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Chapter 2

Trajectory Generation and
Tracking

This chapter expands on Section 8.5 of FBS2e, which introduces the use of feed-
forward compensation in control system design. We begin with a review of the two
degree of freedom design approach and then focus on the problem of generating
feasible trajectories for a (nonlinear) control system. We make use of the concept
of di↵erential flatness as a tool for generating feasible trajectories.

Prerequisites. Readers should be familiar with modeling of input/output control
systems using di↵erential equations, linearization of a system around an equilib-
rium point, and state space control of linear systems, including reachability and
eigenvalue assignment. Although this material supplements concepts introduced in
the context of output feedback and state estimation, no knowledge of observers is
required.

2.1 Two Degree of Freedom Design

A large class of control problems consists of planning and following a trajectory
in the presence of noise and uncertainty. Examples include autonomous vehicles
maneuvering in city streets, mobile robots performing tasks on factory floors (or
other planets), manufacturing systems that regulate the flow of parts and materials
through a plant or factory, and supply chain management systems that balance
orders and inventories across an enterprise. All of these systems are highly nonlinear
and demand accurate performance.

To control such systems, we make use of the notion of two degree of freedom
controller design. This is a standard technique in linear control theory that sepa-
rates a controller into a feedforward compensator and a feedback compensator. The
feedforward compensator generates the nominal input required to track a given ref-
erence trajectory. The feedback compensator corrects for errors between the desired
and actual trajectories. This is shown schematically in Figure 2.1.

In a nonlinear setting, two degree of freedom controller design decouples the
trajectory generation and asymptotic tracking problems. Given a desired output

2-1



2-2 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

Generation

�

ud

xd

ref

ufb

Process

P
outputnoise

Feedback

Compensation

Trajectory

Figure 2.1: Two degree of freedom controller design for a process P with uncer-
tainty �. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block �, representing unmodeled dynamics, as well as distur-
bances and noise. The dashed line represents the use of the current system state
for real-time trajectory generation (described in more detail in Chapter 4).

trajectory, we first construct a state space trajectory xd and a nominal input ud

that satisfy the equations of motion. The error system can then be written as a
time-varying control system in terms of the error, e = x�xd. Under the assumption
that that tracking error remains small, we can linearize this time-varying system
about e = 0 and stabilize the e = 0 state. (Note: in FBS2e the notation u↵ is used
for the desired [feedforward] input. We use ud here to match the desired state xd.)

More formally, we assume that our process dynamics can be described by a
nonlinear di↵erential equation of the form

ẋ = f(x, u), x 2 Rn
, u 2 Rm

,

y = h(x, u), y 2 Rp
,

(2.1)

where x is the system state, u is a vector of inputs, and f is a smooth function
describing the dynamics of the process. The smooth function h describes the output
y that we wish to control. We are particularly interested in the class of control
problems in which we wish to track a time-varying reference trajectory r(t), called
the trajectory tracking problem. In particular, we wish to find a control law u =
↵(x, r(·)) such that

lim
t!1

�
y(t)� r(t)

�
= 0.

We use the notation r(·) to indicate that the control law can depend not only on
the reference signal r(t) but also derivatives of the reference signal.

A feasible trajectory for the system (2.1) is a pair (xd(t), ud(t)) that satisfies the
di↵erential equation and generates the desired trajectory:

ẋd(t) = f
�
xd(t), ud(t)

�
, r(t) = h

�
xd(t), ud(t)

�
.
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The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with xd representing the desired state for the (nominal) system
and ud representing the desired input or the feedforward control. If we can find
a feasible trajectory for the system, we can search for controllers of the form u =
↵(x, xd, ud) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function. We can again use the
two degree of freedom paradigm with an optimal control computation for generating
the feasible trajectory. This subject is examined in more detail in Chapter 3. In
addition, we can take the extra step of updating the generated trajectory based
on the current state of the system. This additional feedback path is denoted by a
dashed line in Figure 2.1 and allows the use of so-called receding horizon control
techniques: a (optimal) feasible trajectory is computed from the current position
to the desired position over a finite time T horizon, used for a short period of time
� < T , and then recomputed based on the new system state. Receding horizon
control is described in more detail in Chapter 4.

A key advantage of optimization-based approaches is that they allow the poten-
tial for customization of the controller based on changes in mission, condition and
environment. Because the controller is solving the optimization problem online,
updates can be made to the cost function, to change the desired operation of the
system; to the model, to reflect changes in parameter values or damage to sensors
and actuators; and to the constraints, to reflect new regions of the state space that
must be avoided due to external influences. Thus, many of the challenges of de-
signing controllers that are robust to a large set of possible uncertainties become
embedded in the online optimization.

2.2 Trajectory Tracking and Gain Scheduling

We begin by considering the problem of tracking a feasible trajectory. Assume
that a trajectory generator is able to generate a trajectory (xd, ud) that satisfies
the dynamics (2.1) and satisfies r(t) = h(xd(t), ud(t)). To design the controller,
we construct the error system. Let e = x � xd and v = u � ud and compute the
dynamics for the error:

ė = ẋ� ẋd = f(x, u)� f(xd, ud)

= f(e+ xd, v + ud)� f(xd, ud) =: F (e, v, xd(t), ud(t)).

The function F represents the dynamics of the error, with control input v and
external inputs xd and ud. In general, this system is time-varying through the
desired state and input.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around e = 0:

de

dt
⇡ A(t)e+B(t)v, A(t) =

@F

@e

����
(xd(t),ud(t))

, B(t) =
@F

@v

����
(xd(t),ud(t)

.



2-4 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

It is often the case that A(t) and B(t) depend only on xd, in which case it is
convenient to write A(t) = A(xd) and B(t) = B(xd).

We start by reviewing the case where A(t) and B(t) are constant, in which case
our error dynamics become

ė = Ae+Bv.

This occurs, for example, if the original nonlinear system is linear. We can then
search for a control system of the form

v = �Ke.

We can now apply the results of Chapter 7 of FBS2e and solve the problem by find-
ing a gain matrix K that gives the desired closed loop dynamics (e.g., by eigenvalue
assignment). It can be shown that this formulation is equivalent to a two degree
of freedom design where xd and ud are chosen to give the desired reference output
(Exercise 2.1).

Returning to the full nonlinear system, assume now that xd and ud are either
constant or slowly varying (with respect to the performance criterion). This allows
us to consider just the (constant) linearized system given by (A(xd), B(xd)). If
we design a state feedback controller K(xd) for each xd, then we can regulate the
system using the feedback

v = �K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u = ud �K(xd)(x� xd).

Note that the controller u = ↵(x, xd, ud) depends on (xd, ud), which themselves
depend on the desired reference trajectory. This form of controller is called a gain
scheduled linear controller with feedforward input ud.

More generally, the term gain scheduling is used to describe any controller that
depends on a set of measured parameters in the system. So, for example, we might
write

u = ud �K(x, µ) · (x� xd),

where K(x, µ) depends on the current system state (or some portion of it) and an
external parameter µ. The dependence on the current state x (as opposed to the
desired state xd) allows us to modify the closed loop dynamics di↵erently depending
on our location in the state space. This is particularly useful when the dynamics of
the process vary depending on some subset of the states (such as the altitude for
an aircraft or the internal temperature for a chemical reaction). The dependence
on µ can be used to capture the dependence on the reference trajectory, or they
can reflect changes in the environment or performance specifications that are not
modeled in the state of the controller.

Example 2.1 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it follows a
given trajectory on the ground, as shown in Figure 2.2a. We use the model derived
in FBS2e, Example 3.11, choosing the reference point to be the center of the rear
wheels. This gives dynamics of the form

ẋ = cos ✓ v, ẏ = sin ✓ v, ✓̇ =
v

l
tan�, (2.2)
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Figure 2.2: Vehicle steering using gain scheduling.

where (x, y, ✓) is the position and orientation of the vehicle, v is the velocity and �
is the steering angle, both considered to be inputs, and l is the wheelbase.

A simple feasible trajectory for the system is to follow a straight line in the x

direction at lateral position yr and fixed velocity vr. This corresponds to a desired
state xd = (vrt, yr, 0) and nominal input ud = (vr, 0). Note that (xd, ud) is not an
equilibrium point for the system, but it does satisfy the equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
@f

@x

����
(xd,ud)

=

2

4
0 0 � sin ✓ v
0 0 cos ✓ v
0 0 0

3

5

������
(xd,ud)

=

2

4
0 0 0
0 0 vr

0 0 0

3

5 ,

Bd =
@f

@u

����
(xd,ud)

=

2

4
1 0
0 0
0 vr/l

3

5 .

We form the error dynamics by setting e = x� xd and w = u� ud:

ėx = w1, ėy = e✓, ė✓ =
vr

l
w2.

We see that the first state is decoupled from the second two states and hence we
can design a controller by treating these two subsystems separately. Suppose that
we wish to place the closed loop eigenvalues of the longitudinal dynamics (ex) at
��1 and place the closed loop eigenvalues of the lateral dynamics (ey, e✓) at the
roots of the polynomial equation s

2 + a1s+ a2 = 0.
This can accomplished by setting

w1 = ��1ex

w2 = �
l

vr
(
a2

vr
ey + a1e✓).

Note that the gains depend on the velocity vr (or equivalently on the nominal input
ud), giving us a gain scheduled controller.



2-6 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

K2
K

x1

x2

K1

xd,1

xd,2

Figure 2.3: Gain scheduling. A general gain scheduling design involves finding a
gain K at each desired operating point. This can be thought of as a gain surface,
as shown on the left (for the case of a scalar gain). An approximation to this gain
can be obtained by computing the gains at a fixed number of operating points
and then interpolated between those gains. This gives an approximation of the
continuous gain surface, as shown on the right.

In the original inputs and state coordinates, the controller has the form


v

�

�
=


vr

0

�

|{z}
ud

�

2

4
�1 0 0

0
a2l

v2r

a1l

vr

3

5

| {z }
K(xd,ud)

2

4
x� vrt

y � yr

✓

3

5

| {z }
e

.

The form of the controller shows that at low speeds the gains in the steering angle
will be high, meaning that we must turn the wheel harder to achieve the same
e↵ect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to control
the lateral position of a car. Note that the gains go to infinity when the vehicle is
stopped (vr = 0), corresponding to the fact that the system is not reachable at this
point.

Figure 2.2b shows the response of the controller to a step change in lateral
position at three di↵erent reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop poles to the same values. r

One limitation of gain scheduling as we have described it is that a separate set of
gains must be designed for each operating condition xd. In practice, gain scheduled
controllers are often implemented by designing controllers at a fixed number of op-
erating points and then interpolating the gains between these points, as illustrated
in Figure 2.3. Suppose that we have a set of operating points xd,j , j = 1, . . . , N .
Then we can write our controller as

u = ud �K(x)e K(x) =
NX

j=1

⇢j(x)Kj ,
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input constraints ! curvature constraints

Figure 2.4: Simple model for an automobile. We wish to find a trajectory from an
initial state to a final state that satisfies the dynamics of the system and constraints
on the curvature (imposed by the limited travel of the front wheels).

where Kj is a set of gains designed around the operating point xd,j and ⇢j(x) is
a weighting factor. For example, we might choose the weights ⇢j(x) such that we
take the gains corresponding to the nearest two operating points and weight them
according to the Euclidean distance of the current state from that operating point;
if the distance is small then we use a weight very near to 1 and if the distance is
far then we use a weight very near to 0.

While the intuition behind gain scheduled controllers is fairly clear, some cau-
tion in required in using them. In particular, a gain scheduled controller is not
guaranteed to be stable even if K(x, µ) locally stabilizes the system around a given
equilibrium point. Gain scheduling can be proven to work in the case when the
gain varies su�ciently slowly (Exercise 2.4).

2.3 Trajectory Generation and Di↵erential Flat-
ness

We now return to the problem of generating a trajectory for a nonlinear system.
Consider first the case of finding a trajectory xd(t) that steers the system from an
initial condition x0 to a final condition xf. We seek a feasible solution (xd(t), ud(t))
that satisfies the dynamics of the process:

ẋd = f(xd, ud), xd(0) = x0, xd(T ) = xf. (2.3)

Formally, this problem corresponds to a two-point boundary value problem and can
be quite di�cult to solve in general.

In addition, we may wish to satisfy additional constraints on the dynamics.
These can include input saturation constraints |u(t)| < M , state constraints g(x) 
0, and tracking constraints h(x) = r(t), each of which gives an algebraic constraint
on the states or inputs at each instant in time. We can also attempt to optimize a
function by choosing (xd(t), ud(t)) to minimize

Z T

0
L(x, u)dt+ V (x(T ), u(T )).

As an example of the type of problem we would like to study, consider the
problem of steering a car from an initial condition to a final condition, as shown
in Figure 2.4. To solve this problem, we must find a solution to the di↵erential
equations (2.2) that satisfies the endpoint conditions. Given the nonlinear nature
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of the dynamics, it seems unlikely that one could find explicit solutions that satisfy
the dynamics except in very special cases (such as driving in a straight line).

A closer inspection of this system shows that it is possible to understand the
trajectories of the system by exploiting the particular structure of the dynamics.
Suppose that we are given a trajectory for the rear wheels of the system, xd(t) and
yd(t). From equation (2.2), we see that we can use this solution to solve for the
angle of the car by writing

ẏ

ẋ
=

sin ✓

cos ✓
=) ✓d = tan�1(ẏd/ẋd).

Furthermore, given ✓ we can solve for the velocity using the equation

ẋ = v cos ✓ =) vd = ẋd/ cos ✓d,

assuming cos ✓d 6= 0 (if it is, use v = ẏ/ sin ✓). And given ✓, we can solve for �
using the relationship

✓̇ =
v

l
tan� =) �d = tan�1(

l✓̇d

vd
).

Hence all of the state variables and the inputs can be determined by the trajectory
of the rear wheels and its derivatives. This property of a system is known as
di↵erential flatness.

Definition 2.1 (Di↵erential flatness). A nonlinear system (2.1) is di↵erentially flat
if there exists a function ↵ such that

z = ↵(x, u, u̇ . . . , u
(p)),

and we can write the solutions of the nonlinear system as functions of z and a finite
number of derivatives:

x = �(z, ż, . . . , z(q)),

u = �(z, ż, . . . , z(q)).
(2.4)

The collection of variables z̄ = (z, ż, . . . , z(q)) is called the flat flag.

For a di↵erentially flat system, all of the feasible trajectories for the system
can be written as functions of a flat output z(·) and its derivatives. The number
of flat outputs is always equal to the number of system inputs. The kinematic
car is di↵erentially flat with the position of the rear wheels as the flat output.
Di↵erentially flat systems were originally studied by Fliess et al. [FLMR92].

Di↵erentially flat systems are useful in situations where explicit trajectory gen-
eration is required. Since the behavior of a flat system is determined by the flat
outputs, we can plan trajectories in output space, and then map these to appropri-
ate inputs. Suppose we wish to generate a feasible trajectory for the the nonlinear
system

ẋ = f(x, u), x(0) = x0, x(T ) = xf.

If the system is di↵erentially flat then

x(0) = �
�
z(0), ż(0), . . . , z(q)(0)

�
= x0,

x(T ) = �
�
z(T ), ż(T ), . . . , z(q)(T )

�
= xf,

(2.5)
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and we see that the initial and final condition in the full state space depend on just
the output z and its derivatives at the initial and final times. Thus any trajectory
for z that satisfies these boundary conditions will be a feasible trajectory for the
system, using equation (2.4) to determine the full state space and input trajectories.

In particular, given initial and final conditions on z and its derivatives that
satisfy equation (2.5), any curve z(·) satisfying those conditions will correspond to
a feasible trajectory of the system. We can parameterize the flat output trajectory
using a set of smooth basis functions  i(t):

z(t) =
NX

i=1

ai i(t), ai 2 R.

We seek a set of coe�cients ai, i = 1, . . . , N such that z(t) satisfies the boundary
conditions (2.5). The derivatives of the flat output can be computed in terms of
the derivatives of the basis functions:

ż(t) =
NX

i=1

ai ̇i(t)

...

ż
(q)(t) =

NX

i=1

ai 
(q)
i (t).

We can thus write the conditions on the flat outputs and their derivatives as
2

666666666666664

 1(0)  2(0) . . .  N (0)
 ̇1(0)  ̇2(0) . . .  ̇N (0)

...
...

...

 
(q)
1 (0)  

(q)
2 (0) . . .  

(q)
N (0)

 1(T )  2(T ) . . .  N (T )
 ̇1(T )  ̇2(T ) . . .  ̇N (T )

...
...

...

 
(q)
1 (T )  

(q)
2 (T ) . . .  

(q)
N (T )

3

777777777777775

2

64
a1
...

aN

3

75 =

2

66666666666664

z(0)
ż(0)
...

z
(q)(0)

z(T )
ż(T )
...

z
(q)(T )

3

77777777777775

(2.6)

This equation is a linear equation of the form Ma = z̄. Assuming that M has a
su�cient number of columns and that it is full column rank, we can solve for a
(possibly non-unique) a that solves the trajectory generation problem.

Example 2.2 Nonholonomic integrator
A simple nonlinear system called a nonholonomic integrator [Bro81] is given by the
di↵erential equations

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1.

This system is di↵erentially flat with flat output z = (x1, x3). The relationship
between the flat variables and the states is given by

x1 = z1, x2 = ẋ3/ẋ1 = ż2/ż1, x3 = z2. (2.7)
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Using simple polynomials as our basis functions,

 1,1(t) = 1,  1,2(t) = t,  1,3(t) = t
2
,  1,4(t) = t

3
,

 2,1(t) = 1  2,2(t) = t,  2,3(t) = t
2
,  2,4(t) = t

3
,

the equations for the feasible (flat) trajectory become

2

66666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 T T

2
T

3 0 0 0 0
0 1 2T 3T 2 0 0 0 0
0 0 0 0 1 T T

2
T

3

0 0 0 0 0 1 2T 3T 2

3

77777777775

2

66666666664

a11

a12

a13

a14

a21

a22

a23

a24

3

77777777775

=

2

66666666664

x1,0

1
x3,0

x2,0

x1,f

1
x3,f

x2,f

3

77777777775

.

This is a set of 8 linear equations in 8 variables. It can be shown that the matrix
M is full rank when T 6= 0 and the system can be solved numerically. r

Note that no ODEs need to be integrated in order to compute the feasible tra-
jectories for a di↵erentially flat system (unlike optimal control methods that we
will consider in the next chapter, which involve parameterizing the input and then
solving the ODEs). This is the defining feature of di↵erentially flat systems. The
practical implication is that nominal trajectories and inputs that satisfy the equa-
tions of motion for a di↵erentially flat system can be computed in a computationally
e�cient way (solving a set of algebraic equations). Since the flat output functions
do not have to obey a set of di↵erential equations, the only constraints that must
be satisfied are the initial and final conditions on the endpoints, their tangents, and
higher order derivatives. Any other constraints on the system, such as bounds on
the inputs, can be transformed into the flat output space and (typically) become
limits on the curvature or higher order derivative properties of the curve.

In the example above we had exactly the same number of basis functions as
the total number of initial and final conditions, but it is also possible to choose a
larger number of basis functions and use the remaining degrees of freedom for other
purposes. For example, if there is a performance index for the system, this index
can be transformed and becomes a functional depending on the flat outputs and
their derivatives up to some order. By approximating the performance index we can
achieve paths for the system that are suboptimal but still feasible. This approach
is often much more appealing than the traditional method of approximating the
system (for example by its linearization) and then using the exact performance
index, which yields optimal paths but for the wrong system.

Example 2.3 Vehicle steering
Consider the vehicle steering example described at the start of this section and
illustrated in Figure 2.4. The system consists of 3 states and 2 inputs and so we
could potentially find solutions for the point-to-point trajectory generation problem
using only 3 basis function in each of the two inputs. Suppose instead that we use
a larger number of basis functions in each of the two inputs, allowing additional
degrees of freedom.
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(a) Least squares solution
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(b) Penalize lateral error, input cost

Figure 2.5: Trajectory generation for vehicle steering example.

One possible solution for the now underdetermined linear set of equations that
we obtain in equation (2.6) is to use the least squares solution of the linear equation
Ma = z̄, which provides the smallest possible a (coe�cient vector) that satisfies
the equation. The results of applying this to the problem of changing lanes using
a polynomial basis, are shown in Figure 2.5a.

Suppose instead that we wish to change lanes faster, but also take into account
the size of the inputs that are required. For example, we could seek to minimize
the cost function

J(x, u) =

Z T

0

�
(y(⌧)� yf)

2 + (v(⌧)� vf)
2 + 10�2(⌧)

�
d⌧,

where y is the lateral position of the vehicle, v is the vehicle velocity, � is the
steering wheel angle, and the subscript ‘f’ represents the final value. Using the free
coe�cients so as to minimize this cost, we obtain the results shown in Figure 2.5b.
We see that the resulting trajectory transitions between the lanes more quickly,
thought at the expense of larger inputs. r

In light of the techniques that are available for di↵erentially flat systems, the
characterization of flat systems becomes particularly important. General condi-
tions for flatness are complicated to apply [Lév10], but many important classes
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(a) Kinematic car (b) Ducted fan

(c) N trailers

(d) Towed cable

Figure 2.6: Examples of flat systems.

of nonlinear systems, including feedback linearizable systems, can be shown to be
di↵erentially flat. One large class of flat systems are those in “pure feedback form”:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...

ẋn = fn(x1, . . . , xn, u).

(2.8)

Under certain regularity conditions these systems are di↵erentially flat with output
y = x1. These systems have been used for so-called “integrator backstepping”
approaches to nonlinear control by Kokotovic et al. [KKM91]. Figure 2.6 shows
some additional systems that are di↵erentially flat.

Example 2.4 Vectored thrust aircraft
Consider the dynamics of a planar, vectored thrust flight control system as shown
in Figure 2.7. This system consists of a rigid body with body fixed forces and is
a simplified model for a vertical take-o↵ and landing aircraft (see Example 3.12
in FBS2e). Let (x, y, ✓) denote the position and orientation of the center of mass
of the aircraft. We assume that the forces acting on the vehicle consist of a force
F1 perpendicular to the axis of the vehicle acting at a distance r from the center
of mass and a force F2 parallel to the axis of the vehicle. Let m be the mass of
the vehicle, J the moment of inertia, and g the gravitational constant. We ignore
aerodynamic forces for the purpose of this example.
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Figure 2.7: Vectored thrust aircraft (from FBS2e). The net thrust on the aircraft
can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

The dynamics for the system are

mẍ = F1 cos ✓ � F2 sin ✓ � cẋ,

mÿ = F1 sin ✓ + F2 cos ✓ �mg � cẏ,

J ✓̈ = rF1.

(2.9)

Martin et al. [MDP94] showed that when c = 0 this system is di↵erentially flat and
that one set of flat outputs is given by

z1 = x� (J/mr) sin ✓,

z2 = y + (J/mr) cos ✓.
(2.10)

Using the system dynamics, it can be shown that

z̈1 cos ✓ + (z̈2 + g) sin ✓ = 0, (2.11)

and thus given z1(t) and z2(t) we can find ✓(t) except for an ambiguity of ⇡ and
away from the singularity z̈1 = z̈2 + g = 0. The remaining states and the forces
F1(t) and F2(t) can then be obtained from the dynamic equations, all in terms of
z1, z2, and their higher order derivatives. r

Additional remarks on di↵erential flatness
�

Determining whether a system is di↵erentially flat is a challenging problem. Nec-
essary and su�cient conditions have been developed by Lévine [Lév10], but the
conditions are not constructive in nature. We briefly summarize here some known
conditions under which a system is di↵erentially flat as well as some additional
concepts related to flatness.

Flatness of linear systems and feedback linearizable systems. All single-input reach-
able linear systems are di↵erentially flat, which can be shown by putting the system
into reachable canonical form (FBS2e, equation (7.6)) and choosing the last state
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as the flat output. Multi-input, reachable linear systems are often di↵erentially
flat, though the construction of the flat outputs can be more complicated. Simi-
larly, systems that are feedback linearizable (see FBS2e, Figure 6.15) are commonly
di↵erentially flat, as are systems in pure feedback form (2.8) (under appropriate reg-
ularity conditions). More details on some of the conditions under which feedback
linearizable systems are di↵erentially flat can be found in [vNRM98].

For mechanical systems, where the equations of motion satisfy Lagrange’s equa-
tions and the state variables consist of configuration variables and their velocities
(or momenta), it is often the case that the flat outputs are functions only of the
configuration variables. In many cases, these flat outputs also have some geometric
interpretation. For example, for the vectored thrust aircraft in Example 2.4 the
flat output is a point on the axis of the aircraft whose position is based on the
physical parameters of the system, as seen in equation (2.10). For the N -trailer
system the flat output is the center of rear wheels of the final trailer (Exercise 2.8),
and for the towed cable system in Figure 2.6d the bottom of the cable is the flat
output [Mur96]. Other examples of configuration flat systems, and some geometric
conditions characterizing configuration flatness, can be found in [RM98].

Structure of the flat flag. In Definition 2.1, the flat flag was defined as having the
form z̄ = (z, ż, . . . , z(q)), which implies that in the multi-input case the number of
derivatives for each flat variable is the same. This need not be the case and it may
be that a di↵erent number derivatives are required for di↵erent flat outputs, so

that the flat flag has the structure z̄i = (zi, żi, . . . , z
(qi)
i ), where i is the flat output

and qi is the number of derivatives for that output (which may not be the same
for all i). The number of derivatives required in each flat output provide insights
into the structure of the underlying system, with the dynamics of the system being
equivalent to a set of chains of integrators of di↵erent lengths.

Related to this, in some instances, it can be the case that when finding the
mapping from states and inputs of the system to the flat flag, derivatives of the
inputs can appear. While this is allowable in the context of flatness (with appro-
priate extensions of the definition), in practice it often turns out that one can take
the inputs as constants when computing the flat flag. This is allowable in many
situations because the only time we use the mapping from the states and inputs
to the flat flag is when determining the endpoints for a point-to-point trajectory
generation problem. In that setting, constraining the derivative of the input to be
zero at the start and end of the trajectory is often acceptable.

Partially flat systems and defect. For systems that are not di↵erentially flat, it is
sometimes possible to find a set of outputs for which a portion of the states can be
determined from the flat outputs and their derivatives, but some set of states must
still satisfy a set of di↵erential equations. For example, we may be able to write
the states of the system in the form

x = �(z, ż, . . . , z(q)),

u = �(z, ż, . . . , z(q)),

�(z, ż, . . . , z(n�r)),

where z 2 Rp, p � m represents a set of outputs that parameterize the trajectory
and � represents a set of remaining di↵erential constraints on the output. The
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minimum number of possible remaining di↵erential constraints is called the defect
of the system. Even though such a system is not di↵erentially flat, the problem
of trajectory generation may still be considerably simplified since the number of
di↵erential equation constraints may be small. In some cases, it even can turn out
that even if a system is di↵erentially flat the computations required to find the
states based on the flat outputs may be su�ciently complicated that it is beneficial
to use a set of outputs that only partially determine the system states.

A more complete description of the concept of defect for nonlinear systems is
provided in [FLMR95]. (The concept of defect is also related to the notion of the
relative degree and zero dynamics in the feedback linearization literature.)

Flatness versus feedback linearization.1 Feedback linearizable systems, in which
a system is rendered linear through a (nonlinear) change of state variables and
transformation of the input, are a fairly common class of systems. One case that
comes up relatively frequently, and is hence worth special mention, is the set of
mechanical systems of the form

M(q)q̈ + C(q, q̇) = B(q)u.

Here q 2 Rn is the configuration of the mechanical system, M(q) 2 Rn⇥n is the
configuration-dependent inertia matrix, C(q, q̇) 2 Rn represents the Coriolis forces
and additional nonlinear forces (such as sti↵ness and friction), and B(q) 2 Rn⇥p

is the input matrix. If p = n, then we have the same number of inputs and
configuration variables, and if we further have that B(q) is an invertible matrix for
all configurations q, then we can choose

u = B
�1(q)

�
M(q)v + C(q, q̇)

�
. (2.12)

The resulting dynamics become

M(q)q̈ = M(q)v =) q̈ = v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (2.12) to obtain the actual input that will be applied to the system.

A natural question in considering feedback linearizable systems is whether one
should simply feedback linearize the system or whether it is better to instead gener-
ate feasible trajectories for the (di↵erentially flat) nonlinear system and then make
use of linear controllers to stabilize the system to that trajectory. In many cases
it can be advantageous to generate a trajectory for the system (using di↵erentially
flatness), where one can take into account constraints on the inputs and the costs
associated with state errors and input magnitudes in the original coordinates of the
model. A downside of this approach is that the gains of the system must now be
modified depending on the operating point (e.g., using gain scheduling), whereas
for a system that has been feedback linearized a single linear controller (in the
transformed coordinates) can be used.

1
The material in this section is drawn from FBS2e, Section 6.4.
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2.4 Implementation in Python2

The Python Control Systems Library (python-control) contains modules that help
support trajectory generation using di↵erential flatness and gain-scheduling con-
troller designs.

The control.flatsys package contains a set of classes and functions that can be
used to compute trajectories for di↵erentially flat systems. It allows both “simple”
trajectory generation (no constraints, no cost function) as well as constrained, op-
timal trajectory generation (with the same basic structure as the optimal control
problems described in the next chapter). The primary advantage of solving trajec-
tory generation problems using di↵erentially flat structure, when it applies, is that
the all operations are algebraic in nature, with no need to integrate the di↵erential
equations describing the dynamics of the system. This can substantially speed up
the computation of trajectories.

A di↵erentially flat system is defined by creating an object using the FlatSystem

class, which has member functions for mapping the system state and input into
and out of flat coordinates. The point_to_point() function can be used to cre-
ate a trajectory between two endpoints, written in terms of a set of basis func-
tions defined using the BasisFamily class. The resulting trajectory is returned as a
SystemTrajectory object and can be evaluated using the eval() member function.

To create a trajectory for a di↵erentially flat system, a FlatSystem object must
be created. This is done by specifying the forward and reverse mappings between
the system state/input and the di↵erentially flat outputs and their derivatives (“flat
flag”).

The forward() method computes the flat flag z̄ = (z, ż, . . . , z(q) given a state
and input:

zflag = sys.forward(x, u)

The reverse() method computes the state and input given the flat flag:

x, u = sys.reverse(zflag)

The flag z̄ is implemented as a list of flat outputs zi and their derivatives up to
order qi:

zflag[i][j] = z
(j)
i

The number of flat outputs must match the number of system inputs.
For a linear system, a flat system representation can be generated using the

LinearFlatSystem class:

sys = control.flatsys.LinearFlatSystem(linsys)

For more general systems, the FlatSystem object must be created manually:

sys = control.flatsys.FlatSystem(forward, reverse, inputs=m, states=n)

In addition to the flat system description, a set of basis functions �i(t) must be
chosen. The FlatBasis class is used to represent the basis functions. A polynomial
basis function of the form 1, t, t2, . . . can be computed using the PolyBasis class,
which is initialized by passing the desired order of the polynomial basis set:

2
The material in this section is drawn from [FGM

+
21].
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Figure 2.8: Trajectory generation using di↵erential flatness.

polybasis = control.flatsys.PolyFamily(N)

Once the system and basis function have been defined, the point_to_point() func-
tion can be used to compute a trajectory between initial and final states and inputs:

traj = control.flatsys.point_to_point(
sys, Tf, x0, u0, xf, uf, basis=polybasis)

The returned object has class SystemTrajectory and can be used to compute
the state and input trajectory between the initial and final condition:

xd, ud = traj.eval(timepts)

where timepts is a list of times on which the trajectory should be evaluated (e.g.,
timepts = np.linspace(0, Tf, M)).

The point_to_point() function also allows the specification of a cost function
and/or constraints, in the same format as solve_ocp(). An example is shown in
Figure 2.8, where we have further modified the problem from Example 2.3 by adding
constraints on the inputs.

The python-control package also has functions to help simplify the implemen-
tation of state feedback-based controllers. The create_statefbk_iosystem function
can be used to create an I/O system using state feedback, including simple forms
of gain scheduling.

A basic state feedback controller of the form

u = ud �K(x� xd)

can be created with the python-control command

ctrl, clsys = ct.create_statefbk_iosystem(sys, K)

where sys is the process dynamics and K is the state feedback gain. The function
returns the controller ctrl and the closed loop systems clsys, both as I/O systems.
The input to the controller is the vector of desired states xd, desired inputs ud, and
system states x.

Gain scheduling on the desired state, desired input, or system state can be
implemented by setting the gain to a 2-tuple consisting of a list of gains and a
list of points at which the gains were computed, as well as a description of the
scheduling variables::

ctrl, clsys = ct.create_statefbk_iosystem(
sys, ([g1, ..., gN], [p1, ..., pN]), gainsched_indices=[s1, ..., sq])
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Figure 2.9: Examples of motion primitives for a planar vehicle. Example of 9
planar motion primitives from initial state x0 for an acceleration-controlled system
(left) and a jerk-controlled system (right). The black arrow indicates corresponding
control input. The red boundary shows the feasible region for the end states (red
squares), which is induced by the control limit umax. Figure and caption courtesy
Liu et al. [LAMK17] (CC-BY).

The list of indices can either be integers indicating the o↵set into the controller
input vector (xd, ud, x) or a list of strings matching the names of the input signals.
The controller implemented in this case has the form

u = ud �K(µ)(x� xd)

where µ represents the scheduling variables. See the python-control documentation
and steering-gainsched.py (in the documentation examples) for more information
on the implementation of a gain scheduled controllers.

2.5 Other Methods for Generating Trajectories

In this section we briefly survey some other methods of generating trajectories for
nonlinear systems, building on the basic ideas already presented.

Motion primitives and graph search. Rather than solve for an entire trajectory
xd that satisfies the equations of motion and a trajectory goal (e.g., moving from
point to point), another common approach to trajectory generation is to create
small segments of trajectories that can be concatenated into a longer trajectory.
Each segment is called a motion primitive.

An example of two sets of motion primitives is shown in Figure 2.9. In the
left figure the primitives are generated by using constant acceleration trajectories
and in the right figure the primitives are generated by using trajectories that are
constant in the third derivative.

Motion primitives can often be combined with other methods for path planning,
such as graph search. For example, a grid of target states can be established where
points in the grid are connected by motion primitives. This approach creates a
graph structure, with each vertex representing a position in the state space and
each edge representing a path segment. The problem of trajectory generation then
becomes one of graph search: for example, we seek to find a path between two
points in the (discretized) state space that minimizes a cost function (represented
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Figure 2.10: Graph-based planning. (a) Road network definition file (RNDF),
used for high level route planning. (b) Graph of feasible trajectories at an inter-
section.

Figure 2.11: Rapidly exploring random tree (RRT) path planning. Random
exploration of a 2D search space by randomly sampling points and connecting
them to the graph until a feasible path between start and goal is found. Figure
and caption courtesy Correll et al. [CHHR22] (CC-BY-ND-NC).

as weights on the nodes and/or edges in the graph). Figure 2.10 illustrates one
such approach, used in an autonomous vehicle setting [BdTH+07].

Rapidly-exploring random tree (RRT). While graph-based search methods can be
very fast, they can become di�cult to implement in high dimensional state spaces,
since the number of points in the grid scales exponentially in the dimension of the
state space. An alternative to “filling” the state space with grid points is to sample
feasible trajectories from the primitive set and then “explore” the state space by
constructing a tree consisting of concatenated segments.

A popular algorithm for this type of sample-based planning is rapidly-exploring
random tree (RRT) search, as illustrated in Figure 2.11. The idea in RRT search
is that we start from the initial point in the trajectory and construct a tree of
possible trajectories by constantly adding new segments to existing points on the
tree. When we add a segment that gets close to the desired final point, we can use
the path back to the root to establish a feasible trajectory for the system.
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2.6 Further Reading

The two degree of freedom controller structure introduced in this chapter is de-
scribed in a bit more detail in FBS2e, Chapter 8 (in the context of output feedback
control) and a description of some of the origins of this structure are provided in the
“Further Reading” section of Chapter 8. Gain scheduling is a classical technique
that is often omitted from introductory control texts, but a good description can
be found in the survey article by Rugh [Rug90] and the work of Shamma [Sha90].
Di↵erential flatness was originally developed by Fliess, Levine, Martin and Rou-
chon [FLMR92]. See [Mur97] for a description of the role of flatness in control
of mechanical systems and [vNM98, MFHM05] for more information on flatness
applied to flight control systems.

Exercises

2.1 (Feasible trajectory for constant reference). Consider a linear input/output
system of the form

ẋ = Ax+Bu, y = Cx (2.13)

in which we wish to track a constant reference r. A feasible (steady state) trajectory
for the system is given by solving the equation


0
r

�
=


A B

C 0

� 
xd

ud

�

for xd and ud.

(a) Show that these equations always have a solution as long as the linear sys-
tem (2.13) is reachable.

(b) In Section 7.2 of FBS2e we showed that the reference tracking problem could be
solved using a control law of the form u = �Kx+krr. Show that this is equivalent
to a two degree of freedom control design using xd and ud and give a formula for
kr in terms of xd and ud. Show that this formula matches that given in FBS2e.

2.2. A simplified model of the steering control problem is described in FBS2e, Ex-
ample 6.13. The lateral dynamics can be approximated by the linearized dynamics

ẋ =


0 1
0 0

�
x+


�

1

�
u, y = x1,

where x = (y, ✓) 2 R2 is the state of the system, � is a parameter that depends on
the forward speed of the vehicle, and y is the lateral position of the vehicle.

Suppose that we wish to track a piecewise constant reference trajectory that
consists of moving left and right by 1 meter:

xd =


square(2⇡t/20)

0

�
, ud = 0,

where square is the square wave function in scipy.signal. Suppose further that
the speed of the vehicle varies such that the parameter � satisfies the formula

�(t) = 2 + 2 sin(2⇡t/50).
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(a) Show that the desired trajectory given by xd and ud satisfy the dynamics of
the system at all points in time except the switching points of the square wave
function.

(b) Suppose that we fix � = 2. Use eigenvalue placement to design a state space
controller u = ud � K(x � xd) where the gain matrix K is chosen such that the
eigenvalues of the closed loop poles are at the roots of s2+2⇣!0s+!2

0 , where ⇣ = 0.7
and !0 = 1. Apply the controller to the time-varying system where �(t) is allowed
to vary and plot the output of the system compared to the desired output.

(c) Find gain matrices K1, K2, and K3 corresponding to � = 0, 2, 4 and design
a gain-scheduled controller that uses linear interpolaction to compute the gain for
values of � between these values. Compare the performance of the gain scheduled
controller to your controller from part (b).

2.3. Solve Example 2.2 using python-control.

2.4 (Stability of gain scheduled controllers for slowly varying systems). Consider a
nonlinear control system with gain scheduled feedback

ė = f(e, v) v = k(µ)e,

where µ(t) 2 R is an externally specified parameter (e.g., the desired trajectory)
and k(µ) is chosen such that the linearization of the closed loop system around the
origin is stable for each fixed µ.

Show that if |µ̇| is su�ciently small then the equilibrium point is locally asymp-
totically stable for the full nonlinear, time-varying system. (Hint: find a Lyapunov
function of the form V = x

T
P (µ)x based on the linearization of the system dynam-

ics for fixed µ and then show this is a Lyapunov function for the full system.)

2.5 (Flatness of systems in reachable canonical form). Consider a single input sys-
tem in reachable canonical form [FBS2e, Section 7.1]:

dx

dt
=

2

666664

�a1 �a2 �a3 . . . �an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

3

777775
x+

2

666664

1
0
0
...
0

3

777775
u,

y =
⇥
b1 b2 b3 . . . bn

⇤
x+ du.

(2.14)

Suppose that we wish to find an input u that moves the system from x0 to xf .
This system is di↵erentially flat with flat output given by z = xn and hence we can
parameterize the solutions by a curve of the form

xn(t) =
NX

k=0

↵kt
k
, (2.15)

where N is a su�ciently large integer.
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(a) Compute the state space trajectory x(t) and input u(t) corresponding to equa-
tion (2.15) and satisfying the di↵erential equation (2.14). Your answer should be
an equation similar to equation (2.7) for each state xi and the input u.

(b) Find an explicit input that steers a double integrator system between any two
equilibrium points x0 2 R2 and xf 2 R2.

(c) Show that all reachable systems are di↵erentially flat and give a formula for
finding the flat output in terms of the dynamics matrix A and control matrix B.

2.6. Show that the servomechanism example from Exercise 1.3 is di↵erentially flat
and compute the forward and reverse mappings between the system states and
inputs and the flat flag.

2.7. Consider the lateral control problem for an autonomous ground vehicle as
described in Example 2.1 and Section 2.3. Using the fact that the system is dif-
ferentially flat, find an explicit trajectory that solves the following parallel parking
maneuver:

x0 = (0, 4)

xf = (0, 0)

xi = (6, 2)

Your solution should consist of two segments: a curve from x0 to xi with v > 0
and a curve from xi to xf with v < 0. For the trajectory that you determine, plot
the trajectory in the plane (x versus y) and also the inputs v and � as a function
of time.

2.8. Consider first the problem of controlling a truck with trailer, as shown in the
figure below:

ẋ = cos ✓ u1

ẏ = sin ✓ u1

�̇ = u2

✓̇ =
1
l
tan�u1

✓̇1 =
1
d
cos(✓ � ✓1) sin(✓ � ✓1)u1,

The dynamics are given above, where (x, y, ✓) is the position and orientation of the
truck, � is the angle of the steering wheels, ✓1 is the angle of the trailer, and l and
d are the length of the truck and trailer. We want to generate a trajectory for the
truck to move it from a given initial position to the loading dock. We ignore the
role of obstacles and concentrate on generation of feasible trajectories.
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(a) Show that the system is di↵erentially flat using the center of the rear wheels of
the trailer as the flat output.

(b) Generate a trajectory for the system that steers the vehicle from an initial
condition with the truck and trailer perpendicular to the loading dock into the
loading dock.

(c) Write a simulation of the system stabilizes the desired trajectory and demon-
strate your two-degree of freedom control system maneuvering from several di↵erent
initial conditions into the parking space, with either disturbances or modeling errors
included in the simulation.
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