11 Consider the lateral control problem for an autonomous ground vehicle
from Example 1.1. We assume that we are given a reference trajectory
r = (xd, yd) corresponding to the desired trajectory of the vehicle. For
simplicity, we will assume that we wish to follow a straight line in the x
direction at a constant velocity vd > 0 and hence we focus on the y and θ
dynamics:

ẏ = sin θ vd

θ̇ =
1

ℓ
tanφ vd.

We let vd = 10 m/s and ℓ = 2 m.

(a) Design an LQR controller that stabilizes the position y to the origin.
Plot the step and frequency response for your controller and determine the
overshoot, rise time, bandwidth and phase margin for your design. (Hint: for
the frequency domain specifications, break the loop just before the process
dynamics and use the resulting SISO loop transfer function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given by
yd(t) = r(t). Modify your control law so that you track r(t) and demonstrate
the performance of your controller on a “slalom course” given by a sinusoidal
trajectory with magnitude 1 meter and frequency 1 Hz.


