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Chapter 5

Kalman Filtering

In this chapter we derive the Kalman filter in continuous time (also referred
to as the Kalman-Bucy filter).

Prerequisites. Readers should have basic familiarity with continuous-time
stochastic systems at the level presented in Chapter 4.

5.1 Linear Quadratic Estimators

Consider a stochastic system

Ẋ = AX + Bu + FV

Y = CX + W,

where X represents that state, u is the (deterministic) input, V represents
disturbances that affect the dynamics of the system and W represents mea-
surement noise. Assume that the disturbance V and noise W are zero-mean,
Gaussian white noise (but not necessarily stationary):
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We also assume that the cross correlation between V and W is zero, so that
the distrubances are not correlated with the noise. Note that we use multi-
variable Gaussians here, with (incremental) covariance matrix RV ∈ R

m×m

and RW ∈ R
p×p. In the scalar case, RV = σ2

V and RW = σ2
W .

We formulate the optimal estimation problem as finding the estimate
X̂(t) that minimizes the mean square error E{(X(t)−X̂(t))(X(t)−X̂(t))T }
given {Y (τ) : 0 ≤ τ ≤ t}. It can be shown that this is equivalent to
finding the expected value of X subject to the “constraint” given by all
of the previous measurements, so that X̂(t) = E{X(t)|Y (τ), τ ≤ t}. This
was the way that Kalman originally formulated the problem and it can be
viewed as solving a least squares problem: given all previous Y (t), find the

estimate X̂ that satisfies the dynamics and minimizes the square error with
the measured data. We omit the proof since we will work directly with the
error formulation.
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Theorem 5.1 (Kalman-Bucy, 1961). The optimal estimator has the form

of a linear observer

˙̂
X = AX̂ + BU + L(Y − CX̂)

where L(t) = P (t)CT R−1
W and P (t) = E{(X(t)− X̂(t))(X(t)− X̂(t))T } and

satisfies

Ṗ = AP + PAT − PCT R−1
W (t)CP + FRV (t)F T

P (0) = E{X(0)XT (0)}
Sketch of proof. The error dynamics are given by

Ė = (A − LC)E + ξ, ξ = FV − LW, Rξ = FRV F T + LRW LT

The covariance matrix PE = P for this process satisfies

Ṗ = (A − LC)P + P (A − LC)T + FRV F T + LRW LT

= AP + PAT + FRV F T − LCP − PCT LT + LRW LT

= AP + PAT + FRV F T + (LRW − PCT )R−1
W (LRW + PCT )T

− PCT RW CP,

where the last line follows by completing the square. We need to find L such
that P (t) is as small as possible, which can be done by choosing L so that Ṗ
decreases by the maximimum amount possible at each instant in time. This
is accomplished by setting

LRW = PCT =⇒ L = PCT R−1
W .

Note that the Kalman filter has the form of a recursive filter: given P (t) =
E{E(t)ET (t)} at time t, can compute how the estimate and covariance
change. Thus we don’t need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate X̂(t) and the covariance
PE(t), so you can see how well the error is converging.

If the noise is stationary (RV , RW constant) and if Ṗ is stable, then
the observer gain converges to a constant and satisfies the algebraic Riccati

equation:

L = PCT R−1
W AP + PAT − PCT R−1

W CP + FRV F T .

This is the most commonly used form of the controller since it gives an
explicit formula for the estimator gains that minimize the error covariance.
The gain matrix for this case can solved use the lqe command in MATLAB.

Another property of the Kalman filter is that it extracts the maximum
possible information about output data. To see this, consider the residual

random prossess
R = Y − CX̂
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(this process is also called the innovations process). It can be shown for the
Kalman filter that the correlation matrix of R is given by

RR(t, s) = W (t)δ(t − s).

This implies that the residuals are a white noise process and so the output
error has no remaining dynamic information content.

5.2 Extensions of the Kalman Filter

Correlated disturbances and noise

The derivation of the Kalman filter assumes that the disturbances and
noise are independent and white. Removing the assumption of indepen-
dence is straightforward and simply results in a cross term (E{V (t)W (s)} =
RV W δ(s − t)) being carried through all calculations.

To remove the assumption of white noise sources, we construct a filter
that takes white noise as an input and produces a noise source with the ap-
propriate correlation function (or equivalently, spectral power density func-
tion). The intuition behind this approach is that we must have an internal
model of the noise and/or disturbances in order to capture the correlation
between different times.

Extended Kalman filters

Consider a nonlinear system

Ẋ = f(X, U, V ) X ∈ R
n, u ∈ R

m

Y = CX + W V, W Gaussian white noise processes with

covariance matrices RV and RW .

Nonlinear observer:
˙̂

X = f(X̂, U, 0) + L(Y − CX̂)

Error dynamics: E = X − X̂

Ė = f(X, U, V ) − f(X̂, U, 0) − LC(X − X̂)

= F (E, X̂, U, V ) − LCe F (E, X̂, U, V ) = f(E + X̂, U, V ) − f(X̂, U, 0)

Now linearize around current estimate X̂

Ê =
∂F

∂E
E + F (0, X̂, U, 0)

︸ ︷︷ ︸

=0

+
∂F

∂V
V

︸ ︷︷ ︸

noise

− LCe
︸︷︷︸

observer gain

+h.o.t

= ÃE + F̃ V − LCE
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where
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∂e
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∣
∣
∣
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





Depend on current es-
timate X̂

Idea: design observer for the linearized system around current estimate

˙̂
X = f(X̂, U, 0) + L(Y − CX̂) L = PCT R−1

W

Ṗ = (Ã − LC)P + P (Ã − LC)T + F̃RV F̃ T + LRW LT P (t0) = E{X(t0)X
T (t0)}

This is called the (Schmidt) extended Kalman filter (EKF)
Remarks:

1. Can’t prove very much about EKF due to nonlinear terms

2. In applications, works very well. One of the most used forms of the
Kalman filter

3. Unscented Kalman filters

4. Information form of the Kalman filter (next week?)

Application: parameter ID

Consider a linear system with unknown parameters ξ

Ẋ = A(ξ)X + B(ξ)U + FV ξ ∈ R
p

Y = C(ξ)X + W

Parameter ID problem: given U(t) and Y (t), estimate the value of the
parameters ξ.

One approach: treat ξ as unkown state

Ẋ = A(ξ)X + B(ξ)U + FV

ξ̇ = 0

}

→
d

dt

[
X
ξ

]

=

f(
h

X
ξ

i

,U,V )

︷ ︸︸ ︷[
A(ξ) 0

0 0

] [
X
ξ

]

+

[
B(ξ)

0

]

U +

[
F
0

]

V

Y = C(ξ)X + W
︸ ︷︷ ︸

h(
h

X
ξ

i

,W )

Now use EKF to estimate X and ξ =⇒ determine unknown parameters
ξ ∈ R

p.
Remark: need various observability conditions on augmented system in

order for this to work.
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Unscented Kalman filter

5.3 LQG Control

Return to the original “H2” control problem

Figure
Ẋ = AX + BU + FV

Y = CX + W

V, W Gaussian white
noise with covariance
RV , RW

Stochastic control problem: find C(s) to minimize

J = E

{∫
∞

0

[
(Y − r)T RV (Y − r)T + UT RW U

]
dt

}

Assume for simplicity that the reference input r = 0 (otherwise, translate
the state accordingly).

Theorem 5.2 (Separation principle). The optimal controller has the form

˙̂
X = AX̂ + BU + L(Y − CX̂)

U = K(X̂ − Xd)

where L is the optimal observer gain ignoring the controller and K is the

optimal controller gain ignoring the noise.

This is called the separation principle (for H2 control).

5.4 Application to the Caltech Ducted Fan

To illustrate the use of the Kalman filter, we consider the problem of esti-
mating the state for the Caltech ducted fan, described already in Section ??.

5.5 Further Reading

Exercises

5.1 Consider the problem of estimating the position of an autonomous
mobile vehicle using a GPS receiver and an IMU (inertial measurement
unit). The dynamics of the vehicle are given by
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y

x

l

φ

θ

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

ℓ
tan φ v,

We assume that the vehicle is disturbance free, but that we have noisy
measurements from the GPS receiver and IMU and an initial condition error.

In this problem we will utilize the full form of the Kalman filter (including
the Ṗ equation).

(a) Suppose first that we only have the GPS measurements for the xy posi-
tion of the vehicle. These measurements give the position of the vehicle with
approximately 1 meter accuracy. Model the GPS error as Gaussian white
noise with σ = 1.2 meter in each direction and design an optimal estimator
for the system. Plot the estimated states and the covariances for each state
starting with an initial condition of 5 degree heading error at 10 meters/sec
forward speed (i.e., choose x(0) = (0, 0, 5π/180) and x̂ = (0, 0, 0)).

(b) An IMU can be used to measure angular rates and linear acceleration.
Assume that we use a Northrop Grumman LN200 to measure the angular
rate θ̇. Use the datasheet on the course web page to determine a model
for the noise process and design a Kalman filter that fuses the GPS and
IMU to determine the position of the vehicle. Plot the estimated states and
the covariances for each state starting with an initial condition of 5 degree
heading error at 10 meters/sec forward speed.

Note: be careful with units on this problem!


