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Preface

These notes serve as a supplement to Feedback Systems by Åström and Mur-
ray and expand on some of the topics introduced there. Our focus is on the
use of optimization-based methods for control, including optimal control
theory, receding horizon control and Kalman filtering. Each chapter is in-
tended to be a standalone reference for advanced topics that are introduced
in Feedback Systems.
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Chapter 1

Trajectory Generation and Tracking

This set of notes expands on Section 7.5 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the use of feedforward compensation in
control system design. We begin with a review of the two degree of freedom
design approach and then focus on the problem of generating feasible tra-
jectories for a (nonlinear) control system. We make use of the concept of
differential flatness as a tool for generating feasible trajectories.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment. Although this material supplements
concepts introduced in Chapter 7 of ÅM08, no knowledge of observers is
required.

1.1 Two Degree of Freedom Design

A large class of control problems consist of planning and following a trajec-
tory in the presence of noise and uncertainty. Examples include autonomous
vehicles manuevering in city streets, mobile robots performing tasks on fac-
tor floors (or other planets), manufacturing systems that regulate the flow
of parts and materials through a plant or factory, and supply chain manage-
ment systems that balance orders and inventories across an enterprise. All
of these systems are highly nonlinear and demand accurate performance.

To control such systems, we make use of the notion of two degree of free-

dom controller design. This is a standard technique in linear control theory
that separates a controller into a feedforward compensator and a feedback
compensator. The feedforward compensator generates the nominal input
required to track a given reference trajectory. The feedback compensator
corrects for errors between the desired and actual trajectories. This is shown
schematically in Figure 1.1.

In a nonlinear setting, two degree of freedom controller design decouples
the trajectory generation and asymptotic tracking problems. Given a de-
sired output trajectory, we first construct a state space trajectory xd and
a nominal input ud that satisfy the equations of motion. The error system
can then be written as a time-varying control system in terms of the er-
ror, e = x − xd. Under the assumption that that tracking error remains
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Figure 1.1: Two degree of freedom controller design for a process P with uncer-
tainty ∆. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block ∆, representing unmodeled dynamics, as well as dis-
turbances and noise.

small, we can linearize this time-varying system about e = 0 and stabilize
the e = 0 state. (Note: in ÅM08 the notation uff was used for the desired
(feedforward) input. We use ud here to match the desired state xd.)

More formally, we assume that our process dynamics can be described
by a nonlinear differential equation of the form

ẋ = f(x, u) x ∈ R
n, u ∈ R

p,

y = h(x, u) y ∈ R
q,

(1.1)

where x is the system state, u is a vector of inputs and f is a smooth function
describing the dynamics of the process. The smooth function h describes
the output y that we wish to control. We are particularly interested in the
class of control problems in which we wish to track a time-varying reference
trajectory r(t), called the trajectory tracking problem. In particular, we wish
to find a control law u = α(x, r(·)) such that

lim
t→∞

(
y(t) − r(t)

)
= 0.

We use the notation r(·) to indicate that the control law can depend not
only on the reference signal r(t) but also derivatives of the reference signal.

A feasible trajectory for the system (1.1) is a pair (xd(t), ud(t)) that sat-
isfies the differential equation and generates the desired trajectory:

ẋd = f(xd, ud) r(t) = h(xd, ud).

The problem of finding a feasible trajectory for a system is called the tra-

jectory generation problem, with xd representing the desired state for the
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(nominal) system and ud representing the desired input or the feedforward

control. If we can find a feasible trajectory for the system, we can search
for controllers of the form u = α(x, xd, ud) that track the desired reference
trajectory.

In many applications, it is possible to attach a cost function to trajec-
tories that describe how well they balance trajectory tracking with other
factors, such as the magnitude of the inputs required. In such applications,
it is natural to ask that we find the optimal controller. We can again use the
two degree of freedom paradigm with an optimal control computation for
generating the feasible trajectory. This subject is examined in more detail
in Chapter 2. In addition, we can take the extra step of updating the gen-
erated trajectory based on the current state of the system. This additional
feedback path is denoted by a dashed line in Figure 1.1 and allows the use of
so-called receding horizon control techniques: a (optimal) feasible trajectory
is computed from the current position to the desired position over a finite
time T horizon, used for a short period of time δ < T , and then recomputed
based on the new position. Receding horizon control is described in more
detail in Chapter 3.

A key advantage of optimization-based approaches is that they allow the
potential for customization of the controller based on changes in mission,
condition and environment. Because the controller is solving the optimiza-
tion problem online, updates can be made to the cost function, to change
the desired operation of the system; to the model, to reflect changes in pa-
rameter values or damage to sensors and actuators; and to the constraints,
to reflect new regions of the state space that must be avoided due to exter-
nal influences. Thus, many of the challenges of designing controllers that
are robust to a large set of possible uncertainties become embedded in the
online optimization.

1.2 Trajectory Tracking and Gain Scheduling

We begin by considering the problem of tracking a feasible trajectory. As-
sume that a trajectory generator is able to generate a trajectory (xd, ud) that
satisfies the dynamics (1.1) and satisfies r(t) = h(xd(t), ud(t)). To design
the controller, we construct the error system. Let e = x−xd and v = u−ud

and compute the dynamics for the error:

ė = ẋ− ẋd = f(x, u) − f(xd, ud)

= f(e+ xd, v + ud) − f(xd) =: F (e, v, xd(t), ud(t)).

In general, this system is time-varying.
For trajectory tracking, we can assume that e is small (if our controller



1.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 4

is doing a good job), and so we can linearize around e = 0:

de

dt
≈ A(t)e+B(t)v, A(t) =

∂F

∂e

∣∣∣∣
(xd(t),ud(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),ud(t)

.

It is often the case that A(t) and B(t) depend only on xd, in which case it
is convenient to write A(t) = A(xd) and B(t) = B(xd).

We start by reviewing the case where A(t) and B(t) are constant, in
which case our error dynamics become

ė = Ae+Bv.

This occurs, for example, if the original nonlinear system is linear. We can
then search for a control system of the form

v = −Ke+ krr.

In the case where r is constant, we can apply the results of Chapter 6 of
ÅM08 and solve the problem by finding a gain matrix K that gives the
desired close loop dynamics (e.g., by eigenvalue assignment) and choosing
kr to give the desired output value at equilibrium. The equilibrium point is
given by

xe = −(A−BK)−1Bkrr =⇒ ye = −C(A−BK)−1Bkrr

and if we wish the output to be y = r it follows that

kr = −1/
(
C(A−BK)−1B

)
.

It can be shown that this formulation is equivalent to a two degree of freedom
design where xd and ud are chosen to give the desired reference output
(Exercise 1.1).

Returning to the full nonlinear system, assume now that xd and ud are
either constant or slowly varying (with respect to the performance criterion).
This allows us to consider just the (constant) linearized system given by
(A(xd), B(xd)). If we design a state feedback controller K(xd) for each xd,
then we can regulate the system using the feedback

v = K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u = −K(xd)(x− xd) + ud.

Note that the controller u = α(x, xd, ud) depends on (xd, ud), which them-
selves depend on the desired reference trajectory. This form of controller is
called a gain scheduled linear controller with feedforward ud.

More generally, the term gain scheduling is used to describe any con-
troller that depends on a set of measured parameters in the system. So, for
example, we might write

u = −K(x, µ) · (x− xd) + ud,
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Figure 1.2: Gain scheduling. A general gain scheduling design involves finding a
gain K at each desired operating point. This can be thought of as a gain surface,
as shown on the left (for the case of a scalar gain). An approximation to this gain
can be obtained by computing the gains at a fixed number of operating points
and then interpolated between those gains. This gives an approximation of the
continuous gain surface, as shown on the right.

where K(x, µ) depends on the current system state (or some portion of it)
and an external parameter µ. The dependence on the current state x (as
opposed to the desired state xd) allows us to modify the closed loop dynamics
differently depending on our location in the state space. This is particularly
useful when the dynamics of the process vary depending on some subset of
the states (such as the altitude for an aircraft or the internal temperature
for a chemical reaction). The dependence on µ can be used to capture the
dependence on the reference trajectory, or they can reflect changes in the
environment or performance specifications that are not modeled in the state
of the controller.

One limitation of gain scheduling as we have described it is that a separate
set of gains must be designed for each operating condition xd. In practice,
gain scheduled controllers are often implemented by designing controllers at
a fixed number of operating points and then interpolating the gains between
these points, as illustrated in Figure 1.2. Suppose that we have a set of
operating points xd,j , j = 1, . . . , N . Then we can write our controller as

u = ud −K(x)e K(x) =
∑

(αj(x)Kj),

where Kj is a set of gains designed around the operating point xd,j and αj(x)
is a weighting factor. For example, we might choose the weights αj(x) such
that we take the gains corresponding to the nearest two operating points
and weight them according to the Euclidean distance of the current state
from that operating point; if the distance is small then we use a weight very
near to 1 and if the distance is far then we use a weight very near to 0.

While the intuition behind gain scheduled controllers is fairly clear, some
caution in required in using them. In particular, a gain scheduled controller
is not gauranteed to be stable even if K(x, µ) locally stabilizes the system
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Figure 1.3: Vehicle steering using gain scheduling.

around a given equilibrium point. Gain scheduling can be proven to work
in the case when the gain varies sufficiently slow (Exercise 1.3).

Example 1.1 Steering control with velocity scheduling

Consider the problem of controlling the motion of a automobile so that it
follows a given trajectory on the ground, as shown in Figure 1.3. We use
the model derived in ÅM08, choosing the reference point to be the center of
the rear wheels. This gives dynamics of the form

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
v

l
tanφ,

(1.2)

where (x, y, θ) is the position and orientation of the vehicle, v is the veloc-
ity and φ is the steering angle, both considered to be inputs, and l is the
wheelbase.

A simple feasible trajectory for the system is to follow a straight line in
the x direction at lateral position yr and fixed velocity vr. This corresponds
to a desired state xd = (vrt, yr, 0) and nominal input ud = (vr, 0). Note that
(xd, ud) is not an equilibrium point for the system, but it does satisfy the
equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂f

∂x

∣∣∣∣
(xd,ud)

=




0 0 − sin θ
0 0 cos θ
0 0 0




∣∣∣∣∣∣
(xd,ud)

=




0 0 0
0 0 1
0 0 0


 ,

Bd =
∂f

∂u

∣∣∣∣
(xd,ud)

=




1 0
0 0
0 vr/l


 .

We form the error dynamics by setting e = x− xd and w = u− ud:

ėx = w1, ėy = eθ, ėθ =
vr

l
w2.

We see that the first state is decoupled from the second two states and
hence we can design a controller by treating these two subsystems separately.
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Suppose that we wish to place the closed loop eigenvalues of the longitudinal
dynamics (ex) at λ1 and place the closed loop eigenvalues of the lateral
dynamics (ey, eθ) at the roots of the polynomial equation s2 + a1s+ a2 = 0.
This can accomplished by setting

w1 = −λ1ex

w2 =
l

vr
(a1ey + a2eθ).

Note that the gains depend on the velocity vr (or equivalently on the nominal
input ud), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the form

[
v
φ

]
= −



λ1 0 0

0
a1l

vr

a2l

vr




︸ ︷︷ ︸
Kd



x− vrt
y − yr

θ




︸ ︷︷ ︸
e

+

[
vr

0

]

︸ ︷︷ ︸
ud

.

The form of the controller shows that at low speeds the gains in the steering
angle will be high, meaning that we must turn the wheel harder to achieve
the same effect. As the speed increases, the gains become smaller. This
matches the usual experience that at high speed a very small amount of
actuation is required to control the lateral position of a car. Note that the
gains go to infinity when the vehicle is stopped (vr = 0), corresponding to
the fact that the system is not reachable at this point. ∇

1.3 Trajectory Generation and Differential Flatness

We now return to the problem of generating a trajectory for a nonlinear
system. Consider first the case of finding a trajectory xd(t) that steers the
system from an initial condition x0 to a final condition xf . We seek a feasible
solution (xd(t), ud(t) that satisfies the dynamics of the process:

ẋd = f(xd, ud), xd(0) = x0, xd(T ) = xf . (1.3)

In addition, we may wish to satisfy additional constraints on the dynamics:

• Input saturation: |u(t)| < M ;

• State constraints: g(x) ≤ 0

• Tracking: h(x) = r(t)

• Optimization:

min

∫ T

0
L(x, u)dt+ V (x(T ), u(T ))

Formally, this problem corresponds to a two-point boundary value problem
and can be quite difficult to solve in general.
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input constraints → curvature constraints

Figure 1.4: Simple model for an automobile. We wish to find a trajectory from an
initial state to a final state that satisfies the dynamics of the system and constraints
on the curvature (imposed by the limited travel of the front wheels).

As an example of the type of problem we would like to study, consider
the problem of steering a car from an initial condition to a final condition,
as show in Figure 1.4. To solve this problem, we must find a solution to
the differential equations (1.2) that satisfies the endpoint conditions. Given
the nonlinear nature of the dynamics, it seems unlikely that one could find
explicit solutions that satisfy the dynamics except in very special cases (such
as driving in a straight line).

A closer inspection of this system shows that it is possible to understand
the trajectories of the system by exploiting the particular structure of the
dynamics. Suppose that we are given a trajectory for the rear wheels of
the system, x(t) and y(t). From equation (1.2), we see that we can use this
solution to solve for the angle of the car by writing

ẏ

ẋ
=

sin θ

cos θ
=⇒ θ = tan−1(ẏ/ẋ).

Furthermore, given θ we can solve for the velocity using the equation

ẋ = v cos θ =⇒ v = ẋ/ cos θ,

assuming cos θ 6= 0 (if it is, use v = ẏ/ sin θ). And given θ, we can solve for
φ using the relationship

θ̇ =
v

l
tanφ =⇒ φ = tan−1(

lθ̇

v
).

Hence all of the state variables and the inputs can be determined by the
trajectory of the rear wheels and its derivatives. This property of a system
is known as differential flatness.

Definition 1.1 (Differential flateness). A nonlinear system (1.1) is differ-

entially flat if there exists a function α such that

z = α(x, u, u̇ . . . , u(p))

and we can write the solutions of the nonlinear system as functions of z and
an finite number of derivatives

x = β(z, ż, . . . , z(q)),

u = γ(z, ż, . . . , z(q)).
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For a differentially flat system, all of the feasible trajectories for the
system can be written as functions of a flat output z(·) and its derivatives.
The number of flat outputs is always equal to the number of system inputs.
The kinematic car is differentially flat with the position of the rear wheels as
the flat output. Differentially flat systems were originally studied by Fliess
et al. [FLMR92].

Differentially flat systems are useful in situations where explicit trajec-
tory generation is required. Since the behavior of flat system is determined
by the flat outputs, we can plan trajectories in output space, and then map
these to appropriate inputs. Suppose we wish to generate a feasible trajec-
tory for the the nonlinear system

ẋ = f(x, u), x(0) = x0, x(T ) = xf .

If the system is differentially flat then

x(0) = β
(
z(0), ż(0), . . . , z(q)(0)

)
= x0

x(T ) = γ
(
z(T ), ż(T ), . . . , z(q)(T )

)
= xf

(1.4)

and any trajectory for z that satisfies these boundary conditions will be a
feasible trajectory for the system.

In particular, given initial and final conditions on z and its derivatives
that satisfy equation (1.4), any curve z(·) satisfing those conditions will
correspond to a feasible trajectory of the system. We can parameterize the
flat output trajectory using a set of smooth basis functions ψi(t):

z(t) =

N∑

i=1

αiψi(t), αi ∈ R.

We seek a set of coefficients αi, i = 1, . . . , N such that z(t) satisfies the
boundary conditions (1.4). The derivatives of the flat output can be com-
puted in terms of the derivatives of the basis functions:

ż(t) =
N∑

i=1

αiψ̇i(t)

...

ż(q)(t) =
N∑

i=1

αiψ
(q)
i (t).
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We can thus write the conditions on the flat outputs and their derivatives
as 



ψ1(0) ψ2(0) . . . ψN (0)

ψ̇1(0) ψ̇2(0) . . . ψ̇N (0)
...

...
...

ψ
(q)
1 (0) ψ

(q)
2 (0) . . . ψ

(q)
N (0)

ψ1(T ) ψ2(T ) . . . ψN (T )

ψ̇1(T ) ψ̇2(T ) . . . ψ̇N (T )
...

...
...

ψ
(q)
1 (T ) ψ

(q)
2 (T ) . . . ψ

(q)
N (T )






α1
...
αN


 =




z(0)
ż(0)

...

z(q)(0)

z(T )
ż(T )

...

z(q)(T )




This equation is a linear equation of the form Mα = z̄. Assuming that
M has a sufficient number of columns and that it is full column rank, we
can solve for a (possibly non-unique) α that solves the trajectory generation
problem.

Example 1.2 Nonholonomic integrator

A simple nonlinear system called a nonholonomic integrator [?] is given by
the differential equations

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

This system is differentially flat with flat output z = (x1, x3). The relation-
ship betwen the flat variables and the states is given by

x1 = z1

x2 = ẋ3/ẋ1 = ż2/ż1

x3 = z2.

Using simple polynomials as our basis functions,

ψ1,1(t) = 1 ψ1,2(t) = tψ1,3(t) = t2ψ1,4(t) = t3

ψ2,1(t) = 1 ψ2,2(t) = tψ2,3(t) = t2ψ2,4(t) = t3,

the equations for the feasible (flat) trajectory become



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 T T 2 T 3 0 0 0 0
0 1 2T 3T 2 0 0 0 0
0 0 0 0 1 T T 2 T 3

0 0 0 0 0 1 2T 3T 2







α11

α12

α13

α14

α21

α22

α23

α24




=




x1,0

1
x3,0

x2,0

x1,f

1
x3,f

x2,f




.
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This is a set of 8 linear equations in 8 variables. It can be shown that the
matrix M is full rank and the system can be solved numerically. ∇

Note that no ODEs need to be integrated in order to compute the feasible
trajectories for a differentially flat system (unlike optimal control methods
that we will consider in the next chapter, which involve parameterizing the
input and then solving the ODEs). This is the defining feature of differ-
entially flat systems. The practical implication is that nominal trajectories
and inputs which satisfy the equations of motion for a differentially flat
system can be computed in a computationally efficient way (solution of al-
gebraic equations). Since the flat output functions are completely free, the
only constraints that must be satisfied are the initial and final conditions
on the endpoints, their tangents, and higher order derivatives. Any other
constraints on the system, such as bounds on the inputs, can be transformed
into the flat output space and (typically) become limits on the curvature or
higher order derivative properties of the curve.

If there is a performance index for the system, this index can be trans-
formed and becomes a functional depending on the flat outputs and their
derivatives up to some order. By approximating the performance index we
can achieve paths for the system that are suboptimal but still feasible. This
approach is often much more appealing than the traditional method of ap-
proximating the system (for example by its linearization) and then using
the exact performance index, which yields optimal paths but for the wrong
system.

In light of the techniques that are available for differentially flat systems,
the characterization of flat systems becomes particularly important. Unfor-
tunately, general conditions for flatness are not known, but all (dynamic)
feedback linearizable systems are differentially flat, as are all driftless sys-
tems that can be converted into chained form (see [vNRM94] for details).
Another large class of differentially flat systems are those in “pure feedback
form”:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...

ẋn = fn(x1, . . . , xn, u).

Under certain regularity conditions these systems are differentially flat with
output y = x1. These systems have been used for so-called “integrator
backstepping” approaches to nonlinear control by Kokotovic et al. [KKM91].
Figure 1.5 shows some additional systems that are differentially flat.

Example 1.3 Planar ducted fan

Consider the dynamics of a planar, vectored thrust flight control system as
shown in Figure 1.6. This system consists of a rigid body with body fixed
forces and is a simplified model for the Caltech ducted fan [?]. Let (x, y, θ)
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Figure 1.5: Examples of flat systems.

denote the position and orientation of the center of mass of the fan. We
assume that the forces acting on the fan consist of a force f1 perpendicular
to the axis of the fan acting at a distance r from the center of mass, and a
force f2 parallel to the axis of the fan. Let m be the mass of the fan, J the
moment of inertia, and g the gravitational constant. We ignore aerodynamic
forces for the purpose of this example.

The dynamics for the system are

mẍ = f1 cos θ − f2 sin θ,

mÿ = f1 sin θ + f2 cos θ −mg,

Jθ̈ = rf1.

(1.5)

Martin et al. [MDP94] showed that this system is differentially flat and that
one set of flat outputs is given by

z1 = x− (J/mr) sin θ,

z2 = y + (J/mr) cos θ.
(1.6)

Using the system dynamics, it can be shown that

z̈1 cos θ + (z̈2 + g) sin θ = 0 (1.7)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of
π and away from the singularity z̈1 = z̈2 + g = 0. The remaining states and
the forces f1(t) and f2(t) can then be obtained from the dynamic equations,
all in terms of z1, z2, and their higher order derivatives. ∇
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net thrust

θ

(x, y)

f2

x

y
f1

Figure 1.6: Planar ducted fan engine. Thrust is vectored by moving the flaps at
the end of the duct.

1.4 Further Reading

The two degree of freedom controller structure introduced in this chapter
is described in a bit more detail in ÅM08 [ÅM08] (in the context of output
feedback control) and a description of some of the origins of this structure are
provided in the “Further Reading” section of Chapter 8. Gain scheduling is a
classical technique that is often omitted from introductory control texts, but
a good desciption can be found in the survey article by Rugh [Rug90] and the
work of Shamma [Sha90]. Differential flatness was originally developed by
Fliess, Levin, Martin and Rouchon [FLMR92]. See [Mur97] for a description
of the role of flatness in control of mechanical systems and [vNM98] for more
information on flatness applied to flight control systems.

Exercises

1.1 (Feasible trajectory for constant reference) Consider a linear input/output
system of the form

Ȧx+Bu, y = Cx (1.8)

in which we wish to track a constant reference r. A feasible (steady state)
trajectory for the system is given by solving the equation

[
0
r

]
=

[
A B
C 0

] [
xd

uff

]

for xd and uff.

(a) Show that these equations always has a solution as long as the linear
system (1.8) is reachable.
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(b) In Section 6.2 of ÅM08 we showed that the reference tracking problem
could be solved using a control law of the form u = −Kx+ krr. Show that
this is equivalent to a two degree of freedom control design using xd and uff

and give a formula for kr in terms of xd and uff. Show that this formula
matches that given in ÅM08.

1.2 A simplified model of the steering control problem is derived in Åström
and Murray, Example 5.12. The model has the form

ż =

[
0 1
0 0

]
z +

[
γ
1

]
u

y = z1

where z ∈ R
2 is the (normalized) state of the system and γ is a parameter

related to the speed of the vehicle. Suppose that we wish to track a piecewise
constant reference trajectory

r = square(2πt/20),

where square is the square wave function in MATLAB. Suppose further
that the speed of the vehicle varies according to the formula

γ = 2 + 2 sin(2πt/50).

Design and implement a gain-scheduled controller for this system by first
designing a state space controller that places the closed loop poles of the
system at the roots of s2 + 2ζω0s + ω2

0, where ζ = 0.7 and ω0 = 1. You
should design controllers for three different parameter values: γ = 0, 2, 4.
Then use linear interpolation to compute the gain for values of γ between
these fixed values. Compare the performance of the gain scheduled controller
to a simple controller that assumes γ = 2 for the purpose of the control
design (but leaving γ time-varying in your simulation).

Note: a MATLAB file with the vehicle dynamics is available on the course
web page. You can use this if you like to get the reference trajectory and
parameter variation.

1.3 (Stability of gain scheduled controllers for slowly varying systems) Con-
sider a nonlinear control system with gain scheduled feedback

ė = f(e, v) v = k(µ)e,

where µ(t) ∈ R is an externally specified parameter (eg, the desired trajec-
tory) and k(µ) is chosen such that the linearization of the closed loop system
around the origin is stable for each fixed µ.

Show that if |µ̇| is sufficiently small then the equilibrium point is locally
asymptotically stable for the full nonlinear, time-varying system. (Hint: find
a Lyapunov function of the form V = xTP (µ)x based on the linearization of
the system dynamics for fixed µ and then show this is a Lyapunov function
for the full system.)
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1.4 (Flatness of systems in reachable canonical form) Consider a single input
system in reachable canonical form [ÅM08, Sec. 6.1]:

dx

dt
=




−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0



x+




1
0
0
...
0



u,

y =
[
b1 b2 b3 . . . bn

]
x+ du.

(1.9)

Suppose that we wish to find an input u that moves the system from x0 to
xf . This system is differentially flat with flat output given by z = xn and
hence we can parameterize the solutions by a curve of the form

xn(t) =
N∑

k=0

αkt
k, (1.10)

where N is a sufficiently large integer.

(a) Compute the state space trajectory x(t) and input u(t) corresponding to
equation (1.10) and satisfying the differential equation (1.9). Your answer
should be an equation similar to equation (1.10) for each state xi and the
input u.

(b) Find an explicit input that steers a double integrator system between
any two equilibrium points x0 ∈ R

2 and xf ∈ R
2.

(c) Show that all reachable systems are differentially flat and give a formula
for the flat output.

1.5 Consider the lateral control problem for an autonomous ground vehicle
as described in Example 1.1 and Section 1.3. Using the fact that the sys-
tem is differentially flat, find an explicit trajectory that solves the following
parallel parking manuever:

x0 = (0, 4)

xf = (0, 0)

xi = (6, 2)

Your solution should consist of two segments: a curve from x0 to xi with
v > 0 and a curve from xi to xf with v < 0. For the trajectory that you
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determine, plot the trajectory in the plane (x versus y) and also the inputs
v and φ as a function of time.

1.6 Consider first the problem of controlling a truck with trailer, as shown
in the figure below:

ẋ = cos θ u1

ẏ = sin θ u1

φ̇ = u2

θ̇ =
1

l
tanφu1

θ̇1 =
1

d
cos(θ − θ1) sin(θ − θ1)u1,

The dynamics are given above, where (x, y, θ) is the position and orientation
of the truck, φ is the angle of the steering wheels, θ1 is the angle of the trailer,
and l and d are the length of the truck and trailer. We want to generate
a trajectory for the truck to move it from a given initial position to the
loading dock. We ignore the role of obstacles and concentrate on generation
of feasible trajectories.

(a) Show that the system is differentially flat using the center of the rear
wheels of the trailer as the flat output.

(b) Generate a trajectory for the system that steerings the vehicle from an
initial condition with the truck and trailer perpendicular to the loading dock
into the loading dock.

(c) Write a simulation of the system stabilizes the desired trajectory and
demonstrate your two-degree of freedom control system maneuving from
several different initial conditions into the parking space, with either distur-
bances or modeling errors included in the simulation.



Chapter 2

Optimal Control

This set of notes expands on Chapter 6 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the concepts of reachability and state
feedback. We also expand on topics in Section 7.5 of ÅM08 in the area
of feedforward compensation. Beginning with a review of optimization, we
introduce the notion of Lagrange multipliers and provide a summary of the
Pontryagin’s maximum principle. Using these tools we derive the linear
quadratic regulator for linear systems and describe its usage.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment.

2.1 Review: Optimization

Consider first the problem of finding the maximum of a smooth function F :
R

n → R. That is, we wish to find a point x∗ ∈ R
n such that F (x∗) ≥ F (x)

for all x ∈ R
n. A necessary condition for x∗ to be a maximum is that the

gradient of the function be zero at x∗,

∂F

∂x
(x∗) = 0.

Figure 2.1 gives a graphical interpretation of this condition. Note that these
are not sufficient conditions; the points x1 and x2 and x∗ in the figure all

x2

x
∗

x1

Figure 2.1: Optimization of functions. The maximum of a function occurs at a
point where the gradient is zero.
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x
∗

F (x)

G(x) = 0

(a) Constrained optimization

G(x) = 0

∂G
∂x

(normal)

(b) Constraint normal vectors

Figure 2.2: Optimization with constraints. (a) We seek a point x
∗ that maximizes

F (x) while lying on the surface G(x) = 0. (b) We can parameterize the constrained
directions by computing the gradient of the constraint G.

satisfy the necessary condition but only one is the (global) maximum.
The situation is more complicated if constraints are present. Let Gi :

R
n → R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0 repre-

senting the constraints. Suppose that we wish to find x∗ ∈ R
n such that

Gi(x
∗) = 0 and F (x∗) ≥ F (x) for all x ∈ {x ∈ R

n : Gi(x) = 0, i = 1, . . . , k}.
This situation can be visualized as constraining the point to a surface (de-
fined by the constraints) and searching for the maximum of the cost function
along this surface, as illustrated in Figure 2.2.

A necessary condition for being at a maximum is that there are no di-
rections tangent to the constraints that also increase the cost. The normal
directions to the surface are spanned by ∂Gi/∂x, as shown in Figure ??.
A necessary condition is that the gradient of F is spanned by vectors that
are normal to the constraints, so that the only directions that increase the
cost violate the constraints. We thus require that there exist scalars λi,
i = 1, . . . , k such that

∂F

∂x
(x∗) +

k∑

i=1

λi
∂Gi

∂x
(x∗) = 0.

If we let G =
[
G1 G2 . . . Gk

]T
, then we can write this condition as

∂F

∂x
+ λT ∂G

∂x
= 0

the term ∂F
∂x

is the usual (gradient) optimality condition while the term ∂G
∂x

is used to “cancel” the gradient in the directions normal to the constraint.
An alternative condition can be derived by modifying the cost function

to incorporate the constraints. Defining F̃ = F +
∑
λiGi, the necessary

condition becomes
∂F̃

∂x
(x∗) = 0.
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The scalars λi are called Lagrange multipliers. Minimize F̃ is equivalent to
the optimization given by

min
x

(
F (x) + λTG(x)

)
.

The variables λ can be regarded as free variables, which implies that need
to choose x such that G(x) = 0. Otherwise, we could choose λ to generate
a large cost.

Example 2.1 Two free variables with a constraint

Consider the cost function given by

F (x) = F0 − (x1 − a)2 − (x2 − b)2,

which has an unconstrained maximum at x = (a, b). Suppose that we add
a constraint G(x) = 0 given by

G(x) = x1 − x2.

With this constrain, we seek to optimize F subject to x1 = x2. Although
in this case we could easily do this by simple substitution, we instead carry
out the more general procedure using Lagrange multipliers.

The augmented cost function is given by

F̃ (x) = F0 − (x1 − a)2 − (x2 − b)2 + λ(x1 − x2),

where λ is the Lagrange multiplier for the constraint. Taking the derivative
of F , we have

∂F

∂x
=

[
−2x1 + 2a+ λ −2x2 + 2b− λ

]
.

Setting each of these equations equal to zero, we have that at the maximum

x∗1 = a+ λ/2, x∗2 = b− λ/2.

The remaining equation that we need is the constraint, which requires that
x∗1 = x∗2. Using these three equations, we see that λ∗ = b− a and we have

x∗1 =
a+ b

2
, x∗2 =

a+ b

2
.

To verify the geometric view described above, note that the gradients of
F and G are given by

∂F

∂x
=

[
−2x1 + 2a −2x2 + 2b

]
,

∂G

∂x
=

[
1 −1

]
.

At the optimal value of the (constrained) optimization, we have

∂F

∂x
=

[
a− b b− a

]
,

∂G

∂x
=

[
1 −1

]
.
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Although the derivative of F is not zero, it is pointed in a direction that
is normal to the constraint, and hence we cannot decrease the cost while
staying on the constraint surface. ∇

We have focused on finding the maximum of a function. We can switch
back and forth between max and min by simply negating the cost function:

max
x

F (x) = min
x

(
−F (x)

)

We see that the conditions that we have derived are independent of the sign
of F since they only depend on the gradient begin zero in approximate di-
rections. Thus finding x∗ that satisfies the conditions corresponds to finding
an extremum for the function.

Very good software is available for solving optimization problems nu-
merically of this sort. The NPSOL and SNOPT libraries are available in
FORTRAN (and C). In MATLAB, the fmin function can be used to solve
a constrained optimization problem.

2.2 Optimal Control of Systems

Consider now the optimal control problem:

min
u

∫ T

0
L(x, u) dt

︸ ︷︷ ︸
integrated cost

+V
(
x(T ), u(T )

)

︸ ︷︷ ︸
final cost

subject to the constraint

ẋ = f(x, u) x ∈ R
n, u ∈ R

m.

Abstractly, this is a constrained optimization problem where we seek a fea-

sible trajectory (x(t), u(t)) that minimizes the cost function

J(x, u) =

∫ T

0
L(x, u) dt+ V

(
x(T ), u(T )

)
.

More formally, this problem is equivalent to the “standard” problem of min-
imizing a cost function J(x, u) where (x, u) ∈ L2[0, T ] (the set of square
integral functions) and h(z) = ẋ(t)−f(x(t), u(t)) = 0 models the dynamics.

There are many variations and special cases of the optimal control prob-
lem. We mention a few here:

Infinite Horizon. if we let T = ∞ and set V = 0, then we seek to optimize a
cost function over all time. This is called the infinite horizon optimal control
problem, versus the finite horizon problem with T <∞.

Linear Quadratic. If the dynamical system is linear and the cost function is
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quadratic, we obtain the linear quadratic optimal control problem:

ẋ = Ax+Bu J =

∫ T

0

(
xTQx+ uTRu

)
dt+ xT (T )P1x(T ).

In this formulation, Q ≥ 0 penalizes state error (assumes xd = 0), R > 0
penalizes the input (must be positive definite) and P1 > 0 penalizes terminal
state.

Terminal Constraints. It is often convenient to ask that the final value of
the trajectory, denoted xf , be specified. We can do this by requiring that
x(T ) = xf or by using a more general form of constraint:

ψi(x(T )) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining ψi(x(T )) =
xi(T ) − xi,f .

Time Optimal. If we constrain the terminal condition to x(T ) = xf , let
the terminal time T be free (so that we can optimize over it) and choose
L(x, u) = 1, we can find the time-optimal trajectory between an initial and
final condition. This problem is usually only well-posed if we additionally
constrain the inputs u to be bounded.

A very general set of conditions are available for the optimal control problem
that captures most of these special cases in a unifying framework. Consider
a nonlinear system

ẋ = f(x, u) x = R
n

x(0) given u ∈ Ω ⊂ R
p

where f(x, u) = (f1(x, u), . . . fn(x, u)) : R
n×R

p → R
n. We wish to minimize

a cost function J with terminal constraints:

J =

∫ T

0
L(x, u) dt+ V (x(T )), ψ(x(T )) = 0.

The function ψ : R
n → R

q gives a set of q terminal constraints. Analogous
to the case of optimizing a function subject to constraints, we construct the
Hamiltonian:

H = L+ λT f = L+
∑

λifi.

A set of necessary conditions for a solution to be optimal was derived by
Pontryagin [PBGM62].

Theorem 2.1 (Maximum Principle). If (x∗, u∗) is optimal, then there exists

λ∗(t) ∈ R
n and ν∗ ∈ R

q such that

ẋi =
∂H

∂λi
− λ̇i =

∂H

∂xi

x(0) given, ψ(x(T )) = 0

λ(T ) =
∂V

∂x
(x(T )) + νT ∂ψ

∂x
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and
H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u, λ∗(t)) for all u ∈ Ω

The form of the optimal solution is given by the solution of a differential
equation with boundary conditions. If u = argminH(x, u, λ) exists, we
can use this to choose the control law u and solve for the resulting feasible
trajectory that minimizes the cost. The boundary conditions are given by
the n initial states x(0), the q terminal constraints on the state ψ(x(T )) = 0
and the n− q final values for the Lagrange multipliers

λ(T ) =
∂V

∂x
(x(T )) + νT ∂ψ

∂x
.

In this last equation, ν is a free variable and so there are n equations in n+q
free variables, leaving n− q constraints on λ(T ). In total, we thus have 2n
boundary values.

The maximum principle is a very general (and elegant) theorem. It allows
the dynamics to be nonlinear and the input to be constrained to lie in a set
Ω, allowing the possibility of bounded inputs. If Ω = R

m (unconstrained
input) and H is differentiable, then a necessary condition for the optimal
input is

∂H

∂u
= 0.

We note that even though we are minimizing the cost, this is still usually
called the maximum principle (artifact of history).

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95],
omitting some of the details required for a fully rigorous proof. We use
the method of Lagrange multipliers, augmenting our cost function by the
dynamical constraints and the terminal constraints:

J̃(x(·), u(·)) = J(x, u) +

∫ T

0
λT (t)

(
ẋ(t) − f(x, u)

)
dt+ νTψ(x(T ), u(T ))

=

∫ T

0

(
L(x, u) + λT (t)

(
ẋ(t) − f(x, u)

)
dt

+ V (x(T ), u(T )) + νTψ(x(T ), u(T )).

Note that λ is a function of time, with each λ(t) corresponding to the instan-
taneous constraint imposed by the dynamics. The integral over the interval
[0, T ] plays the role of the sum of the finite constraints in the regular opti-
mization.

Making use of the definition of the Hamiltonian, the augmented cost
becomes

J̃(x(·), u(·)) =

∫ T

0

(
H(x, u)−λT (t)ẋ

)
dt+V (x(T ), u(T ))+νTψ(x(T ), u(T )).
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We can now “linearize” the cost function around the optimal solution x(t) =
x∗(t) + δx(t), u(t) = u∗(t) + δu(t). Using Leibnitz’s rule, we have

2.3 Examples

To illustrate the use of the maximum principle, we consider a number of
analytical examples. Additional examples are given in the exercises.

Example 2.2 Scalar linear system

Consider the optimal control problem for the system

ẋ = ax+ bu, (2.1)

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0)
is given, and a, b ∈ R are positive constants. We wish to find a trajectory
(x(t), u(t)) that minimizes the cost function

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c > 0 is a constant. This cost
function balances the final value of the state with the input required to get
to that position.

To solve the problem, we define the various elements used in the maxi-
mum principle. Our integrated and terminal costs are given by

L = 1
2u

2(t) V = 1
2cx

2(tf ).

We write the Hamiltonian of this system and derive the following expres-
sions:

H = L+ λf = 1
2u

2 + λ(ax+ bu)

λ̇ = −
∂H

∂x
= −aλ, λ(tf ) =

∂V

∂x
= cx(tf ).

This is a final value problem for a linear differential equation and the solution
can be shown to be

λ(t) = cx(tf )ea(tf−t)

The optimal control is given by

∂H

∂u
= u+ bλ = 0 ⇒ u∗(t) = −bλ(t) = −bcx(tf )ea(tf−t).

Substituting this control into the dynamics given by equation (2.1) yields a
first-order ODE in x:

ẋ = ax− b2cx(tf )ea(tf−t).

This can be solved explicitly as

x∗(t) = x(to)e
a(t−to) +

b2c

2a
x∗(tf )

[
ea(tf−t) − ea(t+tf−2to)

]
.



2.3. EXAMPLES 24

Setting t = tf and solving for x(tf ) gives

x∗(tf ) =
2a ea(tf−to)x(to)

2a− b2c
(
1 − e2a(tf−to)

)

and finally we can write

u∗(t) = −
2abc ea(2tf−to−t)x(to)

2a− b2c
(
1 − e2a(tf−to)

)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a− b2c
(
1 − e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

We can use the form of this expression to explore how our cost function
affects the optimal trajectory. For example, we can ask what happens to
the terminal state x∗(tf ) and c → ∞. Setting t = tf in equation (2.2) and
taking the limit we find that

lim
c→∞

x∗(tf ) = 0.

∇

Example 2.3 Bang-bang control

The time-optimal control program for a linear system has a particularly
simple solution. Consider a linear system with bounded input

ẋ = Ax+Bu, |u| ≤ 1

and suppose we wish to minimize the time required to move from an initial
state x0 to a final state xf . Without loss of generality we can take xf = 0.
We choose the cost functions and terminal constraints to satisfy

J =

∫ T

0
1 dt, ψ(x(T )) = x(T )

To find the optimal control, we form the Hamiltonian

H = 1 + λT (Ax+Bu) = 1 + (λTA)x+ (λTB)u.

Now apply the conditions in the maximum principle:

ẋ =
∂H

∂λ
= Ax+Bu

−λ̇ =
∂H

∂x
= ATλ

u = arg min H = −sgn(λTB)

The optimal solution always satisfies this equation (necessary condition)
with x(0) = x0 and x(T ) = 0. It follows that the input is always u =
±1 =⇒ “bang-bang”. ∇
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2.4 Linear Quadratic Regulators

The finite horizon, linear quadratic regulator (LQR) is given by

ẋ = Ax+Bu x ∈ R
n, u ∈ R

n, x0 given

J̃ =
1

2

∫ T

0

(
xTQxx+ uTQuu

)
dt+

1

2
xT (T )P1x(T )

where Qx ≥ 0, Qu > 0, P1 ≥ 0 are symmetric, positive (semi-) definite
matrices. Note the factor of 1

2 is left out, but we included it here to simplify

the derivation. Gives same answer (with 1
2x cost).

Solve via maximum principle:

H = xTQxx+ uTQuu+ λT (Ax+Bu)

ẋ =

(
∂H

∂λ

)T

= Ax+Bu x(0) = x0

−λ̇ =

(
∂H

∂x

)T

= Qxx+ATλ λ(T ) = P1x(T )

0 =
∂H

∂u
= Quu+ λTB =⇒ u = −Q−1

u BTλ.

This gives the optimal solution. Apply by solving two point boundary value

problem (hard).
Alternative: guess the form of the solution, λ(t) = P (t)x(t). Then

λ̇ = Ṗ x+ Pẋ = Ṗ x+ P (Ax−BQ−1
u BTP )x

−Ṗ x− PAx+ PBQ−1
u BPx = Qxx+ATPx.

This equation is satisfied if we can find P (t) such that

−Ṗ = PA+ATP − PBQ−1
u BTP +Qx P (T ) = P1

Remarks:

1. This ODE is called Riccati ODE.

2. Can solve for P (t) backwards in time and then apply

u(t) = −Q−1
u BTP (t)x.

This is a (time-varying) feedback control =⇒ tells you how to move
from any state to the origin.

3. Variation: set T = ∞ and eliminate terminal constraint:

J =

∫ ∞

0
(xTQxx+ uTQuu) dt

u = −Q−1
u BTP︸ ︷︷ ︸

K

x Can show P is constant

0 = PA+ATP − PBQ−1
u BTP +Qx
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This equation is called the algebraic Riccati equation.

4. In MATLAB, K = lqr(A, B, Q x, Q u).

5. Require Qu > 0 but Qx ≥ 0. Let Qx = HTH (always possible) so that
L =

∫ ∞
0 xTHTHx+uTQuu dt =

∫ ∞
0 ‖Hx‖2 +uTQuu dt. Require that

(A,H) is observable. Intuition: if not, dynamics may not affect cost
=⇒ ill-posed.

2.5 Choosing LQR weights

ẋ = Ax+Bu J =

∫ ∞

0

L(x,u)︷ ︸︸ ︷(
xTQxx+ uTQuu+ xTSu

)
dt,

where the S term is almost always left out.
Q: How should we choose Qx and Qu?

1. Simplest choice: Qx = I, Qu = ρI =⇒ L = ‖x‖2 + ρ‖u‖2. Vary ρ to
get something that has good response.

2. Diagonal weights

Qx =



q1

. . .

qn


 Qu = ρ



r1

. . .

rn




Choose each qi to given equal effort for same “badness”. E.g., x1 =
distance in meters, x3 = angle in radians:

1 cm error OK =⇒ q1 =

(
1

100

)2

q1x
2
1 = 1 when x1 = 1 cm

1

60
rad error OK =⇒ q3 = (60)2 q3x

2
3 = 1 when x3 =

1

60
rad

Similarly with ri. Use ρ to adjust input/state balance.

3. Output weighting. Let z = Hx be the output you want to keep small.
Assume (A,H) observable. Use

Qx = HTH Qu = ρI =⇒ trade off ‖z‖2 vs ρ‖u‖2

4. Trial and error (on weights)
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2.6 Further Reading

Exercises

2.1 (a) Let G1, G2, . . . , Gk be a set of row vectors on a R
n. Let F be

another row vector on R
n such that for every x ∈ R

n satisfying Gix = 0,
i = 1, . . . , k, we have Fx = 0. Show that there are constants λ1, λ2, . . . , λk

such that

F =
k∑

i=1

λkGk.

(b) Let x∗ ∈ R
n be an the extremal point (maximum or minimum) of a

function f subject to the constraints gi(x) = 0, i = 1, . . . , k. Assuming that
the gradients ∂gi(x

∗)/∂x are linearly independent, show that there are k
scalers λk, i = 1, . . . , n such that the function

f̃(x) = f(x) +
n∑

i=1

λigi(x)

has an extremal point at x∗.

2.2 Consider the following control system

q̇ = u

Ẏ = quT − uqT

where u ∈ R
m and Y ∈ realsm×m is a skew symmetric matrix.

(a) For the fixed end point problem, derive the form of the optimal controller
minimizing the following integral

1

2

∫ 1

0
uTu dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =




0 −y3 y2

y3 0 −y1

−y2 y1 0




for some y ∈ R
3, give an explicit formula for the optimal inputs u.

(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ ) ∈
R

m × R
m×m where Ỹ T = −Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

2.3 In this problem, you will use the maximum principle to show that the
shortest path between two points is a straight line. We model the problem
by constructing a control system

ẋ = u
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where x ∈ R
2 is the position in the plane and u ∈ R

2 is the velocity vector
along the curve. Suppose we wish to find a curve of minimal length con-
necting x(0) = x0 and x(1) = xf . To minimize the length, we minimize the
integral of the velocity along the curve,

J =

∫ 1

0

√
‖ẋ‖ dt,

subject to to the initial and final state constraints. Use the maximum prin-
ciple to show that the minimal length path is indeed a straight line at maxi-
mum velocity. (Hint: minimizing

√
‖ẋ‖ is the same as minimizing ẋT ẋ; this

will simplify the algebra a bit.)

2.4 Consider the optimal control problem for the system

ẋ = −ax+ bu

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. (Note that this system is not
quite the same as the one in Example ??.) The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c is a constant.

(a) Solve explicitly for the optimal control u∗(t) and the corresponding state
x∗(t) in terms of t0, tf , x(t0) and t and describe what happens to the terminal
state x∗(tf ) as c→ ∞.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M − 1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and x(tf ).
Your answer should specify the explicit input ud(t) and state xd(t) in terms
of t0, tf , x(t0), x(tf ) and t.

(d) Let a = 1 and c = 1. Use your solution to the optimal control problem
and the flatness-based trajectory generation to find a trajectory between
x(0) = 0 and x(1) = 1. Plot the state and input trajectories for each
solution and compare the costs of the two approaches.

(e) (Optional) Suppose that we choose more than the minimal number of
basis functions for the differentially flat output. Show how to use the ad-
ditional degrees of freedom to minimize the cost of the flat trajectory and
demonstrate that you can obtain a cost that is closer to the optimal.

2.5 Consider the optimal control problem for the system

ẋ = −ax3 + bu
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where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c is a constant.

(a) Derive a set of differential equations for the optimal control u∗(t) and the
corresponding state x∗(t) in terms of t0, tf , x(t0) and t. Be sure to provide
any initial or final conditions required for your equations to be solved.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M − 1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and x(tf ).
Your answer should specify the explicit input ud(t) and state xd(t) in terms
of t0, tf , x(t0), x(tf ) and t.

(d) Increase M by one and show how to choose the free parameter to min-
imize the cost function.

2.6 Consider the problem of moving a two-wheeled mobile robot (eg, a
Segway) from one position and orientation to another. The dynamics for
the system is given by the nonlinear differential equation

ẋ = cos θ v

ẏ = sin θ v

θ̇ = ω

where (x, y) is the position of the rear wheels, θ is the angle of the robot
with respect to the x axis, v is the forward velocity of the robot and ω is
spinning rate. We wish to choose an input (v, ω) that minimizes the time
that it takes to move between two configurations (x0, y0, θ0) and (xf , yf , θf ),
subject to input constraints |v| ≤ L and |ω| ≤M .

Use the maximum principle to show that any optimal trajectory consists
of segments in which the robot is traveling at maximum velocity in either the
forward or reverse direction, and going either straight, hard left (ω = −M)
or hard right (ω = +M).

Note: one of the cases is a bit tricky and can’t be completely proven with
the tools we have learned so far. However, you should be able to show the
other cases and verify that the tricky case is possible.

2.7 Consider a linear system with input u and output y and suppose we
wish to minimize the quadratic cost function

J =

∫ ∞

0

(
yT y + ρuTu

)
dt.
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Show that if the corresponding linear system is observable, then the closed
loop system obtained by using the optimal feedback u = −Kx is guaranteed
to be stable.

2.8 Consider the control system transfer function

H(s) =
s+ b

s(s+ a)
a, b > 0

with state space representation

ẋ =

[
0 1
0 −a

]
x+

[
0
1

]
u

y =
[
b 1

]
x

and performance criterion

V =

∫ ∞

0
(x2

1 + u2)dt.

(a) Let

P =

[
p11 p12

p21 p22

]

with p12 = p21 and P > 0 (positive definite). Write the steady state Riccati
equation as a system of four explicit equations in terms of the elements of
P and the constants a and b.

(b) Find the gains for the optimal controller assuming the full state is avail-
able for feedback.

(c) Find the closed loop natural frequency and damping ratio.

2.9 The output c(t) in a position-control system is governed by

Jc̈ = u,

where u(t) is applied force.

(a) Write down a state space realization (find A and B).

(b) Use the matrix Riccati equation to find the feedback control law mini-
mizing ∫ ∞

0
(c2 + q2u2)dt.

(c) Show that the optimal control system has damping ratio 1√
2
.

(d) What is the corresponding optimal value of natural frequency?

(See AM05, Sec 4.4 if you don’t remember how damping ratio (or factor)
and natural frequency are defined.)
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2.10 Consider the optimal control problem for the system

ẋ = ax+ bu J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. We take the terminal time tf as
given and let c > 0 be a constant that balances the final value of the state
with the input required to get to that position. The optimal is derived in
the lecture notes for week 6 and is shown to be

u∗(t) = −
2abc ea(2tf−to−t)x(to)

2a− b2c
(
1 − e2a(tf−to)

)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a− b2c
(
1 − e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

(2.2)
Now consider the infinite horizon cost

J = 1
2

∫ ∞

t0

u2(t) dt

with x(t) at t = ∞ constrained to be zero.

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution correspond-
ing to the algebraic Riccati equation. Note that this gives an explicit feed-
back law (u = −bPx).

(b) Plot the state solution of the finite time optimal controller for the fol-
lowing parameter values

a = 2 b = 0.5 x(t0) = 4

c = 0.1, 10 tf = 0.5, 1, 10

(This should give you a total of 6 curves.) Compare these to the infinite
time optimal control solution. Which finite time solution is closest to the
infinite time solution? Why?

2.11 In this problem we will explore the effect of constraints on control of
the linear unstable system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u

ẋ2 = x1 + 0.5u

subject to the constraint that |u| ≤ a where a is a postive constant.

(a) Ignore the constraint (a = ∞) and design an LQR controller to stabilize
the system. Plot the response of the closed system from the initial condition
given by x = (1, 0).
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(b) Use SIMULINK or ode45 to simulate the the system for some finite
value of a with an initial condition x(0) = (1, 0). Numerically (trial and
error) determine the smallest value of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable
from x(0) = (ρ, 0). Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control
law for this system. Show that this controller has larger region of attraction
than the controller designed in part (b). (Hint: solve the finite horizon LQ
problem analytically, using the bang-bang example as a guide to handle the
input constraint.)

2.12 Consider the lateral control problem for an autonomous ground vehicle
from Example 1.1. We assume that we are given a reference trajectory
r = (xd, yd) corresponding to the desired trajectory of the vehicle. For
simplicity, we will assume that we wish to follow a straight line in the x
direction at a constant velocity vd > 0 and hence we focus on the y and θ
dynamics:

ẏ = sin θ vd

θ̇ =
1

ℓ
tanφ vd.

We let vd = 10 m/s and ℓ = 2 m.

(a) Design an LQR controller that stabilizes the position y to the origin.
Plot the step and frequency response for your controller and determine the
overshoot, rise time, bandwidth and phase margin for your design. (Hint: for
the frequency domain specifications, break the loop just before the process
dynamics and use the resulting SISO loop transfer function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given by
yd(t) = r(t). Modify your control law so that you track r(t) and demonstrate
the performance of your controller on a “slalom course” given by a sinusoidal
trajectory with magnitude 1 meter and frequency 1 Hz.



Chapter 3

Receding Horizon Control
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