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Chapter 5

Kalman Filtering

In this chapter we derive the Kalman filter in continuous time (also referred
to as the Kalman-Bucy filter).

Prerequisites. Readers should have basic familiarity with continuous-time
stochastic systems at the level presented in Chapter 4.

5.1 Linear Quadratic Estimators

Consider a stochastic system

Ẋ = AX + Bu + FV

Y = CX + W,

where X represents that state, u is the (deterministic) input, V represents
disturbances that affect the dynamics of the system and W represents mea-
surement noise. Assume that the disturbance V and noise W are zero-mean,
Gaussian white noise (but not necessarily stationary):
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p(w) =
1

n
√

2π
√

det RW

e−
1
2vT R−1

W
v E{W (s)W T (t)} = RW (t)δ(t − s)

We also assume that the cross correlation between V and W is zero, so that
the distrubances are not correlated with the noise. Note that we use multi-
variable Gaussians here, with (incremental) covariance matrix RV ∈ R

m×m

and RW ∈ R
p×p. In the scalar case, RV = σ2

V and RW = σ2
W .

We formulate the optimal estimation problem as finding the estimate
X̂(t) that minimizes the mean square error E{(X(t)−X̂(t))(X(t)−X̂(t))T }
given {Y (τ) : 0 ≤ τ ≤ t}. It can be shown that this is equivalent to
finding the expected value of X subject to the “constraint” given by all
of the previous measurements, so that X̂(t) = E{X(t)|Y (τ), τ ≤ t}. This
was the way that Kalman originally formulated the problem and it can be
viewed as solving a least squares problem: given all previous Y (t), find the

estimate X̂ that satisfies the dynamics and minimizes the square error with
the measured data. We omit the proof since we will work directly with the
error formulation.



5.1. LINEAR QUADRATIC ESTIMATORS 2

Theorem 5.1 (Kalman-Bucy, 1961). The optimal estimator has the form

of a linear observer

˙̂
X = AX̂ + BU + L(Y − CX̂)

where L(t) = P (t)CT R−1
W and P (t) = E{(X(t)− X̂(t))(X(t)− X̂(t))T } and

satisfies

Ṗ = AP + PAT − PCT R−1
W (t)CP + FRV (t)F T

P (0) = E{X(0)XT (0)}
Sketch of proof. The error dynamics are given by

Ė = (A − LC)E + ξ, ξ = FV − LW, Rξ = FRV F T + LRW LT

The covariance matrix PE = P for this process satisfies

Ṗ = (A − LC)P + P (A − LC)T + FRV F T + LRW LT

= AP + PAT + FRV F T − LCP − PCT LT + LRW LT

= AP + PAT + FRV F T + (LRW − PCT )R−1
W (LRW + PCT )T

− PCT RW CP,

where the last line follows by completing the square. We need to find L such
that P (t) is as small as possible, which can be done by choosing L so that Ṗ
decreases by the maximimum amount possible at each instant in time. This
is accomplished by setting

LRW = PCT =⇒ L = PCT R−1
W .

Note that the Kalman filter has the form of a recursive filter: given P (t) =
E{E(t)ET (t)} at time t, can compute how the estimate and covariance
change. Thus we don’t need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate X̂(t) and the covariance
PE(t), so you can see how well the error is converging.

If the noise is stationary (RV , RW constant) and if Ṗ is stable, then
the observer gain converges to a constant and satisfies the algebraic Riccati

equation:

L = PCT R−1
W AP + PAT − PCT R−1

W CP + FRV F T .

This is the most commonly used form of the controller since it gives an
explicit formula for the estimator gains that minimize the error covariance.
The gain matrix for this case can solved use the lqe command in MATLAB.

Another property of the Kalman filter is that it extracts the maximum
possible information about output data. To see this, consider the residual

random prossess
R = Y − CX̂
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(this process is also called the innovations process). It can be shown for the
Kalman filter that the correlation matrix of R is given by

RR(t, s) = W (t)δ(t − s).

This implies that the residuals are a white noise process and so the output
error has no remaining dynamic information content.

5.2 Extensions of the Kalman Filter

Correlated disturbances and noise

The derivation of the Kalman filter assumes that the disturbances and
noise are independent and white. Removing the assumption of indepen-
dence is straightforward and simply results in a cross term (E{V (t)W (s)} =
RV W δ(s − t)) being carried through all calculations.

To remove the assumption of white noise sources, we construct a filter
that takes white noise as an input and produces a noise source with the ap-
propriate correlation function (or equivalently, spectral power density func-
tion). The intuition behind this approach is that we must have an internal
model of the noise and/or disturbances in order to capture the correlation
between different times.

Extended Kalman filters

Consider a nonlinear system

Ẋ = f(X, U, V ), X ∈ R
n, u ∈ R

p,

Y = CX + W, Y ∈ R
q,

where V and W are Gaussian white noise processes with covariance matrices
RV and RW . A nonlinear observer for the system can be constructed by
using the process

˙̂
X = f(X̂, U, 0) + L(Y − CX̂)

If we define the error as E = X − X̂, the error dynamics are given by

Ė = f(X, U, V ) − f(X̂, U, 0) − LC(X − X̂)

= F (E, X̂, U, V ) − LCe

where
F (E, X̂, U, V ) = f(E + X̂, U, V ) − f(X̂, U, 0)
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We can now linearize around current estimate X̂:

Ê =
∂F

∂E
E + F (0, X̂, U, 0)

︸ ︷︷ ︸

=0

+
∂F

∂V
V

︸ ︷︷ ︸

noise

− LCe
︸︷︷︸

observer gain

+h.o.t

= ÃE + F̃ V − LCE,

where
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∂e

∣
∣
∣
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∣
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∣
∣
∣
∣
(X̂,U,0)







Depend on current es-
timate X̂

We can now design an observer for the linearized system around the current

estimate:

˙̂
X = f(X̂, U, 0) + L(Y − CX̂), L = PCT R−1

W

Ṗ = (Ã − LC)P + P (Ã − LC)T + F̃RV F̃ T + LRW LT

P (t0) = E{X(t0)X
T (t0)}

This is called the (Schmidt) extended Kalman filter (EKF).
The intuition in the Kalman filter is that we replace the predication

portion of the filter with the nonlinear modeling while using the insantaneous
linearization to compute the observer gain. Although we lose optimimality,
in applications the extended Kalman filter works very well and it is very
versatile, as illustrated in the following example.

Example 5.1 Online parameter estimation

Consider a linear system with unknown parameters ξ

Ẋ = A(ξ)X + B(ξ)U + FV ξ ∈ R
p

Y = C(ξ)X + W

We wish to solve the parameter identification problem: given U(t) and Y (t),
estimate the value of the parameters ξ.

One approach to this online parameter estimation problem is to treat ξ
as an unkown state that has zero derivative:

Ẋ = A(ξ)X + B(ξ)U + FV

ξ̇ = 0.
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We can now write the dynamics in terms of the extended state Z = (X, ξ):

d

dt

[
X
ξ

]

=

f(
h

X
ξ

i

,U,V )

︷ ︸︸ ︷[
A(ξ) 0

0 0

] [
X
ξ

]

+

[
B(ξ)

0

]

U +

[
F
0

]

V

Y = C(ξ)X + W
︸ ︷︷ ︸

h(
h

X
ξ

i

,W )

This system is nonlinear in the extended state Z, but we can use the ex-
tended Kalman filter to estimate Z. If this filter converges, then we obtain
both an estimate of the original state X and an estimate of the unknown
parameter ξ ∈ R

p.
Remark: need various observability conditions on augmented system in

order for this to work. ∇

5.3 LQG Control

Return to the original “H2” control problem

Figure
Ẋ = AX + BU + FV

Y = CX + W

V, W Gaussian white
noise with covariance
RV , RW

Stochastic control problem: find C(s) to minimize

J = E

{∫
∞

0

[
(Y − r)T RV (Y − r)T + UT RW U

]
dt

}

Assume for simplicity that the reference input r = 0 (otherwise, translate
the state accordingly).

Theorem 5.2 (Separation principle). The optimal controller has the form

˙̂
X = AX̂ + BU + L(Y − CX̂)

U = K(X̂ − Xd)

where L is the optimal observer gain ignoring the controller and K is the

optimal controller gain ignoring the noise.

This is called the separation principle (for H2 control).

5.4 Application to a Thrust Vectored Aircraft

To illustrate the use of the Kalman filter, we consider the problem of esti-
mating the state for the Caltech ducted fan, described already in Section 3.4.
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The following code implements an extended Kalman filter in MATLAB,
by constructing a state vector that consists of the actual state, the estimated
state and the elements of the covariance matrix P (t):

% pvtol.m - nonlinear PVTOL model, with LQR and EKF

% RMM, 5 Feb 06

%

% This function has the dynamics for a nonlinear planar vertical takeoff

% and landing aircraft, with an LQR compensator and EKF estimator.

%

% state(1) x position, in meters

% state(2) y position, in meters

% state(3) theta angle, in radians

% state(4-6) velocities

% state(7-12) estimated states

% state(13-48) covariance matrix (ordered rowise)

function deriv = pvtol(t, state, flags)

global pvtol_K; % LQR gain

global pvtol_L; % LQE gain (temporary)

global pvtol_Rv; % Disturbance covariance

global pvtol_Rw; % Noise covariance

global pvtol_C; % outputs to use

global pvtol_F; % disturbance input

% System parameters

J = 0.0475; % inertia around pitch axis

m = 1.5; % mass of fan

r = 0.25; % distance to flaps

g = 10; % gravitational constant

d = 0.2; % damping factor (estimated)

% Initialize the derivative so that it is correct size and shape

deriv = zeros(size(state));

% Extract the current state estimate

x = state(1:6);

xhat = state(7:12);

% Get the current output, with noise

y = pvtol_C*x + pvtol_C * ...

[0.1*sin(2.1*t); 0.1*sin(3.2*t); 0; 0; 0; 0];

% Compute the disturbance forces

fd = [

0.01*sin(0.1*t); 0.01*cos(0.027*t); 0

];

% Compute the control law

F = -pvtol_K * xhat + [0; m*g];

% A matrix at current estimated state

A = [ 0 0 0 1 0 0;
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0 0 0 0 1 0;

0 0 0 0 0 1;

0, 0, (-F(1)*sin(xhat(3)) - F(2)*cos(xhat(3)))/m, -d, 0, 0;

0, 0, (F(1)*cos(xhat(3)) - F(2)*sin(xhat(3)))/m, 0, -d, 0;

0 0 0 0 0 0 ];

% Estimator dynamics (prediction)

deriv(7) = xhat(4); deriv(8) = xhat(5); deriv(9) = xhat(6);

deriv(10) = (F(1) * cos(xhat(3)) - F(2) * sin(xhat(3)) - d*xhat(4)) / m;

deriv(11) = (F(1) * sin(xhat(3)) + F(2) * cos(xhat(3)) - m*g - d*xhat(5)) / m;

deriv(12) = (F(1) * r) / J;

% Compute the covariance

P = reshape(state(13:48), 6, 6);

dP = A * P + P * A’ - P * pvtol_C’ * inv(pvtol_Rw) * pvtol_C * P + ...

pvtol_F * pvtol_Rv * pvtol_F’;

L = P * pvtol_C’ * inv(pvtol_Rw);

% Now compute correction

xcor = L * (y - pvtol_C*xhat);

for i = 1:6, deriv(6+i) = deriv(6+i) + xcor(i); end;

% PVTOL dynamics

deriv(1) = x(4); deriv(2) = x(5); deriv(3) = x(6);

deriv(4) = (F(1)*cos(x(3)) - F(2)*sin(x(3)) - d*x(4) + fd(1)) / m;

deriv(5) = (F(1)*sin(x(3)) + F(2)*cos(x(3)) - m*g - d*x(5) + fd(2)) / m;

deriv(6) = (F(1) * r + fd(3)) / J;

% Copy in the covariance updates

for i = 1:6,

for j = 1:6,

deriv(6+6*i+j) = dP(i, j);

end;

end;

% All done

return;

To show how this estimator can be used, consider the problem of stabiliz-
ing the system to the origin with an LQR controller that uses the estimated
state. The following MATLAB code implements the controller, using the
previous simulation:

% kf_dfan.m - Kalman filter for the ducted fan

% RMM, 5 Feb 06

% Global variables to talk to simulation modle

global pvtol_K pvtol_L pvtol_C pvtol_Rv pvtol_Rw pvtol_F;

%%

%% Ducted fan dynamics

%%

%% These are the dynamics for the ducted fan, written in state space



5.4. APPLICATION TO A THRUST VECTORED AIRCRAFT 8

%% form.

%%

% System parameters

J = 0.0475; % inertia around pitch axis

m = 1.5; % mass of fan

r = 0.25; % distance to flaps

g = 10; % gravitational constant

d = 0.2; % damping factor (estimated)

% System matrices (entire plant: 2 input, 2 output)

A = [ 0 0 0 1 0 0;

0 0 0 0 1 0;

0 0 0 0 0 1;

0 0 -g -d/m 0 0;

0 0 0 0 -d/m 0;

0 0 0 0 0 0 ];

B = [ 0 0;

0 0;

0 0;

1/m 0;

0 1/m;

r/J 0 ];

C = [ 1 0 0 0 0 0;

0 1 0 0 0 0 ];

D = [ 0 0; 0 0];

dfsys = ss(A, B, C, D);

%%

%% State space control design

%%

%% We use an LQR design to choose the state feedback gains

%%

K = lqr(A, B, eye(size(A)), 0.01*eye(size(B’*B)));

pvtol_K = K;

%%

%% Estimator #1

%%

% Set the disturbances and initial condition

pvtol_F = eye(6);

pvtol_Rv = diag([0.0001, 0.0001, 0.0001, 0.01, 0.04, 0.0001]);

x0 = [0.1 0.2 0 0 0 0];

R11 = 0.1; R22 = 0.1; R33 = 0.001;
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% Set the weighting matrices (L is computed but not used)

pvtol_C = [1 0 0 0 0 0; 0 1 0 0 0 0];

pvtol_Rw = diag([R11 R22]);

pvtol_L = lqe(A, pvtol_F, pvtol_C, pvtol_Rv, pvtol_Rw);

[t1, y1] = ode45(@pvtol, [0, 15], ...

[x0 0*x0 reshape(x0’*x0, 1, 36)]);

subplot(321);

plot(t1, y1(:,1), ’b-’, t1, y1(:,2), ’g--’);

legend x y;

xlabel(’time’);

ylabel(’States (no \theta)’);

axis([0 15 -0.3 0.3]);

subplot(323);

plot(t1, y1(:,7) - y1(:,1), ’b-’, ...

t1, y1(:,8) - y1(:,2), ’g--’, ...

t1, y1(:,9) - y1(:,3), ’r-’);

legend xerr yerr terr;

xlabel(’time’);

ylabel(’Errors (no \theta)’);

axis([0 15 -0.2 0.2]);

subplot(325);

plot(t1, y1(:,13), ’b-’, t1, y1(:,19), ’g--’, t1, y1(:,25), ’r-’);

legend P11 P22 P33

xlabel(’time’);

ylabel(’Covariance (w/ \theta)’);

axis([0 15 -0.2 0.2]);

%%

%% Estimator #2

%%

% Now change the output and see what happens (L computed but not used)

pvtol_C = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 0 0 0];

pvtol_Rw = diag([R11 R22 R33]);

pvtol_L = lqe(A, pvtol_F, pvtol_C, pvtol_Rv, pvtol_Rw);

[t2, y2] = ode45(@pvtol, [0, 15], ...

[x0 0*x0 reshape(x0’*x0, 1, 36)]);

subplot(322);

plot(t2, y2(:,1), ’b-’, t2, y2(:,2), ’g--’);

legend x y;

xlabel(’time’);

ylabel(’States (w/ \theta)’);

axis([0 15 -0.3 0.3]);

subplot(324);

plot(t2, y2(:,7) - y2(:,1), ’b-’, ...

t2, y2(:,8) - y2(:,2), ’g--’, ...
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t2, y2(:,9) - y2(:,3), ’r-’);

legend xerr yerr terr;

xlabel(’time’);

ylabel(’Errors (w/ \theta)’);

axis([0 15 -0.2 0.2]);

subplot(326);

plot(t2, y2(:,13), ’b-’, t2, y2(:,19), ’g--’, t2, y2(:,25), ’r-’);

legend P11 P22 P33

xlabel(’time’);

ylabel(’Covariance (w/ \theta)’);

axis([0 15 -0.2 0.2]);

print -dpdf dfan_kf.pdf

5.5 Further Reading

Exercises

5.1 Consider the problem of estimating the position of an autonomous
mobile vehicle using a GPS receiver and an IMU (inertial measurement
unit). The dynamics of the vehicle are given by

y

x

l

φ

θ

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

ℓ
tan φ v,

We assume that the vehicle is disturbance free, but that we have noisy
measurements from the GPS receiver and IMU and an initial condition error.

In this problem we will utilize the full form of the Kalman filter (including
the Ṗ equation).

(a) Suppose first that we only have the GPS measurements for the xy posi-
tion of the vehicle. These measurements give the position of the vehicle with
approximately 1 meter accuracy. Model the GPS error as Gaussian white
noise with σ = 1.2 meter in each direction and design an optimal estimator
for the system. Plot the estimated states and the covariances for each state
starting with an initial condition of 5 degree heading error at 10 meters/sec
forward speed (i.e., choose x(0) = (0, 0, 5π/180) and x̂ = (0, 0, 0)).

(b) An IMU can be used to measure angular rates and linear acceleration.
Assume that we use a Northrop Grumman LN200 to measure the angular
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rate θ̇. Use the datasheet on the course web page to determine a model
for the noise process and design a Kalman filter that fuses the GPS and
IMU to determine the position of the vehicle. Plot the estimated states and
the covariances for each state starting with an initial condition of 5 degree
heading error at 10 meters/sec forward speed.

Note: be careful with units on this problem!


