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Chapter 4
Stochastic Systems

In this chapter we present a focused overview of stochastic systems, oriented toward
the material that is required in Chapters 5 and 6. After a brief review of random
variables, we define discrete-time and continuous-time random processes, including
the expectation, (co-)variance and correlation functions for a random process. These
definitions are used to describe linear stochastic systems (in continuous time) and
the stochastic response of a linear system to a random process (e.g., noise). We
initially derive the relevant quantities in the state space, followed by a presentation
of the equivalent frequency domain concepts.

Prerequisites. Readers should be familiar with basic concepts in probability, in-
cluding random variables and standard distributions. We do not assume any prior
familiarity with random processes.

Caveats. This chapter is written to provide a brief introduction to stochastic pro-
cesses that can be used to derive the results in the following chapters. In order to
keep the presentation compact, we gloss over several mathematical details that are
required for rigorous presentation of the results. A more detailed (and mathemati-
cally precise) derivation of this material is available in the book by Åström [Åst06].

4.1 Brief Review of Random Variables

To help fix the notation that we will use, we briefly review the key concepts of
random variables. A more complete exposition is available in standard books on
probability, such as Hoel, Port and Stone [HPS71].

Random variables and processes are defined in terms of an underlying proba-
bility space that captures the nature of the stochastic system we wish to study. A
probability space has three elements:

• a sample space Ω that represents the set of all possible outcomes;

• a set of events F the captures combinations of elementary outcomes that are
of interest; and

• a probability measure P that describes the likelihood of a given event occur-
ring.

Ω can be any set, either with a finite, countable or infinite number of elements. The
event space F consists of subsets of Ω. There are some mathematical limits on the
properties of the sets in F , but these are not critical for our purposes here. The
probability measure P is a mapping from P : F → [0, 1] that assigns a probability
to each event. It must satisfy the property that given any two disjoint set A,B ⊂ F ,
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P (A ∪ B) = P (A) + P (B). The term probability distribution is also to describe a
probability measure.

With these definitions, we can model many different stochastic phenomena.
Given a probability space, we can choose samples ω ∈ Ω and identify each sam-
ple with a collection of events chosen from F . These events should correspond to
phenomena of interest and the probability measure P should capture the likelihood
of that even occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number of situations
as special cases.

A random variable X is a function X : Ω → S that gives a value in S, called
the state space, for any sample ω ∈ Ω. Given a subset A ⊂ S, we can write the
probability that X ∈ A as

P (X ∈ A) = P (ω ∈ Ω : X(ω) ∈ A).

We will often find it convenient to omit ω when working random variables and
hence we write X ∈ S rather than the more correct X(ω) ∈ S.

A continuous (real-valued) random variable X is a variable that can take on any
value in the set of real numbers R. We can model the random variable X according
to its probability distribution P :

P (xl ≤ X ≤ xu) = probability that x takes on a value in the range xl, xu.

More generally, we write P (A) as the probability that an event A will occur (e.g.,
A = {xl ≤ X ≤ xu}). It follows from the definition that if X is a random variable
in the range [L,U ] then P (L ≤ X ≤ U) = 1. Similarly, if Y ∈ [L,U ] then P (L ≤
X ≤ Y ) = 1 − P (Y ≤ X ≤ U).

We characterize a random variable in terms of the probability density function
(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

P (xl ≤ X ≤ xu) =

∫ xu

xl

p(x)dx. (4.1)

It is also possible to compute p(x) given the distribution P as long as the distribu-
tion is suitably smooth:

p(x) =
∂P (xl ≤ x ≤ xu)

∂xu

∣∣∣∣xl fixed,
xu = x,

x > xl.

We will sometimes write pX(x) when we wish to make explicit that the pdf is
associated with the random variable X. Note that we use capital letters to refer to
a random variable and lower case letters to refer to a specific value.

Probability distributions provide a general way to describe stochastic phenom-
ena. Some standard probability distributions include a uniform distribution,

p(x) =
1

U − L
, (4.2)
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Figure 4.1: Probability density function (pdf) for uniform and Gaussian distri-
butions.

and a Gaussian distribution (also called a normal distribution),

p(x) =
1√

2πσ2
e
−

1
2

„

x−µ
σ

«2

. (4.3)

In the Gaussian distribution, the parameter µ is called the mean of the distribution
and σ is called the standard deviation of the distribution. Figure 4.1 gives a graph-
ical representation of uniform and Gaussian pdfs. There many other distributions
that arise in applications, but for the purpose of these notes we focus on uniform
distributions and Gaussian distributions.

If two random variables are related, we can talk about their joint probability
distribution: PX,Y (A,B) is the probability that both event A occurs for X and B
occurs for Y . This is sometimes written as P (A ∩ B), where we abuse notation
by implicitly assuming that A is associated with X and B with Y . For continuous
random variables, the joint probability distribution can be characterized in terms
of a joint probability density function

P (xl ≤ X ≤ xu, yl ≤ Y ≤ yu) =

∫ yu

yl

∫ xu

xl

p(x, y) dxdy. (4.4)

The joint pdf thus describes the relationship between X and Y , and for sufficiently
smooth distributions we have

p(x, y) =
∂2P (xl ≤ X ≤ xu, yl ≤ Y ≤ yu)

∂xu∂yu

∣∣∣∣xl, yl fixed,
xu = x, yu = y,

x > xl,

y > yl.

We say that X and Y are independent if p(x, y) = p(x)p(y), which implies that
PX,Y (A,B) = PX(A)PY (B) for events A associated with X and B associated with
Y . Equivalently, P (A ∩ B) = P (A)P (B) if A and B are independent.

The conditional probability for an event A given that an event B has occurred,
written as P (A|B), is given by

P (A|B) =
P (A ∩ B)

P (B)
. (4.5)

If the events A and B are independent, then P (A|B) = P (A). Note that the
individual, joint and conditional probability distributions are all different, so we
should really write PX,Y (A ∩ B), PX|Y (A|B) and PY (B).
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If X is dependent on Y then Y is also dependent on X. Bayes’ theorem relates
the conditional and individual probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) *= 0. (4.6)

Bayes’ theorem gives the conditional probability of event A on event B given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesis H given data D when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function p(x|y)

p(x|y) =






p(x, y)

p(y)
0 < p(y) < ∞

0 otherwise.
(4.7)

It follows that
p(x, y) = p(x|y)p(y) (4.8)

and
P (xl ≤ X ≤ xu|y) := P (xl ≤ X ≤ xu|Y = y)

=

∫ xu

xl

p(x|y)dx =

∫ xu

xl
p(x, y)dx

p(y)
.

(4.9)

If X and Y are independent than p(x|y) = p(x) and p(y|x) = p(y). Note that
p(x, y) and p(x|y) are different density functions, though they are related through
equation (4.8). If X and Y are related with joint probability density function p(x, y)
and conditional probability density function p(x|y) then

p(x) =

∫ ∞

−∞
p(x, y)dy =

∫ ∞

−∞
p(x|y)p(y)dy.

Example 4.1 Conditional probability for sum
Consider three random variables X, Y and Z related by the expression

Z = X + Y.

In other words, the value of the random variable Z is given by choosing values
from two random variables X and Y and adding them. We assume that X and
Y are independent Gaussian random variables with mean µ1 and µ2 and standard
deviation σ = 1 (the same for both variables).

Clearly the random variable Z is not independent of X (or Y ) since if we know
the values of X then it provides information about the likely value of Z. To see
this, we compute the joint probability between Z and X. Let

A = {xl ≤ x ≤ xu}, B = {zl ≤ z ≤ zu}.

The joint probability of both events A and B occurring is given by

PX,Z(A ∩ B) = P (xl ≤ x ≤ xu, zl ≤ x + y ≤ zu)

= P (xl ≤ x ≤ xu, zl − x ≤ y ≤ zu − x).
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We can compute this probability by using the probability density functions for X
and Y :

P (A ∩ B) =

∫ xu

xl

(∫ zu−x

zl−x

pY (y)dy
)
pX(x)dx

=

∫ xu

xl

∫ zu

zl

pY (z − x)pX(x)dzdx =:

∫ zu

zl

∫ xu

xl

pZ,X(z, x)dxdz.

Using Gaussians for X and Y we have

pZ,X(z, x) =
1√
2π

e−
1
2 (z − x − µY )2 ·

1√
2π

e−
1
2 (x − µX)2

=
1

2π
e−

1
2

(
(z − x − µY )2 + (x − µX)2

)
.

A similar expression holds for pZ,Y . ∇

Given a random variable X, we can define various standard measures of the
distribution. The expectation or mean of a random variable is defined as

E[X] = 〈X〉 =

∫ ∞

−∞
x p(x) dx,

and the mean square of a random variable is

E[X2] = 〈X2〉 =

∫ ∞

−∞
x2 p(x) dx.

If we let µ represent the expectation (or mean) of X then we define the variance of
X as

E[(X − µ)2] = 〈(X − 〈X〉)2〉 =

∫ ∞

−∞
(x − µ)2 p(x) dx.

We will often write the variance as σ2. As the notation indicates, if we have a
Gaussian random variable with mean µ and (stationary) standard deviation σ,
then the expectation and variance as computed above return µ and σ2.

Several useful properties follow from the definitions.

Proposition 4.1 (Properties of random variables).

1. If X is a random variable with mean µ and variance σ2, then αX is random
variable with mean αX and variance α2σ2.

2. If X and Y are two random variables, then E[αX + βY ] = αE[X] + βE[Y ].

3. If X and Y are Gaussian random variables with means µX , µY and variances
σ2

X , σ2
Y ,

p(x) =
1

√
2πσ2

X

e
− 1

2

“

x−µX
σX

”2

, p(y) =
1

√
2πσ2

Y

e
− 1

2

“

y−µY
σY

”2

,

then X + Y is a Gaussian random variable with mean µZ = µX + µY and
variance σ2

Z = σ2
X + σ2

Y ,

p(x + y) =
1

√
2πσ2

Z

e
− 1

2

“

x+y−µZ
σZ

”2

.
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Proof. The first property follows from the definition of mean and variance:

E[αX] =

∫ ∞

−∞
αx p(x) dx = α

∫ ∞

−∞
αx p(x) dx = αE[X]

E[(αX)2] =

∫ ∞

−∞
(αx)2 p(x) dx = α2

∫ ∞

−∞
x2 p(x) dx = α2

E[X2].

The second property follows similarly, remembering that we must take the expecta-
tion using the joint distribution (since we are evaluating a function of two random
variables):

E[αX + βY ] =

∫ ∞

−∞

∫ ∞

−∞
(αx + βy) pX,Y (x, y) dxdy

= α

∫ ∞

−∞

∫ ∞

−∞
x pX,Y (x, y) dxdy + β

∫ ∞

−∞

∫ ∞

−∞
y pX,Y (x, y) dxdy

= α

∫ ∞

−∞
x pX(x) dx + β

∫ ∞

−∞
y pY (y) dy = αE[X] + βE[Y ].

The third item is left as an exercise.

4.2 Introduction to Random Processes

A random process is a collection of time-indexed random variables. Formally, we
consider a random process X to be a joint mapping of sample and a time to a state:
X : Ω × T → S, where T is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpret X(ω, t) as a regular
random variable, with X(ω, t′) representing a different random variable if t *= t′.
Our description of random processes will consist of describing how the random
variable at a time t relates to the value of the random variable at an earlier time s.
To build up some intuition about random processes, we will begin with the discrete
time case, where the calculations are a bit more straightforward, and then proceed
to the continuous time case.

A discrete-time random process is a stochastic system characterized by the evo-
lution of a sequence of random variables X[k], where k is an integer. As an example,
consider a discrete-time linear system with dynamics

x[k + 1] = Ax[k] + Bu[k] + Fw[k], y[k] = Cx[k] + v[k]. (4.10)

As in ÅM08, x ∈ Rn represents the state of the system, u ∈ Rm is the vector of
inputs and y ∈ Rp is the vector of outputs. The (possibly vector-valued) signal
w represents disturbances to the process dynamics and v represents noise in the
measurements. To try to fix the basic ideas, we will take u = 0, n = 1 (single state)
and F = 1 for now.

We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosen from some proba-
bility distribution. Thus we will let W [k] be a collection of random variables where
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the values at each instant k are chosen from the probability distribution P [W,k].
As the notation indicates, the distributions might depend on the time instant k,
although the most common case is to have a stationary distribution in which the
distributions are independent of k (defined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of W at time k is independent of the values of W at time l if k *= l. In other words,
W [k] and W [l] are two separate random variables that are independent of each
other. We say that the corresponding random process is uncorrelated (also defined
more formally below). As a consequence of our independence assumption, we have
that

E[W [k]W [l]] = E[W 2[k]]δ(k − l) =

{
E[W 2[k]] k = l

0 k *= l.

In the case that W [k] is a Gaussian with mean zero and (stationary) standard
deviation σ, then E[W [k]W [l]] = σ2 δ(k − l).

We next wish to describe the evolution of the state x in equation (4.10) in the
case when W is a random variable. In order to do this, we describe the state x as a
sequence of random variables X[k], k = 1, · · · , N . Looking back at equation (4.10),
we see that even if W [k] is an uncorrelated sequence of random variables, then the
states X[k] are not uncorrelated since

X[k + 1] = AX[k] + FW [k],

and hence the probability distribution for X at time k + 1 depends on the value
of X at time k (as well as the value of W at time k), similar to the situation in
Example 4.1.

Since each X[k] is a random variable, we can define the mean and variance as
µ[k] and σ2[k] using the previous definitions at each time k:

µ[k] := E[X[k]] =

∫ ∞

−∞
x p(x, k) dx,

σ2[k] := E[(X[k] − µ[k])2] =

∫ ∞

−∞
(x − µ[k])2 p(x, k) dx.

To capture the relationship between the current state and the future state, we define
the correlation function for a random process as

ρ(k1, k2) := E[X[k1]X[k2]] =

∫ ∞

−∞
x1x2 p(x1, x2; k1, k2) dx1dx2

The function p(xi, xj ; k1, k2) is the joint probability density function, which depends
on the times k1 and k2. A process is stationary if p(x, k + d) = p(x, d) for all k,
p(xi, xj ; k1 + d, k2 + d) = p(xi, xj ; k1, k2), etc. In this case we can write p(xi, xj ; d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(k1, k2) as p(d) = p(k, k + d).

We can compute the correlation function by explicitly computing the joint pdf
(see Example 4.1) or by directly computing the expectation. Suppose that we take
a random process of the form (4.10) with x[0] = 0 and W having zero mean and
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standard deviation σ. The correlation function is given by

E[X[k1]X[k2]] = E
{(k1−1∑

i=0

Ak1−iBW [i]
)(k2−1∑

j=0

Ak2−jBW [j]
)}

= E
{k1−1∑

i=0

k2−1∑

j=0

Ak1−iBW [i]W [j]BAk2−j
}

.

We can now use the linearity of the expectation operator to pull this inside the
summations:

E[X[k1]X[k2]] =
k1−1∑

i=0

k2−1∑

j=0

Ak1−iBE[W [i]W [j]]BAk2−j

=
k1−1∑

i=0

k2−1∑

j=0

Ak1−iBσ2δ(i − j)BAk2−j

=
k1−1∑

i=0

Ak1−iBσ2BAk2−i.

Note that the correlation function depends on k1 and k2.
We can see the dependence of the correlation function on the time more clearly

by letting d = k2 − k1 and writing

ρ(k, k + d) = E[X[k]X[k + d]] =
k1−1∑

i=0

Ak−iBσ2BAd+k−i

=
k∑

j=1

AjBσ2BAj+d =
( k∑

j=1

AjBσ2BAj
)
Ad.

In particular, if the discrete time system is stable then |A| < 1 and the correla-
tion function decays as we take points that are further departed in time (d large).
Furthermore, if we let k → ∞ (i.e., look at the steady state solution) then the
correlation function only depends on d (assuming the sum converges) and hence
the steady state random process is stationary.

In our derivation so far, we have assumed that X[k + 1] only depends on the
value of the state at time k (this was implicit in our use of equation (4.10) and the
assumption that W [k] is independent of X). This particular assumption is known
as the Markov property for a random process: a Markovian process is one in which
the distribution of possible values of the state at time k depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

pX,k(x|X[k − 1],X[k − 2], . . . ,X[0]) = pX,k(x|X[k − 1]). (4.11)

Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not it history of values prior to that).
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4.3 Continuous-Time, Vector-Valued Random Processes

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful use of measure the-
ory and is beyond the scope of this text, so we focus here on the concepts that will
be useful for modeling and analysis of important physical properties.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X(t), t ∈ [0, T ]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X(t1) with X(t2).

We call X(t) ∈ Rn the state of the random process at time t. For the case n > 1,
we have a vector of random processes:

X(t) =





X1(t)
...

Xn(t)





We can characterize the state in terms of a (vector-valued) time-varying pdf,

P (xl ≤ Xi(t) ≤ xu) =

∫ xu

xl

pXi
(x; t)dx.

Note that the state of a random process is not enough to determine the next state
(otherwise it would be a deterministic process). We typically omit indexing of the
individual states unless the meaning is not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms of joint probability density functions:

P (x1l ≤ Xi(t1) ≤ x1u, x2l ≤ Xj(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l

pXi,Yi
(x1, x2; t1, t2) dx1dx2

The function p(xi, xj ; t1, t2) is called a joint probability density function and depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that if i = j, then pXi,Xi

describes how Xi at time
t1 is related to Xi at time t2.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some cases
the relationship only depends on the difference in time and not the absolute times
(similar to the notion of time invariance in deterministic systems, as described
in ÅM08). A process is stationary if p(x, t + τ) = p(x, t) for all τ , p(xi, xj ; t1 +
τ, t2 + τ) = p(xi, xj ; t1, t2), etc. In this case we can write p(xi, xj ; τ) for the joint
probability distribution. Stationary distributions roughly correspond to the steady
state properties of a random process and we will often restrict our attention to this
case.

In looking at biomolecular systems, we are going to be interested in random
processes in which the changes in the state occur when a random event occurs (such
as a molecular reaction or binding event). In this case, it is natural to describe the
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state of the system in terms of a set of times t0 < t1 < t2 < · · · < tn and X(ti)
is the random variable that corresponds to the possible states of the system at
time ti. Note that time time instants do not have to be uniformly spaced and most
often (for biomolecular systems) they will not be. All of the definitions above carry
through, and the process can now be described by a probability distribution of the
form

P
(
X(ti) ∈ [xi, xi + dxi], i = 1, . . . , n

)
=

∫
. . .

∫
p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0)dxn dxn−1 dx1,

where dxi are taken as infinitesimal quantities.
An important class of stochastic systems is those for which the next state of the

system depends only on the current state of the system and not the history of the
process. Suppose that

P
(
X(tn) ∈ [xn, xn + dxn]|X(ti) ∈ [xi, xi + dxi]|, i = 1, . . . , n − 1

)

= P (X(tn) ∈ [xn, xn + dxn]|X(tn−1) ∈ [xn−1, xn−1 + dxn−1]). (4.12)

That is, the probability of being in a given state at time tn depends only on the
state that we were in at the previous time instant tn−1 and not the entire history
of states prior to tn−1. A stochastic process that satisfies this property is called a
Markov process.

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(xi, xj ; t1, t2) but instead describe them in terms of a propogater
function. Let X(t) be a Markov process and define the Markov propogater as

Ξ(dt;x, t) = X(t + dt) − X(t), given X(t) = x.

The propogater function describes how the random variable at time t is related to
the random variable at time t + dt. Since both X(t + dt) and X(t) are random
variables, Ξ(dt;x, t) is also a random variable and hence it can be described by its
density function, which we denote as Π(ξ, x; dt, t):

P
(
x ≤ X(t + dt) ≤ x + ξ

)
=

∫ x+ξ

x

Π(dx, x; dt, t) dx.

The previous definitions for mean, variance and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

E{X(t)} =





E{X1(t)}
...

E{Xn(t)}



 =: µ(t)

E{(X(t) − µ(t))(X(t) − µ(t))T } =





E{X1(t)X1(t)} . . . E{X1(t)Xn(t)}
. . .

...
E{Xn(t)Xn(t)}



 =: Σ(t)

E{X(t)XT (s)} =





E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}
. . .

...
E{Xn(t)Xn(s)}



 =: R(t, s)
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ρ(t1 − t2)

τ = t1 − t2

Figure 4.2: Correlation function for a first-order Markov process.

Note that the random variables and their statistical properties are all indexed by the
time t (and s). The matrix R(t, s) is called the correlation matrix for X(t) ∈ Rn.
If t = s then R(t, t) describes how the elements of x are correlated at time t
(with each other) and in the case that the processes have zero mean, R(t, t) =
Σ(t). The elements on the diagonal of Σ(t) are the variances of the corresponding
scalar variables. A random process is uncorrelated if R(t, s) = 0 for all t *= s. This
implies that X(t) and X(s) are independent random events and is equivalent to
pX,Y (x, y) = pX(x)pY (y).

If a random process is stationary, then it can be shown that R(t + τ, s + τ) =
R(t, s) and it follows that the correlation matrix depends only on t− s. In this case
we will often write R(t, s) = R(s−t) or simple R(τ) where τ is the correlation time.
The correlation matrix in this case is simply R(0).

In the case where X is also scalar random process, the correlation matrix is
also a scalar and we will write ρ(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
ρ(τ) = ρ(−τ) = ρ(|τ |). This property also holds for the diagonal entries of the
correlation matrix since Rii(s, t) = Rii(t, s) from the definition.

Example 4.2 Ornstein-Uhlenbeck process
Consider a scalar random process defined by a Gaussian pdf with µ = 0,

p(x, t) =
1√

2πσ2
e−

1
2

x2

σ2 ,

and a correlation function given by

ρ(t1, t2) =
Q

2ω0
e−ω0|t2−t1|.

The correlation function is illustrated in Figure 4.2. This process is also known
as an Ornstein-Uhlenbeck process, a term that is commonly used in the scientific
literature. This is a stationary process. ∇

The terminology and notation for covariance and correlation varies between
disciplines. The term covariance is often used to refer to both the relationship be-
tween different variables X and Y and the relationship between a single variable
at different times, X(t) and X(s). The term “cross-covariance” is used to refer to
the covariance between two random vectors X and Y , to distinguish this from the
covariance of the elements of X with each other. The term “cross-correlation” is
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sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation ρ̄(t, s) = E[X(t)X(s)]/E[X(t)X(t)]..

MATLAB has a number of functions to implement covariance and correlation,
which mostly match the terminology here:

• cov(X) - this returns the variance of the vector X that represents samples of a
given random variable or the covariance of the columns of a matrix X where
the rows represent observations.

• cov(X, Y) - equivalent to cov([X(:), Y(:)]). Computes the covariance be-
tween the columns of X and Y , where the rows are observations.

• xcorr(X, Y) - the “cross-correlation” between two random sequences. If these
sequences came from a random process, this is correlation function ρ(t).

• xcov(X, Y) - this returns the “cross-covariance”, which MATLAB defines as the
“mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

We will also make use of a special type of random process referred to as “white
noise”. A white noise process X(t) satisfies E{X(t)} = 0 and R(t, s) = W δ(s − t),
where δ(τ) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that ρ(0) = E{X2(t)} = ∞, so
the covariance is infinite and we never see this signal in practice. However, like the
step function, it is very useful for characterizing the responds of a linear system,
as described in the following proposition. It can be shown that the integral of a
white noise process is a Wiener process, and so often white noise is described as
the derivative of a Wiener process.

4.4 Linear Stochastic Systems with Gaussian Noise

We now consider the problem of how to compute the response of a linear system to
a random process. We assume we have a linear system described in state space as

Ẋ = AX + FW, Y = CX (4.13)

Given an “input” W , which is itself a random process with mean µ(t), variance
σ2(t) and correlation ρ(t, t + τ), what is the description of the random process Y ?

Let W be a white noise process, with zero mean and noise intensity Q:

ρ(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y (t) =

∫ t

0
h(t − τ)W (τ) dτ,

where h(t − τ) is the impulse response for the system

h(t − τ) = CeA(t−τ)B + Dδ(t − τ).
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We now compute the statistics of the output, starting with the mean:

E[Y (t)] = E{
∫ t

0
h(t − η)W (η) dη}

=

∫ t

0
h(t − η)E{W (η)} dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull
the expectation inside the integral.

We can compute the covariance of the output by computing the correlation ρ(τ)
and setting σ2 = ρ(0). The correlation function for y is

ρY (t, s) = E{Y (t)Y (s)} = E{
∫ t

0
h(t − η)W (η) dη ·

∫ s

0
h(s − ξ)W (ξ) dξ}

= E{
∫ t

0

∫ s

0
h(t − η)W (η)W (ξ)h(s − ξ) dηdξ}

Once again linearity allows us to exchange expectation and integration

ρY (t, s) =

∫ t

0

∫ s

0
h(t − η)E{W (η)W (ξ)}h(s − ξ) dηdξ

=

∫ t

0

∫ s

0
h(t − η)Qδ(η − ξ)h(s − ξ) dηdξ

=

∫ t

0
h(t − η)Qh(s − η) dη

Now let τ = s − t and write

ρY (τ) = ρY (t, t + τ) =

∫ t

0
h(t − η)Qh(t + τ − η) dη

=

∫ t

0
h(ξ)Qh(ξ + τ) dξ (setting ξ = t − η)

Finally, we let t → ∞ (steady state)

lim
t→∞

ρY (t, t + τ) = ρ̄Y (τ) =

∫ ∞

0
h(ξ)Qh(ξ + τ)dξ (4.14)

If this integral exists, then we can compute the second order statistics for the output
Y .

We can provide a more explicit formula for the correlation function ρ in terms of
the matrices A, F and C by expanding equation (4.14). We will consider the general
case where W ∈ Rm and Y ∈ Rp and use the correlation matrix R(t, s) instead of
the correlation function ρ(t, s). Define the state transition matrix Φ(t, t0) = eA(t−t0)

so that the solution of system (4.13) is given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t,λ)Fw(λ)dλ
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Proposition 4.2 (Stochastic response to white noise). Let E{X(t0)XT (t0)} =
P (t0) and W be white noise with E{W (λ)WT (ξ)} = RW δ(λ− ξ). Then the corre-
lation matrix for X is given by

RX(t, s) = P (t)ΦT (s, t)

where P (t) satisfies the linear matrix differential equation

Ṗ (t) = AP + PAT + FRW F, P (0) = P0.

Proof. Using the definition of the correlation matrix, we have

E{X(t)XT (s)} = E
{
Φ(t, 0)X(0)XT (0)ΦT (t, 0) + cross terms

+

∫ t

0
Φ(t, ξ)FW (ξ) dξ

∫ s

0
W t(λ)FTΦ(s,λ) dλ

}

= Φ(t, 0)E{X(0)XT (0)}Φ(s, 0)

+

∫ t

0

∫ s

0
Φ(t, ξ)FE{W (ξ)WT (λ)}FTΦ(s,λ) dξ dλ

= Φ(t, 0)P (0)φT (s, 0) +

∫ t

0
Φ(t,λ)FRW (λ)FTΦ(s,λ) dλ.

Now use the fact that Φ(s, 0) = Φ(s, t)Φ(t, 0) (and similar relations) to obtain

RX(t, s) = P (t)ΦT (s, t)

where

P (t) = Φ(t, 0)P (0)ΦT (t, 0) +

∫ T

0
Φ(t,λ)FRW FT (λ)ΦT (t,λ)dλ

Finally, differentiate to obtain

Ṗ (t) = AP + PAT + FRW F, P (0) = P0

(see Friedland for details).

The correlation matrix for the output Y can be computing using the fact that
Y = CX and hence RY = CT RXC. We will often be interested in the steady state
properties of the output, which given by the following proposition.

Proposition 4.3 (Steady state response to white noise). For a time-invariant
linear system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t + τ) = PeAT τ , RY (τ) = CRX(τ)CT

where P satisfies the algebraic equation

AP + PAT + FRW FT = 0 P > 0. (4.15)
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Equation (4.15) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.3 First-order system
Consider a scalar linear process

Ẋ = −aX + W, Y = cX,

where W is a white, Gaussian random process with noise intensity σ2. Using the
results of Proposition 4.2, the correlation function for X is given by

RX(t, t + τ) = p(t)e−aτ

where p(t) > 0 satisfies
p(t) = −2ap + σ2.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2atp(0) + (1 − e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

ρ(t, t + τ) = c2(e−2atp(0) + (1 − e−2at)
σ2

2a
)e−aτ .

In steady state, the correlation function for the output becomes

ρ(τ) =
c2σ2

2a
e−aτ .

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example 4.2 (with Q = c2σ2). ∇

4.5 Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain
approach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the
properties of the response. In particular, if we let ρ(τ) be the correlation function
for a (scalar) random process, then we define the power spectral density function as
the Fourier transform of ρ:

S(ω) =

∫ ∞

−∞
ρ(τ)e−jωτ dτ, ρ(τ) =

1

2π

∫ ∞

−∞
S(ω)ejωτ dτ.

The power spectral density provides an indication of how quickly the values of a
random process can change through the frequency content: if there is high frequency
content in the power spectral density, the values of the random variable can change
quickly in time.
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logω

log S(ω)

ω0

Figure 4.3: Spectral power density for a first-order Markov process.
.

Example 4.4 First-order Markov process
To illustrate the use of these measures, consider a first-order Markov process as
defined in Example 4.2. The correlation function is

ρ(τ) =
Q

2ω0
e−ω0(τ).

The power spectral density becomes

S(ω) =

∫ ∞

−∞

Q

2ω0
e−ω|τ |e−jωτ dτ

=

∫ 0

−∞

Q

2ω0
e(ω−jω)τ dτ +

∫ ∞

0

Q

2ω0
e(−ω−jω)τ dτ =

Q

ω2 + ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plot S(ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 4.3. Note that although S(ω) has a form similar to a transfer function, it is
a real-valued function and is not defined for complex s. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise process is a zero-mean, random process with power spectral density
S(ω) = W = constant for all ω. If X(t) ∈ Rn (a random vector), then W ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”. The following proposition verifies that this formal definition agrees with
our previous (time domain) definition.

Proposition 4.4. For a white noise process,

ρ(τ) =
1

2π

∫ ∞

−∞
S(ω)ejωτ dτ = W δ(τ),

where δ(τ) is the unit impulse function.

Proof. If τ *= 0 then

ρ(τ) =
1

2π

∫ ∞

−∞
W (cos(ωτ) + j sin(ωτ) dτ = 0
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If τ = 0 then ρ(τ) = ∞. Can show that

ρ(0) = lim
ε→0

∫ ε

−ε

∫ ∞

−∞
(· · · ) dωdτ = W δ(0)

Given a linear system

Ẋ = AX + FW, Y = CX,

with W given by white noise, we can compute the spectral density function cor-
responding to the output Y . We start by computing the Fourier transform of the
steady state correlation function (4.14):

SY (ω) =

∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ + τ)dξ

]
e−jωτ dτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ + τ)e−jωτ dτ

]
dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e−jω(λ−ξ) dλ

]
dξ

=

∫ ∞

0
h(ξ)ejωξ dξ · QH(jω) = H(−jω)QuH(jω)

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

SY (ω) = H1(−jω)H2(−jω)QuH2(jω)H1(jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbances it
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covariance W and filter H(s) such that we match
the statistics S(ω) of a measured noise or disturbance signal. In other words, given
S(ω), find W > 0 and H(s) such that S(ω) = H(−jω)WH(jω). This problem is
know as the spectral factorization problem.

Figure 4.4 summarizes the relationship between the time and frequency domains.

4.6 Further Reading

There are several excellent books on stochastic systems that cover the results in this
chapter in much more detail. For discrete-time systems, the textbook by Kumar and
Varaiya [KV86] provides an derivation of the key results. Results for continuous-
time systems can be found in the textbook by Friedland [Fri04]. Åström [Åst06]
gives a very elegant derivation in a unified framework that integrates discrete-time
and continuous-time systems.
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p(v) =
1

√
2πRV

e
−

v2

2RV

SV (ω) = RV

V −→ H −→ Y
p(y) =

1
√

2πRY

e
−

y2

2RY

SY (ω) = H(−jω)RV H(jω)

ρV (τ) = RV δ(τ)
Ẋ = AX + FV

Y = CX

ρY (τ) = RY (τ) = CPe−A|τ |CT

AP + PAT + FRV F T = 0

Figure 4.4: Summary of steady state stochastic response.

Exercises

4.1 Let Z be a random random variable that is the sum of two independent
normally (Gaussian) distributed random variables X1 and X2 having means m1,
m2 and variances σ2

1 , σ2
2 respectively. Show that the probability density function

for Z is

p(z) =
1

2πσ1σ2

∫ ∞

−∞
exp

{
−

(z − x − m1)2

2σ2
1

−
(x − m2)2

2σ2
2

}
dx

and confirm that this is normal (Gaussian) with mean m1+m2 and variance σ2
1+σ2

2 .
(Hint: Use the fact that p(z|x2) = pX1

(x1) = pX1
(z − x2).)

4.2 (ÅM08, Exercise 7.13) Consider the motion of a particle that is undergoing a
random walk in one dimension (i.e., along a line). We model the position of the
particle as

x[k + 1] = x[k] + u[k],

where x is the position of the particle and u is a white noise processes with E{u[i]} =
0 and E{u[i]u[j]}Ruδ(i−j). We assume that we can measure x subject to additive,
zero-mean, Gaussian white noise with covariance 1. Show that the expected value
of the particle as a function of k is given by

E{x[k]} = E{x[0]} +
k−1∑

i=0

E{u[i]} = E{x[0]} =: µx

and the covariance E{(x[k] − µx)2} is given by

E{(x[k] − µx)2} =
k−1∑

i=0

E{u2[i]} = kRu

4.3 Consider a second order system with dynamics
[
Ẋ1

Ẋ2

]
=

[
−a 0
0 −b

] [
X1

X2

]
+

[
1
1

]
v, Y =

[
1 1

] [
X1

X2

]

that is forced by Gaussian white noise with zero mean and variance σ2. Assume
a, b > 0.

(a) Compute the correlation function ρ(τ) for the output of the system. Your answer
should be an explicit formula in terms of a, b and σ.
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(b) Assuming that the input transients have died out, compute the mean and vari-
ance of the output.

4.4 Find a constant matrix A and vectors F and C such that for

Ẋ = AX + FW, Y = CX

the power spectrum of Y is given by

S(ω) =
1 + ω2

(1 − 7ω2)2 + 1

Describe the sense in which your answer is unique.




	1 Trajectory Generation and Tracking
	1.1 Two Degree of Freedom Design
	1.2 Trajectory Tracking and Gain Scheduling
	1.3 Trajectory Generation and Differential Flatness
	1.4 Further Reading

	2 Optimal Control
	2.1 Review: Optimization
	2.2 Optimal Control of Systems
	2.3 Examples
	2.4 Linear Quadratic Regulators
	2.5 Choosing LQR weights
	2.6 Advanced Topics
	2.7 Further Reading

	3 Receding Horizon Control
	3.1 Optimization-Based Control
	3.2 Receding Horizon Control with CLF Terminal Cost
	3.3 Receding Horizon Control Using Differential Flatness
	3.4 Implementation on the Caltech Ducted Fan
	3.5 Further Reading

	4 Stochastic Systems
	4.1 Brief Review of Random Variables
	4.2 Introduction to Random Processes
	4.3 Continuous-Time, Vector-Valued Random Processes
	4.4 Linear Stochastic Systems with Gaussian Noise
	4.5 Random Processes in the Frequency Domain
	4.6 Further Reading

	5 Kalman Filtering
	5.1 Linear Quadratic Estimators
	5.2 Extensions of the Kalman Filter
	5.3 LQG Control
	5.4 Application to a Thrust Vectored Aircraft
	5.5 Further Reading

	6 Sensor Fusion
	6.1 Discrete-Time Stochastic Systems
	6.2 Kalman Filters in Discrete Time (AM08)
	6.3 Predictor-Corrector Form
	6.4 Sensor Fusion
	6.5 Information Filters
	6.6 Additional topics
	6.7 Further Reading


