
Optimization-Based Control

Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

Version v2.2d (31 Jan 2022)

© California Institute of Technology
All rights reserved.

This manuscript is for personal use only and may not be reproduced,
in whole or in part, without written consent from the author.



Chapter 4

Receding Horizon Control

This chapter builds on the previous two chapters and explores the use of online
optimization as a tool for control of nonlinear systems. We begin with a discussion
of the technique of receding horizon control (RHC), which builds on the ideas of
trajectory generation and optimization. We focus on a particular form of receding
horizon control that makes use of a control Lyapunov function as a terminal cost, for
which there are good stability and performance properties, and include a (optional)
proof of stability. Methods for implementing receding horizon control, making
use of numerical optimization possibly combined with di↵erential flatness are also
provided. We conclude the chapter with a detailed design example, in which we
explore some of the computational tradeo↵s in optimization-based control as applied
to a flight control experiment.

Prerequisites. Readers should be familiar with the concepts of trajectory generation
and optimal control as described in Chapters 2 and 3 in this supplement. For the
proof of stability for the receding horizon controller that we present, familiarity with
Lyapunov stability analysis at the level given in FBS2e, Chapter 5 is assumed (but
this material can be skipped if the reader is not familiar with Lyapunov stability
analysis).

The material in this chapter is based on part on joint work with John Hauser, Ali
Jadbabaie, Mark Milam, Nicolas Petit, William Dunbar, and Ryan Franz [MHJ+03].

4.1 Overview

The use of real-time trajectory generation techniques enables a sophisticated ap-
proach to the design of control systems, especially those in which constraints must
be taken into account. The ability to compute feasible trajectories quickly enables
us to make use of online computation of trajectories as an “outer feedback” loop
that can be used to take into account nonlinear dynamics, input constraints, and
more complex descriptions of performance goals.

Figure 4.1, a version of which was shown already in Chapter 2, provides a high
level view of how real-time trajectory generation can be utilized. The dashed line
from the output of the process to the trajectory generation block represents the use

4-1



4-2 CHAPTER 4. RECEDING HORIZON CONTROL

Nonlinear design:
global nonlinearities

state space constraints
input saturation

ud

xd

ref

ufb

Process

P
outputnoise

Feedback

Compensation

Trajectory

Generation

�

Figure 4.1: Two degree-of-freedom controller design for a process P with uncer-
tainty �. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block �, representing unmodeled dynamics, as well as dis-
turbances and noise.

of “on-the-fly” computation of the trajectory based on the current outputs of the
process. This dynamically generated trajectory is then fed to the more traditional
feedback controller. This same type of structure can also be seen in Figure 1.6,
where the trajectory generation “layer” can make use of current measurements
of the environment, as well as an online model of the process and upper level
(supervisory controller) commands for the task to be accomplished.

The approach that we explore in this chapter is to make use of receding horizon
control: a (optimal) feasible trajectory is computed from the current state to the
desired state over a finite time horizon T , used for a short period of time �T < T ,
and then recomputed based on the new system state starting at time t+�T until
time t+T +�T , as shown in Figure 4.2. As in the case of trajectory generation, we
will normally compute the optimal trajectory assuming no process disturbances d,
sensor noise n, or uncertainty �, relying on the feedback controller to compensate
for those e↵ects.

For the techniques that we will consider here, the problem that we solve at each
time step ti is a constrained, optimal trajectory generation problem of the form

u[ti,ti+�T ] =argmin
(x,u)

Z ti+T

ti

L(x, u) d⌧ + V (x(ti + T ))

subject to

x(ti) = current state

ẋ = f(x, u)

gj(x, u)  0, j = 1, . . . , r,

 k(x(ti + T )) = 0, k = 1, . . . , q.

(4.1)



4.1. OVERVIEW 4-3

Figure 4.2: Receding horizon control. Every �T seconds, a trajectory generation
problem is solved over a T second horizon, starting from the current state. In
reality, the system will not follow the predicted path exactly, so that the red
(computed) and blue (actual) trajectories will diverge. We then recompute the
optimal path from the new state at time t + �T , extending our horizon by an
additional �T units of time.

We note that the cost consists of a trajectory cost L(x, u) as well as an end-of-
horizon (terminal) cost V (x(t + T )). In addition, we allow for the possibility of
trajectory constraints on the states and inputs given by a set of functions gj(x, u)
and a set of terminal constraints given by  k(x(t+ T )).

One of the challenges of properly implementing receding horizon control is that
instabilities can result if the problem is not specified correctly. In particular, be-
cause we optimize the system dynamics over a finite horizon T , it can happen that
choosing the optimal short term behavior can lead us away from the long term
solution (see Exercise 4.4 for an example). To address this problem, the terminal
cost V (x(t + T )) and/or the terminal constraints  k(x(t + T )) must have certain
properties to ensure stability (see [MRRS00] for details). In this chapter we focus
on the use of terminal costs since these have certain advantages in terms of the
underlying optimization problem to be solved.

Development and application of receding horizon control (also called model pre-
dictive control, or MPC) originated in process control industries where the processes
being controlled are often su�ciently slow to permit its implementation. However,
the rapid advances in computation over the last several decades have enabled re-
ceding horizon control to be used in many new applications, and they are especially
prevalent in autonomous vehicles, where the trajectory generation layer is partic-
ularly important for achieving safe operation in complex environments. Proper
formulation of the problem to enable rapid computation is still often required, and
the use of di↵erential flatness and other techniques (such as motion primitives) can
be very important.

Finally, we note that it is often the case that the trajectory generation problems
to be solved may have non-unique or non-smooth solutions, and that these can often
be very sensitive to small changes in the inputs to the algorithm. Full implementa-
tion of receding horizon control techniques thus often requires careful attention to
details in how the problems are solved and the use of additional methods to ensure
that good solutions are obtained in specific application scenarios. Despite all of



4-4 CHAPTER 4. RECEDING HORIZON CONTROL

these warnings, receding horizon control is one of the dominant methods used for
control of nonlinear systems and one of the few methods that works in the presence
of input (and state) constraints, leading to its wide popularity.

4.2 Receding Horizon Control with Terminal Cost

One of the earliest techniques for ensuring stability of the closed loop system under
receding horizon control was to impose a terminal constraint on the optimization
through use of the function  (x(t + T )) in equation (4.1). While this technique
can be shown to be sound from a theoretical point of view, it can be very di�cult
to satisfy from a computational point of view, since imposing equality constraints
on the terminal state of a trajectory generation problem can be computationally
expensive. In this section we explore an alternative formulation, making use of an
appropriate terminal cost function.

Stability of Receding Horizon Control using Terminal Costs

We consider the following special case of receding horizon control problem in equa-
tion (4.1):

ẋ = f(x, u), x(0) given, u 2 U ⇢ Rm

u[t,t+�T ] = argmin
(x,u)

Z t+T

t
L(x, u) d⌧ + V (x(t+ T )).

(4.2)

The main di↵erences between equation (4.2) and equation (4.1) are that we only
consider constraints on the input (u 2 U) and we do not impose any terminal
constraints.

Stability of this system is not gauranteed in general, but if we choose the tra-
jectory and terminal cost functions carefully, it is possible to provide stability gau-
rantees.

To illustrate how the choice of the terminal condition can provide stability,
consider the case where we have an infinite horizon optimal control problem. If we
start at state x at time t, we can seek to minimize the “cost to go” function

J(t, x) =

Z 1

t
L(x, u) dt.

If we let J
⇤(x, t) represent the optimal cost to go function, then a natural choice

for the terminal cost is V (x(t+T )) = J
⇤(x(t+T ), T ), since then the optimal finite

and infinite horizon costs are the same:

min

Z 1

t
L(x, u) d⌧ =

Z t+T

t
L(x⇤

, u
⇤) dt+

Z 1

t+T
L(x⇤

, u
⇤) dt

=

Z t+T

t
L(x⇤

, u
⇤) dt+ J

⇤(t+ T, x
⇤)| {z }

V (x⇤(t+T ))

.

Intuitively, if we solve the infinite horizon problem at each update �T and �T is
su�ciently small, then we anticipate that the system trajectory should converge



4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-5

to the optimal trajectory, and hence to the origin (otherwise the cost would not
converge to a finite value, assuming Qx > 0).

Of course, if the optimal value function were available there would be no need
to solve a trajectory optimization problem, since we could just use the gradient of
the cost function to choose the input u. Only in special cases (such as the linear
quadratic regulator problem) can the infinite horizon optimal control problem be
solved in closed form, and we thus seek to find a simpler set of conditions under
which we can gaurantee stability of closed loop, receding horizon controller. The
following theorem summarizes on such set of conditions:

Theorem 4.1 (based on [JYH01]). Consider the receding horizon control problem
in equation (4.2) and suppose that the trajectory cost L(x, u) and terminal cost
V (x(t+ T )) satisfy

min
u2U

✓
@V

@x
f(x, u) + L(x, u)

◆
 0 (4.3)

for all x in a neighborhood of the origin. Then, for every T > 0 and �T 2 (0, T ],
there exist constants M > 0 and c > 0 such that the resulting receding horizon
trajectories converge to 0 exponentially fast:

kx(t)k  Me
�ct

kx(0)k.

Before providing more insights into when these conditions can be satisfied, it is
useful to take think about the implications of Theorem 4.1. In particular, it provides
us a method for defining a stabilizing feedback controller for a fully nonlinear system
in the presence of input constraints. This latter feature is particularly important,
since it turns out that input constraints are ubiquitious in control systems and must
other methods, including LQR and gain scheduling, are not able to take them into
account in a systematic and rigorous way. It is because of this ability to handle
constraints that receding horizon control is so widely used.

Control Lyapunov Functions �
To provide insight into the conditions in Theorem 4.1, we need to define the concept
of a control Lyapunov function. The material in this subsection is rather advanced
in nature and can be skipped on first reading. Readers should be familiar with
(regular) Lyapunov stability analysis at the level given in FBS2e, Chapter 5 prior
to tackling the concepts in this section.

Control Lyapunov functions are an extension of standard Lyapunov functions
and were originally introduced by Sontag [Son83]. They allow constructive design
of nonlinear controllers and the Lyapunov function that proves their stability. We
give a brief description of the basic idea of control Lyapunov functions here; a more
complete treatment is given in [KKK95].

Consider a nonlinear control system

ẋ = f(x, u), x 2 Rn
, u 2 Rm

, (4.4)

and recall that a function V (x) is a positive definite function if V (x) � 0 for all
x 2 Rn and V (x) = 0 if and only if x = 0. A function V (x) is locally positive definite
if it is positive definite on a ball of radius ✏ around the origin, B✏(0) = {x : kxk < ✏}.



4-6 CHAPTER 4. RECEDING HORIZON CONTROL

Definition 4.1 (Control Lyapunov Function). A locally positive function V : Rn
!

R+ is called a control Lyapunov function (CLF) for a control system (4.4) if

inf
u2Rm

✓
@V

@x
f(x, u)

◆
< 0 for all x 6= 0.

Intuitively, a control Lyapunov function is a positive definite function for which
it is always possible to choose an input u that makes the function decrease if we
apply that input to the control system (4.4). Since the function V is positive
definite, if we always choose a u that makes it decrease then eventually the value
of the Lyapunov function must converge to 0 and hence the state x(t) must also
converge to zero. It turns out that this property is enough to show that the system
is stabilizable using continuous (though not necessarily linear) feedback laws of the
form u = �k(x).

In general, it is di�cult to find a control Lyapunov function for a given system.
However, for many classes of systems, there are specialized methods that can be
used. One of the simplest is to use the Jacobian linearization of the system around
the desired equilibrium point and generate a control Lyapunov function by solving
an LQR problem. To see how this works, we consider first the case of a linear
system with quadratic cost function.

As described in Chapter 3, the problem of minimizing the quadratic performance
index

J =

Z 1

0
(xT(t)Qxx(t) + u

T(t)Quu(t)) dt subject to
ẋ = Ax+Bu,

x(0) = x0,
(4.5)

results in finding the positive definite solution of the following Riccati equation:

A
T
P + PA� PBR

�1
B

T
P +Q = 0. (4.6)

The optimal control action is given by

u
⇤ = �R

�1
B

T
Px

and V = x
T
Px is a control Lyapunov function for the system since it can be shown

(with a bit of algebra) that

min
u

@V

@x
f(x, u) 

@V

@x
f(x, u⇤) = �x

T(Qx + PBQ
�1
u B

T
P )x  0.

In the case of the nonlinear system ẋ = f(x, u), A and B are taken as

A =
@f(x, u)

@x

����
(0,0)

B =
@f(x, u)

@u

����
(0,0)

where the pairs (A,B) and (Q
1
2
x , A) are assumed to be stabilizable and detectable

respectively. The control Lyapunov function V (x) = x
T
Px is valid in a region

around the equilibrium (0, 0), as shown in Exercise 4.1.
More complicated methods for finding control Lyapunov functions are often

required and many techniques have been developed. An overview of some of these
methods can be found in [Jad01].



4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-7

Solving Receding Horizon Optimal Control Problems

We now return to the problem of implementing the receeding horizon controller in
equation (4.3). As illustrated in Figure 4.2, at every time instant ti we compute
the optimal trajectory that minimizes the cost function

J(x, t) =

Z t+T

t
L(x, u) d⌧ + V (x(t+ T ))

subject to the satisfying the equations of motion with constrained inputs:

ẋ = f(x, u), u 2 U ⇢ Rm
.

This is precisely the optimal control problem that we considered in Chapter 3 and
so the numerical methods used in that chapter can be utilized.

One conceptually simple way to implement the optimization required to solve
this optimal control problem is to parameterize the inputs of the system u, either by
setting the values of u at discrete time points or by choosing a set of basis functions
for u and searching over linear combinations of the basis functions. These methods
are often referred to as “shooting” methods, since they integrate (“shoot”) the
equations forward in time and then attempt to compute the changes in parameter
values to allow the system to minimize the cost and satisfy any constraints. While
crude, this approach does work for simple systems and can be used to gain insights
into the properties of a receding horizon controller based on simulations (where
real-time computation is not needed).

Example 4.1 Double integrator with bounded input
To illustrate the implementation of a receding horizon controller, we consider a
linear system corresponding to a double integrator with bounded input:

ẋ =


0 1
0 0

�
x+


0
1

�
clip(u) where clip(u) =

8
><

>:

�1 u < �1,

u �1  u  1,

1 u > 1.

We implement a model predictive controller by choosing

Qx =


1 0
0 0

�
, Qu =

⇥
1
⇤
, P1 =


0.1 0
0 0.1

�
.

Figure 4.3 shows the results of this computation, with the inputs plotted for the
planning horizon, showing that the final computed input di↵ers from the planned
inputs over the horizon. (The code for computing these solutions is given in Sec-
tion 4.3.) r

Implementing receding horizon control requires care in implementing the opti-
mization so that it can be done in real-time. For example, for a typical autonomous
vehicle (land, air, or sea), a reasonable optimization horizon might be the next 10-
60 s and a typical update period might be as short as 10-100 ms. There are a
variety of methods for speeding up computations, as well as taking into account
finite computation times. These are described in more detail in Section 4.6, where
we describe a specific implementation of receding horizon control on a flight control
testbed.



4-8 CHAPTER 4. RECEDING HORIZON CONTROL

Figure 4.3: Receding horizon controller for a double integrator. Dashed lines
show the planned trajectory over each horizon; solid lines show the closed loop
trajectory. The horizontal dashed line on each plot shows the lower limit of the
input.

Numerical Solution Using Collocation�
There are many more advanced methods for computing the optimal trajectories
required for receding horizon control. One such class of methods are “collocation”
methods, which we describe briefly in this section. The material in this section is
not required on first reading, and is primarily useful in the context of understanding
the approaches described in Section 4.4. The material in this section is based on
the work of Mark Milam and is drawn from [MHJ+03].

A relatively e�cient numerical approach to solving the optimal control problem
is the direct collocation method outlined in Hargraves and Paris [HP87]. The idea
behind this approach is to transform the optimal control problem into a nonlinear
programming problem. This is accomplished by discretizing time into a grid of
N � 1 intervals

t0 = t1 < t2 < . . . < tN = tf

and approximating the state x and the control input u as piecewise polynomials
x̃ and ũ, respectively. Typically a cubic polynomial is chosen for the states and a
linear polynomial for the control on each interval. Collocation is then used at the
midpoint of each interval to satisfy equation (4.12). Let x̃(x(t1), . . . , x(tN )) and
ũ(u(t1), . . . , u(tN )) denote the approximations to x and u, respectively, depending
on (x(t1), . . . , x(tN )) 2 RnN and (u(t1), . . . , u(tN )) 2 RN corresponding to the
value of x and u at the grid points. Then we solves the following finite dimension
approximation of the original control problem (4.1):

min
y2RM

F (y) = J(x̃(y), ũ(y))

subject to

8
>><

>>:

˙̃x� f(x̃(y)) + g(x̃(y))ũ(y) = 0,

lb  c(x̃(y), ũ(y))  ub,

8t =
tj + tj+1

2
j = 1, . . . , N � 1

(4.7)

where y = (x(t1), u(t1), . . . , x(tN ), u(tN )), and M = dim y = (n+ 1)N .
Seywald [Sey94] suggested an improvement to the previous method (see also [Bry99,

p. 362]). Following this work, we first solve a subset of system dynamics in equa-



4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-9

tion (4.1) for the the control in terms of combinations of the state and its time
derivative. Then we substitute the control into the remaining system dynamics
and constraints. Next all the time derivatives ẋi are approximated by the finite
di↵erence approximations

˙̄x(ti) =
x(ti+1)� x(ti)

ti+1 � ti

to get
p( ˙̄x(ti), x(ti)) = 0
q( ˙̄x(ti), x(ti))  0

�
i = 0, . . . , N � 1.

The optimal control problem is turned into

min
y2RM

F (y) subject to

(
p( ˙̄x(ti), x(ti)) = 0

q( ˙̄x(ti), x(ti))  0
(4.8)

where y = (x(t1), . . . , x(tN )), and M = dim y = nN . As with the Hargraves and
Paris method, this parameterization of the optimal control problem (4.1) can be
solved using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimensionality
of the Hargraves and Paris method, where both the states and the input are the
unknowns. This induces substantial improvement in numerical implementation.

Proof of Stability (with J. E. Hauser and A. Jadbabaie) �
In this final (optional) subsection, we return to Theorem 4.1 and provide a math-
ematically rigorous version of the theorem and a sketch of its proof. In order to
show the stability of the proposed approach, and give full conditions on the terminal
cost V (x(T )), we briefly review the problem of optimal control over a finite time
horizon as presented in Chapter 3 to establish some notation and set some more
specific conditions required for receding horizon control. This material is based
on [MHJ+03].

Given an initial state x0 and a control trajectory u(·) for a nonlinear control
system ẋ = f(x, u), let x

u(·;x0) represent the state trajectory. We can write this
solution as a continuous curve

x
u(t;x0) = x0 +

Z t

0
f(xu(⌧ ;x0), u(⌧)) d⌧

for t � 0. We require that the trajectories of the system satisfy an a priori bound

kx(t)k  �(x, T, ku(·)k1) < 1, t 2 [0, T ],

where � is continuous in all variables and monotone increasing in T and ku(·)k1 =
ku(·)kL1(0,T ). Most models of physical systems will satisfy a bound of this type.

The performance of the system will be measured by an integral cost L : Rn
⇥

Rm
! R. We require that L be twice di↵erentiable (C2) and fully penalize both

state and control according to

L(x, u) � cq(kxk
2 + kuk

2), x 2 Rn
, u 2 Rm



4-10 CHAPTER 4. RECEDING HORIZON CONTROL

for some cq > 0 and L(0, 0) = 0. It follows that the quadratic approximation of L
at the origin is positive definite,

@L

@x

����
(0,0)

� cqI > 0.

To ensure that the solutions of the optimization problems of interest are well
behaved, we impose some convexity conditions. We require the set f(x,Rm) ⇢ Rn

to be convex for each x 2 Rn. Letting � 2 Rn represent the co-state, we also require
that the pre-Hamiltonian function �

T
f(x, u) + L(x, u) =: K(x, u,�) be strictly

convex for each (x,�) 2 Rn
⇥ Rn and that there is a C

2 function ū
⇤ : Rn

⇥ Rn
!

Rm providing the global minimum of K(x, u,�). The Hamiltonian H(x,�) :=
K(x, ū⇤(x,�),�) is then C

2, ensuring that extremal state, co-state, and control
trajectories will all be su�ciently smooth (C1 or better). Note that these conditions
are automatically satisfied for control a�ne f and quadratic L.

The cost of applying a control u(·) from an initial state x over the infinite time
interval [0,1) is given by

J1(x, u(·)) =

Z 1

0
L(xu(⌧ ;x), u(⌧)) d⌧.

The optimal cost (from x) is given by

J
⇤
1(x) = inf

u(·)
J1(x, u(·)),

where the control function u(·) belongs to some reasonable class of admissible con-
trols (e.g., piecewise continuous). The function J

⇤
1(x) is often called the optimal

value function for the infinite horizon optimal control problem. For the class of f
and L considered, it can be verified that J⇤

1(·) is a positive definite C
2 function in

a neighborhood of the origin [HO01].
For practical purposes, we are interested in finite horizon approximations of the

infinite horizon optimization problem. In particular, let V (·) be a nonnegative C
2

function with V (0) = 0 and define the finite horizon cost (from x using u(·)) to be

JT (x, u(·)) =

Z T

0
L(xu(⌧ ;x), u(⌧)) d⌧ + V (xu(T ;x)), (4.9)

and denote the optimal cost (from x) as

J
⇤
T (x) = inf

u(·)
JT (x, u(·)) .

As in the infinite horizon case, one can show, by geometric means, that J
⇤
T (·) is

locally smooth (C2). Other properties will depend on the choice of V and T .
Let �1 denote the domain of J⇤

1(·) (the subset of Rn on which J
⇤
1 is finite).

It is not too di�cult to show that the cost functions J
⇤
1(·) and J

⇤
T (·), T � 0, are

continuous functions on �1 [Jad01]. For simplicity, we will allow J
⇤
1(·) to take

values in the extended real line so that, for instance, J⇤
1(x) = +1 means that

there is no control taking x to the origin.



4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-11

We will assume that f and L are such that the minimum value of the cost
functions J

⇤
1(x), J⇤

T (x), T � 0, is attained for each (suitable) x. That is, given x

and T > 0 (including T = 1 when x 2 �1), there is a (C1 in t) optimal trajectory
(x⇤

T (t;x), u
⇤
T (t;x)), t 2 [0, T ], such that JT (x, u⇤

T (·;x)) = J
⇤
T (x). For instance,

if f is such that its trajectories can be bounded on finite intervals as a function
of its input size, e.g., there is a continuous function � such that kx

u(t;x0)k 

�(kx0k, ku(·)kL1[0,t]), then (together with the conditions above) there will be a
minimizing control (cf. [LM67]). Many such conditions may be used to good e↵ect;
see [Jad01] for a more complete discussion.

It is easy to see that J⇤
1(·) is proper on its domain so that the sub-level sets

�1
r := {x 2 �1 : J⇤

1(x)  r
2
}

are compact and path connected and moreover �1 =
S

r�0 �
1
r . Note also that �1

may be a proper subset of Rn since there may be states that cannot be driven to
the origin. We use r

2 (rather than r) here to reflect the fact that our integral cost
is quadratically bounded from below. We refer to sub-level sets of J⇤

T (·) and V (·)
using

�T
r := path connected component of {x 2 �1 : J⇤

T (x)  r
2
} containing 0,

and

⌦r := path connected component of {x 2 Rn : V (x)  r
2
} containing 0.

These results provide the technical framework needed for receding horizon con-
trol. The following restated version of Theorem 4.1 provides a more rigorous de-
scription of the results of this section.

Theorem 1’. [JYH01] Consider the receding horizon control problem in equa-
tion (4.2) and suppose that the terminal cost V (·) is a control Lyapunov function
such that

min
u2Rm

(V̇ + L)(x, u)  0 (4.10)

for each x 2 ⌦rv for some rv > 0. Then, for every T > 0 and � 2 (0, T ], the
resulting receding horizon trajectories go to zero exponentially fast. For each T > 0,
there is a constant r̄(T ) � rv such that �T

r̄(T ) is contained in the region of attraction

of RH(T, �). Moreover, given any compact subset ⇤ of �1, there is a T
⇤ such that

⇤ ⇢ �T
r̄(T ) for all T � T

⇤.

Theorem 1’ shows that for any horizon length T > 0 and any sampling time
� 2 (0, T ], the receding horizon scheme is exponentially stabilizing over the set �T

rv .
For a given T , the region of attraction estimate is enlarged by increasing r beyond
rv to r̄(T ) according to the requirement that V (x⇤

T (T ;x))  r
2
v on that set. An

important feature of the above result is that, for operations with the set �T
r̄(T ),

there is no need to impose stability ensuring constraints which would likely make
the online optimizations more di�cult and time consuming to solve.

Sketch of proof. Let xu(⌧ ;x) represent the state trajectory at time ⌧ starting from
initial state x and applying a control trajectory u(·), and let (x⇤

T , u
⇤
T )(·, x) represent



4-12 CHAPTER 4. RECEDING HORIZON CONTROL

the optimal trajectory of the finite horizon, optimal control problem with horizon
T . Assume that x⇤

T (T ;x) 2 ⌦r for some r > 0. Then for any � 2 [0, T ] we want to
show that the optimal cost x⇤

T (�;x) satisfies

J
⇤
T

�
x
⇤
T (�;x)

�
 J

⇤
T (x)�

Z �

0
q
�
L(x⇤

T (⌧ ;x), u
⇤
T (⌧ ;x)) d⌧. (4.11)

This expression says that solution to the finite-horizon, optimal control problem
starting at time t = � has cost that is less than the cost of the solution from time
t = 0, with the initial portion of the cost subtracted o↵.. In other words, we are
closer to our solution by a finite amount at each iteration of the algorithm. It follows
using Lyapunov analysis that we must converge to the zero cost solution and hence
our trajectory converges to the desired terminal state (given by the minimum of
the cost function).

To show equation (4.11) holds, consider a trajectory in which we apply the op-
timal control for the first T seconds and then apply a closed loop controller using a
stabilizing feedback u = �k(x) for another T seconds. (The stabilizing compensator
is guaranteed to exist since V is a control Lyapunov function.) Let (x⇤

T , u
⇤
T )(t;x),

t 2 [0, T ] represent the optimal control and (xk
, u

k)(t�T ;x⇤
T (T ;x)), t 2 [T, 2T ] rep-

resent the control with u = �k(x) applied where k satisfies (V̇ +L)(x,�k(x))  0.
Finally, let (x̃(t), ũ(t)), t 2 [0, 2T ] represent the trajectory obtained by concatenat-
ing the optimal trajectory (x⇤

T , u
⇤
T ) with the control Lyapunov function trajectory

(xk
, u

k).

We now proceed to show that the inequality (4.11) holds. The cost of using ũ(·)
for the first T seconds starting from the initial state x

⇤
T (�;x)), � 2 [0, , T ] is given

by

JT (x
⇤
T (�;x), ũ(·)) =

Z T+�

�
L(x̃(⌧), ũ(⌧)) d⌧ + V (x̃(T + �))

= J
⇤
T (x)�

Z �

0
L(x⇤

T (⌧ ;x), u
⇤
T (⌧ ;x)) d⌧ � V (x⇤

T (T ;x))

+

Z T+�

T
L(x̃(⌧), ũ(⌧)) d⌧ + V (x̃(T + �)).

Note that the second line is simply a rewriting of the integral in terms of the optimal
cost J⇤

T with the necessary additions and subtractions of the additional portions of
the cost for the interval [�, T + �]. We can how use the bound

L(x̃(⌧), ũ(⌧))  V̇ (x̃(⌧), ũ(⌧), ⌧ 2 [T, 2T ],

which follows from the definition of the control Lyapunov function V and stabilizing



4.3. IMPLEMENTATION IN PYTHON 4-13

controller k(x). This allows us to write

JT (x
⇤
T (�;x), ũ(·))  J

⇤
T (x)�

Z �

0
L(x⇤

T (⌧ ;x), u
⇤
T (⌧ ;x)) d⌧ � V (x⇤

T (T ;x))

�

Z T+�

T
V̇ (x̃(⌧), ũ(⌧)) d⌧ + V (x̃(T + �))

= J
⇤
T (x)�

Z �

0
L(x⇤

T (⌧ ;x), u
⇤
T (⌧ ;x)) d⌧ � V (x⇤

T (T ;x))

� V (x̃(⌧))
���
T+�

T
+ V (x̃(T + �))

= J
⇤
T (x)�

Z �

0
L(x⇤

T (⌧ ;x), u
⇤
T (⌧ ;x)).

Finally, using the optimality of u⇤
T we have that J⇤

T (x
⇤
T (�;x))  JT (x⇤

T (�;x), ũ(·))
and we obtain equation (4.11).

An important benefit of receding horizon control is its ability to handle state and
control constraints. While the above theorem provides stability guarantees when
there are no constraints present, it can be modified to include constraints on states
and controls as well. In order to ensure stability when state and control constraints
are present, the terminal cost V (·) should be a local control Lyapunov function
satisfying minu2U V̇ + L(x, u)  0 where U is the set of controls where the control
constraints are satisfied. Moreover, one should also require that the resulting state
trajectory x

CLF(·) 2 X , where X is the set of states where the constraints are
satisfied. (Both X and U are assumed to be compact with origin in their interior).
Of course, the set ⌦rv will end up being smaller than before, resulting in a decrease
in the size of the guaranteed region of operation (see [MRRS00] for more details).

4.3 Implementation in Python

The optimal control module of the python-control package allows implementation
of receding horizon control by solving an optimization problem based on the current
state of a nonlinear system. We begin by defining an optimal control problem using
the OptimalControlProblem class:

ocp = obc.OptimalControlProblem(
sys, horizon, cost, constraints, terminal_cost)

To describe an optimal control problem we need an input/output system, a time
horizon, a cost function, and (optionally) a set of constraints on the state and/or
input, either along the trajectory (via the trajectory_constraint keyword) or at the
terminal time (via the terminal_constraint keyword). The OptimalControlProblem

class sets up an optimization over the inputs at each point in time, using the integral
and terminal costs as well as the trajectory and terminal constraints.

Once an optimal control problem has been defined, the compute_trajectory

method can be used to solve for an optimal trajectory from a given state x:

res = ocp.compute_trajectory(x)
t, u = res.time, res.inputs



4-14 CHAPTER 4. RECEDING HORIZON CONTROL

This is the method that the opt.solve_ocp function uses to compute an optimal
trajectory. In the context of model predictive control, we would repeatedly call
compute_trajectory from the state at each update time ti and then apply the input
u for the next �T seconds.

For discrete time systems, the create_mpc_iosystem method can be used to cre-
ate an input/output system that implements the control law:

ctrl = ocp.create_mpc_iosystem()

The resulting object takes as input the current state of the system as returns as
output the commanded input from the MPC controller.

For continuous time system, receding horizon control must be implemented
“manually”, by computing the optimal input at time instant ti and then simulating
the system over the interval [ti, ti+�T ]. This is illustrated in the following example.

Example 4.2 Double integrator with bounded input
We the consider linear system corresponding to a double integrator with bounded
input described in Example 4.1. The equations of motion are given by

ẋ =


0 1
0 0

�
x+


0
1

�
clip(u) where clip(u) =

8
><

>:

�1 u < �1,

u �1  u  1,

1 u > 1.

This function can be created with the Python code

def doubleint_update(t, x, u, params):
return np.array([x[1], np.clip(u, -1, 1)])

proc = ct.NonlinearIOSystem(
doubleint_update, None, name="double integrator",
inputs = [’u’], outputs=[’x[0]’, ’x[1]’], states=2, dt=True)

We now define an optimal control problem with quadratic costs and input con-
straints:

# Cost function
Qx = np.diag([1, 0]) # state cost
Qu = np.diag([1]) # input cost
P1 = np.diag([0.1, 0.1]) # terminal cost

# Constraints
traj_constraints = opt.input_range_constraint(proc, -1, 1)

# Horizon
T = 5
timepts = np.linspace(0, T, 5, endpoint=True)

# Set up the optimal control problem
ocp = opt.OptimalControlProblem(

proc, timepts,
opt.quadratic_cost(proc, Qx, Qu),
trajectory_constraints=traj_constraints,
terminal_cost=opt.quadratic_cost(proc, P1, None)

)



4.4. RECEDING HORIZON CONTROL USING DIFFERENTIAL FLATNESS4-15

This optimcal control problem contains all of the information required to compute
the optimal input from a state x over the specified time horizon.

To use this optimal control problem in a receding horizon fashion, we manually
compute the trajectory at each time point:

x = X0 # initial condition (updated as we go)
Tf = 10 # total simulation time
for t in np.linspace(0, Tf-T, 6, endpoint=True):

# Compute the optimal trajectory over the horizon
res = ocp.compute_trajectory(x, return_states=True)

# Simulate the system for the update period
time = np.linspace(0, res.time[1], 20)
soln = ct.input_output_response(proc, time, inputs, x)

# Update the state for the next iteration
x = soln.states[:, -1]

Figure 4.3 in the previous section shows the results of this computation, with the
inputs plotted for the planning horizon, showing that the final computed input
di↵ers from the planned inputs over the horizon. r

4.4 Receding Horizon Control Using Di↵erential
Flatness

For systems that are di↵erentially flat, it is possible to use the flatness-based struc-
ture of the system to implement receeding horizon control. In this section we
demonstrate how to use di↵erential flatness to find fast numerical algorithms for
solving the optimal control problems required for the receding horizon control re-
sults of the previous section.

We consider the a�ne nonlinear control system

ẋ = f(x) + g(x)u, (4.12)

where all vector fields and functions are smooth. For simplicity, we focus on the
single input case, u 2 R. We wish to find a trajectory of equation (4.12) that
minimizes the performance index (4.9), subject to a vector of initial, final, and
trajectory constraints

lb0   0(x(t0), u(t0))  ub0,

lbf   f(x(tf), u(tf))  ubf,

lbt  S(x, u)  ubt,

(4.13)

respectively. For conciseness, we will refer to this optimal control problem as

min
(x,u)

J(x, u) subject to

(
ẋ = f(x) + g(x)u,

lb  c(x, u)  ub.
(4.14)

The collocation results of Seywald give a constrained optimization problem in
which we wish to minimize a cost functional subject to n� 1 equality constraints,



4-16 CHAPTER 4. RECEDING HORIZON CONTROL

zj(to)

knotpoint

mj at knotpoints defines smoothness

collocation point

kj � 1 degree polynomial between knotpoints

zj(t)

zj(tf )

Figure 4.4: Spline representation of a variable.

corresponding to the system dynamics, at each time instant. In fact, it is usually
possible to reduce the dimension of the problem further. Given an output, it is
generally possible to parameterize the control and a part of the state in terms of
this output and its time derivatives. In contrast to the previous approach, one must
use more than one derivative of this output for this purpose.

When the whole state and the input can be parameterized with one output, the
system is di↵erentially flat, as described in Section 2.3. When the parameteriza-
tion is only partial, the dimension of the subspace spanned by the output and its
derivatives is given by r the relative degree of this output [Isi89]. In this case, it is
possible to write the system dynamics as

x = ↵(z, ż, . . . , z(q))

u = �(z, ż, . . . , z(q))

�(z, ż, . . . , zn�r) = 0

(4.15)

where z 2 Rp, p > m represents a set of outputs that parameterize the trajectory
and � : Rn

⇥Rm represents n�r remaining di↵erential constraints on the output. In
the case that the system is flat, r = n and we eliminate these di↵erential constraints.

Unlike the approach of Seywald, it is not realistic to use finite di↵erence ap-
proximations as soon as r > 2. In this context, it is convenient to represent z using
B-splines. B-splines are chosen as basis functions because of their ease of enforcing
continuity across knot points and ease of computing their derivatives. A pictorial
representation of such an approximation is given in Figure 4.4. Doing so we get

zj =

pjX

i=1

Bi,kj (t)C
j
i , pj = lj(kj �mj) +mj

where Bi,kj (t) is the B-spline basis function defined in [dB78] for the output zj with

order kj , C
j
i are the coe�cients of the B-spline, lj is the number of knot intervals,

and mj is number of smoothness conditions at the knots. The set (z1, z2, . . . , zn�r)
is thus represented by M =

P
j2{1,r+1,...,n} pj coe�cients.

In general, w collocation points are chosen uniformly over the time interval [to, tf]
(though optimal knots placements or Gaussian points may also be considered).
Both dynamics and constraints will be enforced at the collocation points. The



4.5. CHOOSING COST FUNCTIONS 4-17

Nonlinearities

Cost Function

Linearized Model

Linear

Design

Linear Controller

Linear SystemNonlinear System

with Constraints

Model Predictive

Control

Constraints and

Figure 4.5: Optimization-based control approach.

problem can be stated as the following nonlinear programming form:

min
y2RM

F (y) subject to

(
�(z(y), ż(y), . . . , z(n�r)(y)) = 0,

lb  c(y)  ub,
(4.16)

where

y = (C1
1 , . . . , C

1
p1
, C

r+1
1 , . . . , C

r+1
pr+1

, . . . , C
n
1 , . . . , C

n
pn
).

The coe�cients of the B-spline basis functions can be found using nonlinear pro-
gramming.

A software package called Nonlinear Trajectory Generation (NTG) has been
written to solve optimal control problems in the manner described above (see [MMM00]
for details). The sequential quadratic programming package NPSOL by [GMSW] is
used as the nonlinear programming solver in NTG. When specifying a problem to
NTG, the user is required to state the problem in terms of some choice of outputs
and its derivatives. The user is also required to specify the regularity of the vari-
ables, the placement of the knot points, the order and regularity of the B-splines,
and the collocation points for each output.

4.5 Choosing Cost Functions

The receding horizon control methodology is a very powerful tool for design of feed-
back controllers for constrained, nonlinear control systems. While the controllers
that it produces are gauranteed to be stable under appropriate conditions, the
choice of cost functions is left to the designer and can often require substantial trial
and error. In this section we describe some tools for helping obtain cost functions
based on insights from linear systems theory.

Design approach

The basic philosophy that we propose is illustrated in Figure 4.5. We begin with



4-18 CHAPTER 4. RECEDING HORIZON CONTROL

a nonlinear system, including a description of the constraint set. We linearize
this system about a representative equilibrium point and perform a linear control
design using standard control design tools. Such a design can provide provably
robust performance around the equilibrium point and, more importantly, allows the
designer to meet a wide variety of formal and informal performance specifications
through experience and the use of sophisticated linear design tools.

The resulting linear control law then serves as a specification of the desired
control performance for the entire nonlinear system. We convert the control law
specification into a receding horizon control formulation, chosen such that for the
linearized system, the receding horizon controller gives comparable performance.
However, because of its use of optimization tools that can handle nonlinearities
and constraints, the receding horizon controller is able to provide the desired per-
formance over a much larger operating envelope than the controller design based
just on the linearization. Furthermore, by choosing cost formulations that have
certain properties, we can provide proofs of stability for the full nonlinear system
and, in some cases, the constrained system.

The advantage of the proposed approach is that it exploits the power of humans
in designing sophisticated control laws in the absence of constraints with the power
of computers to rapidly compute trajectories that optimize a given cost function in
the presence of constraints. New advances in online trajectory generation serve as
an enabler for this approach and their demonstration on representative flight control
experiments shows their viability [MFHM05]. This approach can be extended to
existing nonlinear paradigms as well, as we describe in more detail below.

An advantage of optimization-based approaches is that they allow the potential
for online customization of the controller. By updating the model that the opti-
mization uses to reflect the current knowledge of the system characteristics, the
controller can take into account changes in parameters values or damage to sensors
or actuators. In addition, environmental models that include dynamic constraints
can be included, allowing the controller to generate trajectories that satisfy complex
operating conditions. These modifications allow for many state- and environment-
dependent uncertainties to including the receding horizon feedback loop, providing
potential robustness with respect to those uncertainties.

A number of approaches in receding horizon control employ the use of termi-
nal state equality or inequality constraints, often together with a terminal cost,
to ensure closed loop stability. In Primbs et al. [PND99], aspects of a stability-
guaranteeing, global control Lyapunov function (CLF) were used, via state and
control constraints, to develop a stabilizing receding horizon scheme. Many of the
nice characteristics of the control Lyapunov function controller together with better
cost performance were realized. Unfortunately, a global control Lyapunov function
is rarely available and often not possible.

Motivated by the di�culties in solving constrained optimal control problems,
researchers have developed an alternative receding horizon control strategy for the
stabilization of nonlinear systems [JYH01]. In this approach, closed loop stability is
ensured through the use of a terminal cost consisting of a control Lyapunov function
that is an incremental upper bound on the optimal cost to go. This terminal
cost eliminates the need for terminal constraints in the optimization and gives a
dramatic speed-up in computation. Also, questions of existence and regularity of
optimal solutions (very important for online optimization) can be dealt with in a



4.5. CHOOSING COST FUNCTIONS 4-19

rather straightforward manner.

Inverse Optimality

The philosophy presented here relies on the synthesis of an optimal control problem
from specifications that are embedded in an externally generated controller design.
This controller is typically designed by standard classical control techniques for
a nominal process, absent constraints. In this framework, the controller’s per-
formance, stability and robustness specifications are translated into an equivalent
optimal control problem and implemented in a receding horizon fashion.

One central question that must be addressed when considering the usefulness
of this philosophy is: Given a control law, how does one find an equivalent optimal
control formulation? The paper by Kalman [Kal64] lays a solid foundation for this
class of problems, known as inverse optimality. In this paper, Kalman considers the
class of linear time-invariant (LTI) processes with full-state feedback and a single
input variable, with an associated cost function that is quadratic in the input and
state variables. These assumptions set up the well-known linear quadratic regulator
(LQR) problem, by now a staple of optimal control theory.

In Kalman’s paper, the mathematical framework behind the LQR problem is
laid out, and necessary and su�cient algebraic criteria for optimality are presented
in terms of the algebraic Riccati equation, as well as in terms of a condition on the
return di↵erence of the feedback loop. In terms of the LQR problem, the task of
synthesizing the optimal control problem comes down to finding the integrated cost
weights Qx and Qu given only the dynamical description of the process represented
by matrices A and B and of the feedback controller represented by K. Kalman
delivers a particularly elegant frequency characterization of this map [Kal64], which
we briefly summarize here.

We consider a linear system

ẋ = Ax+Bu x 2 Rn
, u 2 Rm (4.17)

with state x and input u. We consider only the single input, single output case for
now (m = 1). Given a control law

u = �Kx

we wish to find a cost functional of the form

J =

Z T

0
x
T
Qxx+ u

T
Quu dt+ x

T(T )PTx(T ) (4.18)

where Qx 2 Rn⇥n and Qu 2 Rm⇥m define the integrated cost, PT 2 Rn⇥n is the
terminal cost, and T is the time horizon. Our goal is to find PT > 0, Qx > 0,
Qu > 0, and T > 0 such that the resulting optimal control law is equivalent to
u = Kx.

The optimal control law for the quadratic cost function (4.18) is given by

u = �R
�1

B
T
P (t),

where P (t) is the solution to the Riccati ordinary di↵erential equation

� Ṗ = A
T
P + PA� PBR

�1
B

T
P +Q (4.19)



4-20 CHAPTER 4. RECEDING HORIZON CONTROL

with terminal condition P (T ) = PT . In order for this to give a control law of the
form u = �Kx for a constant matrix K, we must find PT , Qx, and Qu that give
a constant solution to the Riccati equation (4.19) and satisfy R

�1
B

T
P = K. It

follows that PT , Qx and Qu should satisfy

A
T
PT + PTA� PTBQ

�1
u B

T
PT +Q = 0

�Q
�1
u B

T
PT = K.

(4.20)

We note that the first equation is simply the normal algebraic Riccati equation of
optimal control, but with PT , Q, and R yet to be chosen. The second equation
places additional constraints on R and PT .

Equation (4.20) is exactly the same equation that one would obtain if we had
considered an infinite time horizon problem, since the given control was constant
and hence P (t) was forced to be constant. This infinite horizon problem is pre-
cisely the one that Kalman considered in 1964, and hence his results apply directly.
Namely, in the single-input single-output case, we can always find a solution to the
coupled equations (4.20) under standard conditions on reachability and observabil-
ity [Kal64]. The equations can be simplified by substituting the second relation
into the first to obtain

A
T
PT + PTA�K

T
RK +Q = 0.

This equation is linear in the unknowns and can be solved directly (remembering
that PT , Qx and Qu are required to be positive definite).

The implication of these results is that any state feedback control law satisfy-
ing these assumptions can be realized as the solution to an appropriately defined
receding horizon control law. Thus, we can implement the design framework sum-
marized in Figure 4.5 for the case where our (linear) control design results in a
state feedback controller.

The above results can be generalized to nonlinear systems, in which one takes a
nonlinear control system and attempts to find a cost function such that the given
controller is the optimal control with respect to that cost.

The history of inverse optimal control for nonlinear systems goes back to the
early work of Moylan and Anderson [MA73]. More recently, Sepulchre et al. [SJK97]
showed that a nonlinear state feedback obtained by Sontag’s formula from a control
Lyapunov function (CLF) is inverse optimal. The connections of this inverse opti-
mality result to passivity and robustness properties of the optimal state feedback
are discussed in Jankovic et al. [JSK99]. Most results on inverse optimality do not
consider the constraints on control or state. However, the results on the uncon-
strained inverse optimality justify the use of a more general nonlinear loss function
in the integrated cost of a finite horizon performance index combined with a real-
time optimization-based control approach that takes the constraints into account.

4.6 Implementation on the Caltech Ducted Fan
(with M. Milam and N. Petit)

To demonstrate the use of the techniques described in the previous section, we
present an implementation of optimization-based control on the Caltech Ducted



4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-21

Figure 4.6: Caltech ducted fan.

Fan, a real-time, flight control experiment that mimics the longitudinal dynamics
of an aircraft. The experiment is show in Figure 4.6. The work in this section is
based on the work of Mark Milam and Ryan Franz [Mil03, MFHM05] and is drawn
from [MHJ+03].

Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research and devel-
opment of nonlinear flight guidance and control techniques for Uninhabited Combat
Aerial Vehicles (UCAVs). The fan is a scaled model of the longitudinal axis of a
flight vehicle and flight test results validate that the dynamics replicate qualities of
actual flight vehicles [MM99].

The ducted fan has three degrees of freedom: the boom holding the ducted fan
is allowed to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting
horizontal and vertical displacements. A counterweight is connected to the vertical
axis of the stand, allowing the e↵ective mass of the fan to be adjusted. Also, the
wing/fan assembly at the end of the boom is allowed to rotate about its center of
mass. Optical encoders mounted on the ducted fan, counterweight pulley, and the
base of the stand measure the three degrees of freedom. The fan is controlled by
commanding a current to the electric motor for fan thrust and by commanding RC



4-22 CHAPTER 4. RECEDING HORIZON CONTROL

servos to control the thrust vectoring mechanism.
The sensors are read and the commands sent by a DSP-based multi-processor

system, comprised of a D/A card, a digital I/O card, two Texas Instruments C40
signal processors, two Compaq Alpha processors, and a high-speed host PC in-
terface. A real-time interface provides access to the processors and I/O hardware.
The NTG software resides on both of the Alpha processors, each capable of running
real-time optimization.

The ducted fan is modeled in terms of the position and orientation of the fan,
and their velocities. Letting x represent the horizontal translation, z the vertical
translation and ✓ the rotation about the boom axis, the equations of motion are
given by

mẍ+ FXa � FXb cos ✓ � FZb sin ✓ = 0,

mz̈ + FZa + FXb sin ✓ � FZb cos ✓ = mge↵,

J ✓̈ �Ma +
1

rs
Ip⌦ẋ cos ✓ � FZbrf = 0,

(4.21)

where FXa = D cos � + L sin � and FZa = �D sin � + L cos � are the aerodynamic
forces and FXb and FZb are thrust vectoring body forces in terms of the lift (L),
drag (D), and flight path angle (�). Ip and ⌦ are the moment of inertia and angular
velocity of the ducted fan propeller, respectively. J is the moment of ducted fan and
rf is the distance from center of mass along the Xb axis to the e↵ective application
point of the thrust vectoring force. The angle of attack ↵ can be derived from the
pitch angle ✓ and the flight path angle � by

↵ = ✓ � �.

The flight path angle can be derived from the spatial velocities by

� = arctan
�ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(↵) D = qSCD(↵) M = c̄SCM (↵),

respectively. The dynamic pressure is given by q = 1
2⇢V

2. The norm of the ve-
locity is denoted by V , S the surface area of the wings, and ⇢ is the atmospheric
density. The coe�cients of lift (CL(↵)), drag (CD(↵)) and the moment coe�-
cient (CM (↵)) are determined from a combination of wind tunnel and flight testing
and are described in more detail in [MM99], along with the values of the other
parameters.

Real-Time Trajectory Generation

In this section we describe the implementation of the trajectory generation algo-
rithms by using NTG to generate minimum time trajectories in real time. An
LQR-based regulator is used to stabilize the system. We focus in this section on
aggressive, forward flight trajectories. The next section extends the controller to
use a receding horizon controller, but on a simpler class of trajectories.



4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-23

Stabilization Around Reference Trajectory

The results in this section rely on the traditional two degree of freedom design
paradigm described in Chapter 2. In this approach, a local control law (inner loop)
is used to stabilize the system around the trajectory computed based on a nominal
model. This compensates for uncertainties in the model, which are predominantly
due to aerodynamics and friction. Elements such as the ducted fan flying through
its own wake, ground e↵ects and velocity- and angle-of-attack dependent thrust
contribute to the aerodynamic uncertainty. Actuation models are not used when
generating the reference trajectory, resulting in another source of uncertainty.

Since only the position of the fan is measured, we must estimate the velocities.
We use an extended Kalman filter (described in later chapters) with the optimal
gain matrix is gain scheduled on the (estimated) forward velocity.

The stabilizing LQR controllers were gain scheduled on pitch angle, ✓, and the
forward velocity, ẋ. The pitch angle was allowed to vary from �⇡/2 to ⇡/2 and
the velocity ranged from 0 to 6 m/s. The weights were chosen di↵erently for the
hover-to-hover and forward flight modes. For the forward flight mode, a smaller
weight was placed on the horizontal (x) position of the fan compared to the hover-
to-hover mode. Furthermore, the z weight was scheduled as a function of forward
velocity in the forward flight mode. There was no scheduling on the weights for
hover-to-hover. The elements of the gain matrices for each of the controller and
observer are linearly interpolated over 51 operating points.

Nonlinear Trajectory Generation Parameters

We solve a minimum time optimal control problem to generate a feasible trajectory
for the system. The system is modeled using the nonlinear equations described
above and computed the open loop forces and state trajectories for the nominal
system. This system is not known to be di↵erentially flat (due to the aerodynamic
forces) and hence we cannot completely eliminate the di↵erential constraints.

We choose three outputs, z1 = x, z2 = z, and z3 = ✓, which results in a
system with one remaining di↵erential constraint. Each output is parameterized
with four, sixth order C4 piecewise polynomials over the time interval scaled by the
minimum time. A fourth output, z4 = T , is used to represent the time horizon to
be minimized and is parameterized by a scalar. There are a total of 37 variables in
this optimization problem. The trajectory constraints are enforced at 21 equidistant
breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the
outputs. Clearly there is a trade between the parameters (variables, initial values
of the variables, and breakpoints) and measures of performance (convergence, run-
time, and conservative constraints). Extensive simulations were run to determine
the right combination of parameters to meet the performance goals of our system.

Forward Flight

To obtain the forward flight test data, an operator commanded a desired forward
velocity and vertical position with joysticks. We set the trajectory update time � to
2 seconds. By rapidly changing the joysticks, NTG produces high angle of attack
maneuvers. Figure 4.7aa depicts the reference trajectories and the actual ✓ and



4-24 CHAPTER 4. RECEDING HORIZON CONTROL

110 120 130 140 150 160 170 180
−4

−2

0

2

4

6

t

x
’

x’
act

x’
des

110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

3

t

θ

θ
act

θ
des

(a) System state

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

f
x

f z

constraints

desired    

(b) Input forces

Figure 4.7: Forward flight test case: (a) ✓ and ẋ desired and actual, (b) desired
FXb and FZb with bounds.

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

a
lt 

(m
)

x (m)

x vs. alt

Figure 4.8: Forward flight test case: altitude and x position (actual (solid) and
desired (dashed)). Airfoil represents actual pitch angle (✓) of the ducted fan.

ẋ over 60 s. Figure 4.7b shows the commanded forces for the same time interval.
The sequence of maneuvers corresponds to the ducted fan transitioning from near
hover to forward flight, then following a command from a large forward velocity to
a large negative velocity, and finally returning to hover.

Figure 4.8 is an illustration of the ducted fan altitude and x position for these
maneuvers. The air-foil in the figure depicts the pitch angle (✓). It is apparent from
this figure that the stabilizing controller is not tracking well in the z direction. This
is due to the fact that unmodeled frictional e↵ects are significant in the vertical
direction. This could be corrected with an integrator in the stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average
computation time was less than one second. Each of the 30 trajectories converged
to an optimal solution and was approximately between 4 and 12 seconds in length.
A random initial guess was used for the first NTG trajectory computation. Sub-
sequent NTG computations used the previous solution as an initial guess. Much
improvement can be made in determining a “good” initial guess. Improvement in
the initial guess will improve not only convergence but also computation times.



4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-25

Receding Horizon Control

The results of the previous section demonstrate the ability to compute optimal
trajectories in real time, although the computation time was not su�ciently fast
for closing the loop around the optimization. In this section, we make use of
a shorter update time �, a fixed horizon time T with a quadratic integral cost,
and a control Lyapunov function terminal cost to implement the receding horizon
controller described in Section 4.2. We also limit the operation of the system to
near hover, so that we can use the local linearization to find the terminal control
Lyapunov function.

We have implemented the receding horizon controller on the ducted fan exper-
iment where the control objective is to stabilize the hover equilibrium point. The
quadratic cost is given by

L(x, u) =
1

2
x̂
T
Qx̂+

1

2
û
T
Rû,

V (x) = �x̂
T
Px̂,

(4.22)

where
x̂ = x� xeq = (x, z, ✓ � ⇡/2, ẋ, ż, ✓̇),

û = u� ueq = (FXb �mg,FZb),

Q = diag{4, 15, 4, 1, 3, 0.3},

R = diag{0.5, 0.5}.

For the terminal cost, we choose � = 0.075 and P is the unique stable solution to
the algebraic Riccati equation corresponding to the linearized dynamics of equa-
tion (4.21) at hover and the weights Q and R. Note that if � = 1/2, then V (·)
is the control Lyapunov function for the system corresponding to the LQR prob-
lem. Instead V is a relaxed (in magnitude) control Lyapunov function, which
achieved better performance in the experiment. In either case, V is valid as a con-
trol Lyapunov function only in a neighborhood around hover since it is based on
the linearized dynamics. We do not try to compute o↵-line a region of attraction
for this control Lyapunov function. Experimental tests omitting the terminal cost
and/or the input constraints leads to instability. The results in this section show
the success of this choice for V for stabilization. An inner-loop PD controller on ✓, ✓̇
is implemented to stabilize to the receding horizon states ✓⇤T , ✓̇

⇤
T . The ✓ dynamics

are the fastest for this system and although most receding horizon controllers were
found to be nominally stable without this inner-loop controller, small disturbances
could lead to instability.

The optimal control problem is set-up in NTG code by parameterizing the three
position states (x, z, ✓), each with 8 B-spline coe�cients. Over the receding horizon
time intervals, 11 and 16 breakpoints were used with horizon lengths of 1, 1.5, 2,
3, 4 and 6 seconds. Breakpoints specify the locations in time where the di↵erential
equations and any constraints must be satisfied, up to some tolerance. The value
of Fmax

Xb
for the input constraints is made conservative to avoid prolonged input

saturation on the real hardware. The logic for this is that if the inputs are saturated
on the real hardware, no actuation is left for the inner-loop ✓ controller and the
system can go unstable. The value used in the optimization is Fmax

Xb
= 9 N.



4-26 CHAPTER 4. RECEDING HORIZON CONTROL

ti+2

time

Input

computation 
(i)

computation 
(i+1)

Legend

computed applied unused

δc(i) δc(i+1)

 *u  (i-1)  T

ti+1 ti 

 *u  (i)  T

 *u  (i+1)  T
X

X X X

X X

X X

X

Figure 4.9: Receding horizon input trajectories.

Computation time is non-negligible and must be considered when implementing
the optimal trajectories. The computation time varies with each optimization as
the current state of the ducted fan changes. The following notational definitions
will facilitate the description of how the timing is set-up:

i Integer counter of RHC computations
ti Value of current time when RHC computation i started
�c(i) Computation time for computation i

u
⇤
T (i)(t) Optimal output trajectory corresponding to computation

i, with time interval t 2 [ti, ti + T ]

A natural choice for updating the optimal trajectories for stabilization is to do so
as fast as possible. This is achieved here by constantly resolving the optimization.
When computation i is done, computation i + 1 is immediately started, so ti+1 =
ti + �c(i). Figure 4.9 gives a graphical picture of the timing set-up as the optimal
input trajectories u

⇤
T (·) are updated. As shown in the figure, any computation

i for u
⇤
T (i)(·) occurs for t 2 [ti, ti+1] and the resulting trajectory is applied for

t 2 [ti+1, ti+2]. At t = ti+1 computation i+ 1 is started for trajectory u
⇤
T (i+ 1)(·),

which is applied as soon as it is available (t = ti+2). For the experimental runs
detailed in the results, �c(i) is typically in the range of [0.05, 0.25] seconds, meaning
4 to 20 optimal control computations per second. Each optimization i requires the
current measured state of the ducted fan and the value of the previous optimal
input trajectories u

⇤
T (i � 1) at time t = ti. This corresponds to, respectively, 6

initial conditions for state vector x and 2 initial constraints on the input vector u.
Figure 4.9 shows that the optimal trajectories are advanced by their computation
time prior to application to the system. A dashed line corresponds to the initial
portion of an optimal trajectory and is not applied since it is not available until that
computation is complete. The figure also reveals the possible discontinuity between
successive applied optimal input trajectories, with a larger discontinuity more likely
for longer computation times. The initial input constraint is an e↵ort to reduce
such discontinuities, although some discontinuity is unavoidable by this method.



4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-27

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Average run time for previous second of computation

seconds after initiation

av
er

ag
e 

ru
n

 t
im

e 
(s

ec
o

n
d

s)

T = 1.5
T = 2.0
T = 3.0
T = 4.0
T = 6.0

(a) Average run time

−5 0 5 10 15 20 25
−1

0

1

2

3

4

5

6
MPC response to 6m offset in x for various horizons

time (sec)

x
 (

m
)

    step ref
+ T = 1.5
o T = 2.0
* T = 3.0
x T = 4.0
 . T = 6.0

(b) Step responses

Figure 4.10: Receding horizon control: (a) moving one second average of com-
putation time for RHC implementation with varying horizon time, (b) response of
RHC controllers to 6 meter o↵set in x for di↵erent horizon lengths.

Also note that the same discontinuity is present for the 6 open-loop optimal state
trajectories generated, again with a likelihood for greater discontinuity for longer
computation times. In this description, initialization is not an issue because we
assume the receding horizon computations are already running prior to any test
runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller to a
6 meter horizontal o↵set, which is e↵ectively engaging a step-response to a change
in the initial condition for x. The following details the e↵ects of di↵erent receding
horizon control parameterizations, namely as the horizon changes, and the responses
with the di↵erent controllers to the induced o↵set.

The first comparison is between di↵erent receding horizon controllers, where
time horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses 16
breakpoints. Figure 4.10a shows a comparison of the average computation time as
time proceeds. For each second after the o↵set was initiated, the data correspond
to the average run time over the previous second of computation. Note that these
computation times are substantially smaller than those reported for real-time tra-
jectory generation, due to the use of the control Lyapunov function terminal cost
versus the terminal constraints in the minimum-time, real-time trajectory genera-
tion experiments.

There is a clear trend toward shorter average computation times as the time
horizon is made longer. There is also an initial transient increase in average compu-
tation time that is greater for shorter horizon times. In fact, the 6 second horizon
controller exhibits a relatively constant average computation time. One explana-
tion for this trend is that, for this particular test, a 6 second horizon is closer to
what the system can actually do. After 1.5 seconds, the fan is still far from the
desired hover position and the terminal cost control Lyapunov function is large,
likely far from its region of attraction. Figure 4.10b shows the measured x response
for these di↵erent controllers, exhibiting a rise time of 8–9 seconds independent of
the controller. So a horizon time closer to the rise time results in a more feasible



4-28 CHAPTER 4. RECEDING HORIZON CONTROL

optimization in this case.

4.7 Further Reading

Receding horizon control (more commonly referred to as model predictive control
or MPC) has a long history and there are many good textbooks available. The book
by Rawlings, Mayne, and Diehl [RMD17] is an excellent resource (available for free
download), as well as the textbook (also freely available) by Borelli, Bemporad, and
Morari [BBM17], which matches the material in the MATLAB-based MPT toolbox.
An overview of the early evolution of commercially available MPC technology is
given in [QB97] and a survey of the state of stability theory of MPC circa 2000 is
given in [MRRS00].

Exercises

4.1 Consider a nonlinear control system

ẋ = f(x, u)

with linearization
ẋ = Ax+Bu.

Show that if the linearized system is reachable, then there exists a (local) control
Lyapunov function for the nonlinear system. (Hint: start by proving the result for
a stable system.)

4.2 Consider the optimal control problem given in Example 3.2:

ẋ = ax+ bu, J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf ),

where x 2 R is a scalar state, u 2 R is the input, the initial state x(t0) is given,
and a, b 2 R are positive constants. We take the terminal time tf as given and
let c > 0 be a constant that balances the final value of the state with the input
required to get to that position. The optimal control for a finite time T > 0 is
derived in Example 3.2. Now consider the infinite horizon cost

J = 1
2

Z 1

t0

u
2(t) dt

with x(t) at t = 1 constrained to be zero.

(a) Solve for u
⇤(t) = �bPx

⇤(t) where P is the positive solution corresponding
to the algebraic Riccati equation. Note that this gives an explicit feedback law
(u = �bPx).

(b) Plot the state solution of the finite time optimal controller for the following
parameter values

a = 2 b = 0.5 x(t0) = 4

c = 0.1, 10 tf = 0.5, 1, 10



4.7. FURTHER READING 4-29

(This should give you a total of 6 curves.) Compare these to the infinite time
optimal control solution. Which finite time solution is closest to the infinite time
solution? Why?

Using the solution given in equation (3.5), implement the finite-time optimal
controller in a receding horizon fashion with an update time of � = 0.5. Using
the parameter values in part (b), compare the responses of the receding horizon
controllers to the LQR controller you designed for problem 1, from the same initial
condition. What do you observe as c and tf increase?

(Hint: you can write a Python script to do this by performing the following
steps:

(i) set t0 = 0

(ii) using the closed form solution for x⇤ from problem 1, plot x(t), t 2 [t0, tf ] and
save x� = x(t0 + �)

(iii) set x(t0) = x� and repeat step (ii) until x is small.)

4.3 In this problem we will explore the e↵ect of constraints on control of the linear
unstable system given by

ẋ1 = 0.8x1 � 0.5x2 + 0.5u, ẋ2 = x1 + 0.5u,

subject to the constraint that |u|  a where a is a postive constant.

(a) Ignore the constraint (a = 1) and design an LQR controller to stabilize the
system. Plot the response of the closed system from the initial condition given by
x = (1, 0).

(b) Simulate the initial condition response of system for some finite value of a

with an initial condition x(0) = (1, 0). Numerically (trial and error) determine the
smallest value of a for which the system goes unstable.

(c) Let amin(⇢) be the smallest value of a for which the system is unstable from
x(0) = (⇢, 0). Plot amin(⇢) for ⇢ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control law for
this system. Show that this controller has larger region of attraction than the con-
troller designed in part (b). (Hint: solve the finite horizon LQ problem analytically,
using the bang-bang example as a guide to handle the input constraint.)

4.4 [Instability of MPC with short horizons (Mark Cannon, Oxford University,
2020)] Consider a linear, discrete time system with dynamics

x[k + 1] =


1 0.1
0 2

�
x[k] +


0
0.5

�
u[k], y[k] =

⇥
1 0

⇤
x[k]

with finite time horizon cost given by

J(x[k], u) =
N�1X

i=0

⇣
y
2[k] + u

2[k]
⌘
+ y

2[N ].



4-30 CHAPTER 4. RECEDING HORIZON CONTROL

(a) Show that the predicted state of the system can be written in the form
2

6664

x[k]
x[k + 1]

...
x[k +N ]

3

7775
= Mx[k] + L

2

6664

u[k]
u[k + 1]

...
u[k +N � 1]

3

7775

and give formulas for M and L in terms of A, B, and C for the case N = 3.

(b) Show that the cost function can be written as

J(x[k], u) = ū
T[k]Hū[k] + 2xT[k]Fū[k] + x

T[k]Gx[k]

and give expressions for F , G, and H.

(c) Show that the RHC controller that minimizes the cost function for a horizon
length of N can be written as u = �Kx and find an expression for K in terms of
F , G, and H. Show that for N = 3 the feedback gain is given by

K =
⇥
0.1948 0.1168

⇤
.

(d) Compute the closed loop eigenvalues for the system with a receding horizon
controller with N = 3 and show that the system is unstable. What is the smallest
value of N such that the system is stable?

(e) Change the terminal cost use the optimal cost-to-go function returned by the
dlqr command in MATLAB or Python. Verify that the closed loop system is stable
for N = 1, . . . , 5.

4.5 Consider the double integrator system from Example 4.1. A discrete time
representation of this system with sampling time of 1 second is given by

x[k + 1] =


1 1
0 1

�
x+


0
1

�
clip(u), where clip(u) =

8
><

>:

�1 u < �1,

u �1  u  1,

1 u > 1.

We choose the same weighting matrices as in Example 4.1:

Qx =


1 0
0 0

�
, Qu =

⇥
1
⇤
, P1 =


0.1 0
0 0.1

�
.

(a) Construct a discrete-time receding horizon control law for the system and recre-
ate Figure 4.3 using x0 = (2, 1) as the initial condition. Your plot should should
show the actual trajectory for x and u as solid lines and the predicted trajectories
from the optimization as dashed lines.

(b) The discrete time equivalent of the conditions in Theorem 4.1 are

min
u

V (f(x, u))� V (x) + L(x, u)  0 for all x,

where f represents the discrete time dynamics and dt is the sampling time. Check
to see if these conditions are satisfied for this system using the weights above along
the trajectory taken by the system.



4.7. FURTHER READING 4-31

(c) Replace the terminal cost P1 with the solution to the discrete time algebraic
Riccati equation (which can be obtained using the dlqr command in MATLAB or
Python), recompute initial condition response of the receding horizon controller,
and check that whether satisfies the stability condition along the trajectory.

(d) Modify the terminal cost P1 obtained in part (c) by 10X in teach direction
(P 0

1 = 0.1P1 and P
0
1 = 10P1), recompute initial condition response of the receding

horizon controller, and check that whether satisfies the stability condition along the
trajectory.

4.6 Consider the dynamics of the vectored thrust aircraft described in Examples 2.4
and 3.5. Assume that the inputs must satisfy the constraints

|F1|  0.1 |F2|, 0  F2  1.5mg.

Design a receding horizon controller for the system that stabilizes the origin
using an optimization horizon of T = 5 s and an update period of �T = 0.1 s.
Demonstrate the performance of your controller from initial conditions starting at
x(0) = 1 m and x(0) = 10 m (all other states should be zero).



4-32 CHAPTER 4. RECEDING HORIZON CONTROL


	1 Introduction
	1.1 System and Control Design
	1.2 The Control System ``Standard Model''
	1.3 Layered Control Systems
	1.4 The Python Control Systems Library

	2 Trajectory Generation and Tracking
	2.1 Two Degree of Freedom Design
	2.2 Trajectory Tracking and Gain Scheduling
	2.3 Trajectory Generation and Differential Flatness
	2.4 Python Implementation
	2.5 Other Methods for Generating Trajectories
	2.6 Further Reading

	3 Optimal Control
	3.1 Review: Optimization
	3.2 Optimal Control of Systems
	3.3 Examples
	3.4 Python Implementation
	3.5 Linear Quadratic Regulators
	3.6 Choosing LQR weights
	3.7 Advanced Topics
	3.8 Further Reading

	4 Receding Horizon Control
	4.1 Overview
	4.2 Receding Horizon Control with Terminal Cost
	4.3 Implementation in Python
	4.4 Receding Horizon Control Using Differential Flatness
	4.5 Choosing Cost Functions
	4.6 Implementation on the Caltech Ducted Fan
	4.7 Further Reading

	5 Stochastic Systems
	5.1 Brief Review of Random Variables
	5.2 Introduction to Random Processes
	5.3 Continuous-Time, Vector-Valued Random Processes
	5.4 Linear Stochastic Systems with Gaussian Noise
	5.5 Random Processes in the Frequency Domain
	5.6 Further Reading

	6 Kalman Filtering
	6.1 Linear Quadratic Estimators
	6.2 Extensions of the Kalman Filter
	6.3 LQG Control
	6.4 Application to a Thrust Vectored Aircraft
	6.5 Further Reading

	7 Sensor Fusion
	7.1 Discrete-Time Stochastic Systems
	7.2 Kalman Filters in Discrete Time (FBS2e)
	7.3 Predictor-Corrector Form
	7.4 Sensor Fusion
	7.5 Information Filters
	7.6 Additional topics
	7.7 Further Reading

	Bibliography
	Index

