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Chapter 6

Sensor Fusion

6.1 Kalman Filters in Discrete Time

One of the principal uses of observers in practice is to estimate the state of
a system in the presence of noisy measurements. We have not yet treated
noise in our analysis and a full treatment of stochastic dynamical systems is
beyond the scope of this text. In this section, we present a brief introduction
to the use of stochastic systems analysis for constructing observers. We work
primarily in discrete time to avoid some of the complications associated
with continuous time random processes and to keep the mathematical pre-
requisites to a minimum. This section assumes basic knowledge of random
variables and stochastic processes.

Consider a discrete time, linear system with dynamics

x[k + 1] = Ax[k] + Bu[k] + Fv[k]

y[k] = Cx[k] + w[k],
(6.1)

where v[k] and w[k] are Gaussian, white noise processes satisfying

E{v[k]} = 0 E{w[k]} = 0

E{v[k]v[j]T } =

{

0 k 6= j

Rv k = j
E{w[k]w[j]T } =

{

0 k 6= j

Rw k = j

E{v[k]w[j]T } = 0.

(6.2)

We assume that the initial condition is also modeled as a Gaussian random
variable with

E{x0} = x0 E{x0x
T
0 } = P0. (6.3)

We wish to find an estimate x̂[k] that minimizes the mean square error
E{(x[k] − x̂[k])(x[k] − x̂[k])T } given the measurements {y(δ) : 0 ≤ τ ≤ t}.
We consider an observer in the same basic form as derived previously:

x̂[k + 1] = Ax̂[k] + Bu[k] + L[k](y[k] − Cx̂[k]). (6.4)

The following theorem summarizes the main result.

Theorem 6.1. Consider a random process x[k] with dynamics (6.1) and
noise processes and initial conditions described by equations (6.2) and (6.3).
The observer gain L that minimizes the mean square error is given by

L[k] = AP [k]CT (Rw + CP [k]CT )−1,
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where
P [k + 1] = (A − LC)P [k](A − LC)T + Rv + LRwLT

P0 = E{X(0)XT (0)}.
(6.5)

Before we prove this result, we reflect on its form and function. First,
note that the Kalman filter has the form of a recursive filter: given P [k] =
E{E[k]E[k]T } at time k, can compute how the estimate and covariance
change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x̂[k] and the covariance
P [k], so we can see how reliable the estimate is. It can also be shown
that the Kalman filter extracts the maximum possible information about
output data. If we form the residual between the measured output and the
estimated output,

e[k] = y[k] − Cx̂[k],

we can can show that for the Kalman filter the correlation matrix is

Re(j, k) = Wδjk.

In other words, the error is a white noise process, so there is no remaining
dynamic information content in the error.

In the special case when the noise is stationary (Rv, Rw constant) and if
P [k] converges, then the observer gain is constant:

L = APCT (Rw + CPCT ),

where P satisfies

P = APAT + Rv − APCT
(
Rw + CPCT

)
−1

CPAT .

We see that the optimal gain depends on both the process noise and the
measurement noise, but in a nontrivial way. Like the use of LQR to choose
state feedback gains, the Kalman filter permits a systematic derivation of
the observer gains given a description of the noise processes. The solution
for the constant gain case is solved by the dlqe command in MATLAB.

Proof (of theorem). We wish to minimize the mean square of the error,
E{(x[k] − x̂[k])(x[k] − x̂[k])T }. We will define this quantity as P [k] and
then show that it satisfies the recursion given in equation (6.5). By defini-
tion,

P [k + 1] = E{x[k + 1]x[k + 1]T }

= (A − LC)P [k](A − LC)T + Rv + LRwLT

= AP [k]AT − AP [k]CT LT − LCAT + L(Rw + CP [k]CT )LT .
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Letting Rǫ = (Rw + CP [k]CT ), we have

P [k + 1] = AP [k]AT − AP [k]CT LT − LCAT + LRǫL
T

= AP [k]AT +
(
L − AP [k]CT R−1

ǫ

)
Rǫ

(
L − AP [k]CT R−1

ǫ

)T

− AP [k]CT R−1

ǫ CP [k]T AT + Rw.

In order to minimize this expression, we choose L = AP [k]CT R−1
ǫ and the

theorem is proven.

6.2 Predictor-Corrector Form

The Kalman filter can be written in a two step form by separating the
correction step (where we make use of new measurements of the output) and
the prediction step (where we compute the expected state and covariance at
the next time instant).

We make use of the notation x̂[k|j] to represent the estimated state at
time instant k given the information up to time j (where typically j = k−1).
Using this notation, the filter can be solved using the following algorithm:

Step 0: Initialization.

k = 0

x̂[0|−1] = E{x[0]}

P [0|−1] = E{xT [0]x[0]}

Step 1: Correction.

x̂[k|k] = x̂[k|k − 1] + L[k](y[k] − Cx̂[k|k − 1])

P [k|k] = P [k|k − 1] − P [k|k − 1]CT (CP [k|k − 1]CT + Rw[k])−1CP [k|k − 1]

Step 2: Prediction.

x̂[k + 1|k] = Ax̂[k|k] + Bu[k]

P [k + 1|k] = AP [k|k]AT + FRv[k]F T

Step 3: Interate. Set k to k + 1 and repeat steps 1 and 2.
Note that the correction step reduces the covariance by an amount re-

lated to the relative accuracy of the measurement, while the prediction step
increases the covariance by an amount related to the process disturbance.

This form of the discrete-time Kalman filter is convenient because we can
reason about the estimate in the case when we do not obtain a measurement
on every interation of the algorithm. In this case, we simply update the
prediction step (increasing the covariance) until we receive new sensor data,
at which point we call the correction step (decreasing the covariance).
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6.3 Sensor Fusion

6.4 Information Filters

6.5 Additional topics

Converting continuous time stochastic systems to discrete time

Ẋ = AX + Bu + Fv

x(t + h) ≈ x(t) + hẋ(t)

= x(t) + hAx(t) + hBu(t) + hFV (t)

= (I + hA)X(t) + (hB)u(t) + (hF )V (t)

X[k + 1] = (I + hA)
︸ ︷︷ ︸

Ã

X[k] + (bB)
︸︷︷︸

B̃

u[k] + (hF )
︸ ︷︷ ︸

F̃

V [k].

Correlated disturbances and noise

As in the case of continuous-time Kalman filters, in the discrete time we can
include noise or disturbances that are non-white by using a filter to generate
noise with the appropriate correlation function.

On practical method to do this is to collect samples V [1], V [2], . . . , V [N ]
and then numerically compute the correlation function

RV (l) = E{V [i]V [i + l]} =
1

N − l

N−l∑

j=1

V [j]V [j + l].

6.6 Further Reading

Exercises

6.1 Consider the problem of estimating the position of an autonomous
mobile vehicle using a GPS receiver and an IMU (inertial measurement
unit). The continuous time dynamics of the vehicle are given by

y

x

l

φ

θ

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

ℓ
tan φ v,

We assume that the vehicle is disturbance free, but that we have noisy
measurements from the GPS receiver and IMU and an initial condition error.



6.6. FURTHER READING 5

(a) Rewrite the equations of motion in discrete time, assuming that we
update the dynamics at a sample time of h = 0.005 sec and that we can take
ẋ to be roughly constant over that period. Run a simulation of your discrete
time model from initial condition (0, 0, 0) with constant input φ = π/8, v = 5
and compare your results with the continuous time model.

(b) Suppose that we have a GPS measurement that is taken every 0.1 sec-
onds and an IMU measurement that is taken every 0.01 seconds. Write
a MATLAB program that that computes the discrete time Kalman filter
for this system, using the same disturbance, noise and initial conditions as
Exercise 5.1.


