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Chapter 3

Receding Horizon Control

(with J. E. Hauser and A. Jadbabaie)

This set of notes builds on the previous two chapters and explores the use of online
optimization as a tool for control of nonlinear control. We begin with a high-level
discussion of optimization-based control, refining some of the concepts initially in-
troduced in Chapter ??. We then describe the technique of receding horizon control
(RHC), including a proof of stability for a particular form of receding horizon con-
trol that makes use of a control Lyapunov function as a terminal cost. We conclude
the chapter with a detailed design example, in which we can explore some of the
computational tradeoffs in optimization-based control.

Prerequisites. Readers should be familiar with the concepts of trajectory generation
and optimal control as described in Chapters ?? and ??. For the proof of stability for
the receding horizon controller that we present, familiarity with Lyapunov stability
analysis at the level given in ÅM08, Chapter 4 (Dynamic Behavior) is assumed.

The material in this chapter is based on part on joint work with John Hauser and
Ali Jadbabaie [MHJ+03].

3.1 Optimization-Based Control

Optimization-based control refers to the use of online, optimal trajectory generation
as a part of the feedback stabilization of a (typically nonlinear) system. The basic
idea is to use a receding horizon control technique: a (optimal) feasible trajectory
is computed from the current position to the desired position over a finite time T
horizon, used for a short period of time δ < T , and then recomputed based on the
new system state starting at time t+ δ until time t+ T + δ. Development and ap-
plication of receding horizon control (also called model predictive control, or MPC)
originated in process control industries where the processes being controlled are
often sufficiently slow to permit its implementation. An overview of the evolution
of commercially available MPC technology is given in [QB97] and a survey of the
state of stability theory of MPC is given in [MRRS00].

Design approach

The basic philosophy that we propose is illustrated in Figure 3.1. We begin with
a nonlinear system, including a description of the constraint set. We linearize this
system about a representative equilibrium point and perform a linear control design
using standard control design tools. Such a design can provide provably robust per-
formance around the equilibrium point and, more importantly, allows the designer
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Figure 3.1: Optimization-based control approach.

to meet a wide variety of formal and informal performance specifications through
experience and the use of sophisticated linear design tools.

The resulting linear control law then serves as a specification of the desired
control performance for the entire nonlinear system. We convert the control law
specification into a receding horizon control formulation, chosen such that for the
linearized system, the receding horizon controller gives comparable performance.
However, because of its use of optimization tools that can handle nonlinearities
and constraints, the receding horizon controller is able to provide the desired per-
formance over a much larger operating envelope than the controller design based
just on the linearization. Furthermore, by choosing cost formulations that have cer-
tain properties, we can provide proofs of stability for the full nonlinear system and,
in some cases, the constrained system.

The advantage of the proposed approach is that it exploits the power of humans
in designing sophisticated control laws in the absence of constraints with the power
of computers to rapidly compute trajectories that optimize a given cost function in
the presence of constraints. New advances in online trajectory generation serve as an
enabler for this approach and their demonstration on representative flight control
experiments shows their viability [MFHM05]. This approach can be extended to
existing nonlinear paradigms as well, as we describe in more detail below.

An advantage of optimization-based approaches is that they allow the potential
for online customization of the controller. By updating the model that the opti-
mization uses to reflect the current knowledge of the system characteristics, the
controller can take into account changes in parameters values or damage to sensors
or actuators. In addition, environmental models that include dynamic constraints
can be included, allowing the controller to generate trajectories that satisfy complex
operating conditions. These modifications allow for many state- and environment-
dependent uncertainties to including the receding horizon feedback loop, providing
potential robustness with respect to those uncertainties.

A number of approaches in receding horizon control employ the use of termi-
nal state equality or inequality constraints, often together with a terminal cost,
to ensure closed loop stability. In Primbs et al. [PND99], aspects of a stability-
guaranteeing, global control Lyapunov function (CLF) were used, via state and
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control constraints, to develop a stabilizing receding horizon scheme. Many of the
nice characteristics of the CLF controller together with better cost performance
were realized. Unfortunately, a global control Lyapunov function is rarely available
and often not possible.

Motivated by the difficulties in solving constrained optimal control problems,
researchers have developed an alternative receding horizon control strategy for the
stabilization of nonlinear systems [JYH01]. In this approach, closed loop stability is
ensured through the use of a terminal cost consisting of a control Lyapunov function
(defined later) that is an incremental upper bound on the optimal cost to go. This
terminal cost eliminates the need for terminal constraints in the optimization and
gives a dramatic speed-up in computation. Also, questions of existence and regular-
ity of optimal solutions (very important for online optimization) can be dealt with
in a rather straightforward manner.

Inverse Optimality

The philosophy presented here relies on the synthesis of an optimal control prob-
lem from specifications that are embedded in an externally generated controller
design. This controller is typically designed by standard classical control techniques
for a nominal process, absent constraints. In this framework, the controller’s per-
formance, stability and robustness specifications are translated into an equivalent
optimal control problem and implemented in a receding horizon fashion.

One central question that must be addressed when considering the usefulness
of this philosophy is: Given a control law, how does one find an equivalent optimal
control formulation? The paper by Kalman [Kal64] lays a solid foundation for this
class of problems, known as inverse optimality. In this paper, Kalman considers the
class of linear time-invariant (LTI) processes with full-state feedback and a single
input variable, with an associated cost function that is quadratic in the input and
state variables. These assumptions set up the well-known linear quadratic regulator
(LQR) problem, by now a staple of optimal control theory.

In Kalman’s paper, the mathematical framework behind the LQR problem is
laid out, and necessary and sufficient algebraic criteria for optimality are presented
in terms of the algebraic Riccati equation, as well as in terms of a condition on the
return difference of the feedback loop. In terms of the LQR problem, the task of
synthesizing the optimal control problem comes down to finding the integrated cost
weights Qx and Qu given only the dynamical description of the process represented
by matrices A and B and of the feedback controller represented by K. Kalman
delivers a particularly elegant frequency characterization of this map [Kal64], which
we briefly summarize here.

We consider a linear system

ẋ = Ax+Bu x ∈ R
n, u ∈ R

m (3.1)

with state x and input u. We consider only the single input, single output case for
now (m = 1). Given a control law

u = Kx
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we wish to find a cost functional of the form

J =

∫ T

0

xTQxx+ uTQuu dt+ xT (T )PTx(T ) (3.2)

where Qx ∈ R
n×n and Qu ∈ R

m×m define the integrated cost, PT ∈ R
n×n is the

terminal cost, and T is the time horizon. Our goal is to find PT > 0, Qx > 0,
Qu > 0, and T > 0 such that the resulting optimal control law is equivalent to
u = Kx.

The optimal control law for the quadratic cost function (3.2) is given by

u = −R−1BTP (t),

where P (t) is the solution to the Riccati ordinary differential equation

− Ṗ = ATP + PA− PBR−1BTP +Q (3.3)

with terminal condition P (T ) = PT . In order for this to give a control law of the
form u = Kx for a constant matrix K, we must find PT , Qx, and Qu that give
a constant solution to the Riccati equation (3.3) and satisfy −R−1BTP = K. It
follows that PT , Qx and Qu should satisfy

ATPT + PTA− PTBQ
−1
u BTPT +Q = 0

−Q−1
u BTPT = K.

(3.4)

We note that the first equation is simply the normal algebraic Riccati equation of
optimal control, but with PT , Q, and R yet to be chosen. The second equation
places additional constraints on R and PT .

Equation (3.4) is exactly the same equation that one would obtain if we had con-
sidered an infinite time horizon problem, since the given control was constant and
hence P (t) was forced to be constant. This infinite horizon problem is precisely the
one that Kalman considered in 1964, and hence his results apply directly. Namely,
in the single-input single-output case, we can always find a solution to the coupled
equations (3.4) under standard conditions on reachability and observability [Kal64].
The equations can be simplified by substituting the second relation into the first to
obtain

ATPT + PTA−KTRK +Q = 0.

This equation is linear in the unknowns and can be solved directly (remembering
that PT , Qx and Qu are required to be positive definite).

The implication of these results is that any state feedback control law satisfy-
ing these assumptions can be realized as the solution to an appropriately defined
receding horizon control law. Thus, we can implement the design framework sum-
marized in Figure 3.1 for the case where our (linear) control design results in a
state feedback controller.

The above results can be generalized to nonlinear systems, in which one takes a
nonlinear control system and attempts to find a cost function such that the given
controller is the optimal control with respect to that cost.

The history of inverse optimal control for nonlinear systems goes back to the
early work of Moylan and Anderson [MA73]. More recently, Sepulchre et al. [SJK97]
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showed that a nonlinear state feedback obtained by Sontag’s formula from a control
Lyapunov function (CLF) is inverse optimal. The connections of this inverse opti-
mality result to passivity and robustness properties of the optimal state feedback
are discussed in Jankovic et al. [JSK99]. Most results on inverse optimality do not
consider the constraints on control or state. However, the results on the uncon-
strained inverse optimality justify the use of a more general nonlinear loss function
in the integrated cost of a finite horizon performance index combined with a real-
time optimization-based control approach that takes the constraints into account.

Control Lyapunov Functions

For the optimal control problems that we introduce in the next section, we will
make use of a terminal cost that is also a control Lyapunov function for the system.
Control Lyapunov functions are an extension of standard Lyapunov functions and
were originally introduced by Sontag [Son83]. They allow constructive design of
nonlinear controllers and the Lyapunov function that proves their stability. A more
complete treatment is given in [KKK95].

Consider a nonlinear control system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m. (3.5)

Definition 3.1 (Control Lyapunov Function). A locally positive function V : Rn →
R+ is called a control Lyapunov function (CLF) for a control system (3.5) if

inf
u∈Rm

(

∂V

∂x
f(x, u)

)

< 0 for all x 6= 0.

In general, it is difficult to find a CLF for a given system. However, for many
classes of systems, there are specialized methods that can be used. One of the
simplest is to use the Jacobian linearization of the system around the desired equi-
librium point and generate a CLF by solving an LQR problem.

As described in Chapter ??, the problem of minimizing the quadratic perfor-
mance index,

J =

∫ ∞

0

(xT (t)Qx(t) + uTRu(t))dt subject to
ẋ = Ax+Bu,

x(0) = x0,
(3.6)

results in finding the positive definite solution of the following Riccati equation:

ATP + PA− PBR−1BTP +Q = 0 (3.7)

The optimal control action is given by

u = −R−1BTPx

and V = xTPx is a CLF for the system.
In the case of the nonlinear system ẋ = f(x, u), A and B are taken as

A =
∂f(x, u)

∂x
|(0,0) B =

∂f(x, u)

∂u
|(0,0)
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where the pairs (A,B) and (Q
1
2 , A) are assumed to be stabilizable and detectable

respectively. The CLF V (x) = xTPx is valid in a region around the equilibrium
(0, 0), as shown in Exercise 3.1.

More complicated methods for finding control Lyapunov functions are often
required and many techniques have been developed. An overview of some of these
methods can be found in [Jad01].

Finite Horizon Optimal Control

We briefly review the problem of optimal control over a finite time horizon as
presented in Chapter ?? to establish the notation for the chapter and set some
more specific conditions required for receding horizon control. This material is based
on [MHJ+03].

Given an initial state x0 and a control trajectory u(·) for a nonlinear control
system ẋ = f(x, u), let xu(·;x0) represent the state trajectory. We can write this
solution as a continuous curve

xu(t;x0) = x0 +

∫ t

0

f(xu(τ ;x0), u(τ)) dτ

for t ≥ 0. We require that the trajectories of the system satisfy an a priori bound

‖x(t)‖ ≤ β(x, T, ‖u(·)‖1) <∞, t ∈ [0, T ],

where β is continuous in all variables and monotone increasing in T and ‖u(·)‖1 =
‖u(·)‖L1(0,T ). Most models of physical systems will satisfy a bound of this type.

The performance of the system will be measured by an integral cost L : Rn ×
R

m → R. We require that L be twice differentiable (C2) and fully penalize both
state and control according to

L(x, u) ≥ cq(‖x‖
2 + ‖u‖2), x ∈ R

n, u ∈ R
m

for some cq > 0 and L(0, 0) = 0. It follows that the quadratic approximation of L
at the origin is positive definite,

∂L

∂x

∣

∣

∣

∣

(0,0)

≥ cqI > 0.

To ensure that the solutions of the optimization problems of interest are well
behaved, we impose some convexity conditions. We require the set f(x,Rm) ⊂ R

n

to be convex for each x ∈ R
n. Letting λ ∈ R

n represent the co-state, we also
require that the pre-Hamiltonian function λT f(x, u) + L(x, u) =: K(x, u, λ) be
strictly convex for each (x, λ) ∈ R

n × R
n and that there is a C2 function ū∗ :

R
n × R

n → R
m providing the global minimum of K(x, u, λ). The Hamiltonian

H(x, λ) := K(x, ū∗(x, λ), λ) is then C2, ensuring that extremal state, co-state, and
control trajectories will all be sufficiently smooth (C1 or better). Note that these
conditions are automatically satisfied for control affine f and quadratic L.

The cost of applying a control u(·) from an initial state x over the infinite time
interval [0,∞) is given by

J∞(x, u(·)) =

∫ ∞

0

L(xu(τ ;x), u(τ)) dτ .
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The optimal cost (from x) is given by

J∗
∞(x) = inf

u(·)
J∞(x, u(·))

where the control function u(·) belongs to some reasonable class of admissible con-
trols (e.g., piecewise continuous). The function J∗

∞(x) is often called the optimal
value function for the infinite horizon optimal control problem. For the class of f
and L considered, it can be verified that J∗

∞(·) is a positive definite C2 function in
a neighborhood of the origin [HO01].

For practical purposes, we are interested in finite horizon approximations of the
infinite horizon optimization problem. In particular, let V (·) be a nonnegative C2

function with V (0) = 0 and define the finite horizon cost (from x using u(·)) to be

JT (x, u(·)) =

∫ T

0

L(xu(τ ;x), u(τ)) dτ + V (xu(T ;x)) (3.8)

and denote the optimal cost (from x) as

J∗
T (x) = inf

u(·)
JT (x, u(·)) .

As in the infinite horizon case, one can show, by geometric means, that J∗
T (·) is

locally smooth (C2). Other properties will depend on the choice of V and T .
Let Γ∞ denote the domain of J∗

∞(·) (the subset of Rn on which J∗
∞ is finite).

It is not too difficult to show that the cost functions J∗
∞(·) and J∗

T (·), T ≥ 0, are
continuous functions on Γ∞ [Jad01]. For simplicity, we will allow J∗

∞(·) to take
values in the extended real line so that, for instance, J∗

∞(x) = +∞ means that
there is no control taking x to the origin.

We will assume that f and L are such that the minimum value of the cost
functions J∗

∞(x), J∗
T (x), T ≥ 0, is attained for each (suitable) x. That is, given x

and T > 0 (including T = ∞ when x ∈ Γ∞), there is a (C1 in t) optimal trajectory
(x∗T (t;x), u

∗
T (t;x)), t ∈ [0, T ], such that JT (x, u

∗
T (·;x)) = J∗

T (x). For instance, if
f is such that its trajectories can be bounded on finite intervals as a function
of its input size, e.g., there is a continuous function β such that ‖xu(t;x0)‖ ≤
β(‖x0‖, ‖u(·)‖L1[0,t]), then (together with the conditions above) there will be a
minimizing control (cf. [LM67]). Many such conditions may be used to good effect;
see [Jad01] for a more complete discussion.

It is easy to see that J∗
∞(·) is proper on its domain so that the sub-level sets

Γ∞
r := {x ∈ Γ∞ : J∗

∞(x) ≤ r2}

are compact and path connected and moreover Γ∞ =
⋃

r≥0 Γ
∞
r . Note also that Γ∞

may be a proper subset of Rn since there may be states that cannot be driven to
the origin. We use r2 (rather than r) here to reflect the fact that our integral cost
is quadratically bounded from below. We refer to sub-level sets of J∗

T (·) and V (·)
using

ΓT
r := path connected component of {x ∈ Γ∞ : J∗

T (x) ≤ r2} containing 0,

and

Ωr := path connected component of {x ∈ R
n : V (x) ≤ r2} containing 0.
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These results provide the technical framework needed for receding horizon con-
trol.

3.2 Receding Horizon Control with CLF Terminal Cost

In receding horizon control, a finite horizon optimal control problem is solved,
generating open-loop state and control trajectories. The resulting control trajectory
is applied to the system for a fraction of the horizon length. This process is then
repeated, resulting in a sampled data feedback law. Although receding horizon
control has been successfully used in the process control industry for many years,
its application to fast, stability-critical nonlinear systems has been more difficult.
This is mainly due to two issues. The first is that the finite horizon optimizations
must be solved in a relatively short period of time. Second, it can be demonstrated
using linear examples that a naive application of the receding horizon strategy can
have undesirable effects, often rendering a system unstable. Various approaches have
been proposed to tackle this second problem; see [MRRS00] for a comprehensive
review of this literature. The theoretical framework presented here also addresses
the stability issue directly, but is motivated by the need to relax the computational
demands of existing stabilizing RHC formulations.

Receding horizon control provides a practical strategy for the use of information
from a model through on-line optimization. Every δ seconds, an optimal control
problem is solved over a T second horizon, starting from the current state. The
first δ seconds of the optimal control u∗T (·;x(t)) is then applied to the system,
driving the system from x(t) at current time t to x∗T (δ, x(t)) at the next sample
time t+δ (assuming no model uncertainty). We denote this receding horizon scheme
as RH(T, δ).

In defining (unconstrained) finite horizon approximations to the infinite horizon
problem, the key design parameters are the terminal cost function V (·) and the
horizon length T (and, perhaps also, the increment δ). We wish to characterize the
sets of choices that provide successful controllers.

It is well known (and easily demonstrated with linear examples), that simple
truncation of the integral (i.e., V (x) ≡ 0) may have disastrous effects if T > 0 is
too small. Indeed, although the resulting value function may be nicely behaved, the
“optimal” receding horizon closed loop system can be unstable.

A more sophisticated approach is to make good use of a suitable terminal cost
V (·). Evidently, the best choice for the terminal cost is V (x) = J∗

∞(x) since then the
optimal finite and infinite horizon costs are the same. Of course, if the optimal value
function were available there would be no need to solve a trajectory optimization
problem. What properties of the optimal value function should be retained in the
terminal cost? To be effective, the terminal cost should account for the discarded
tail by ensuring that the origin can be reached from the terminal state xu(T ;x) in
an efficient manner (as measured by L). One way to do this is to use an appropriate
control Lyapunov function, which is also an upper bound on the cost-to-go.

The following theorem shows that the use of a particular type of CLF is in fact
effective, providing rather strong and specific guarantees.
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Theorem 3.1. [JYH01] Suppose that the terminal cost V (·) is a control Lyapunov
function such that

min
u∈Rm

(V̇ + L)(x, u) ≤ 0 (3.9)

for each x ∈ Ωrv for some rv > 0. Then, for every T > 0 and δ ∈ (0, T ], the
resulting receding horizon trajectories go to zero exponentially fast. For each T > 0,
there is an r̄(T ) ≥ rv such that ΓT

r̄(T ) is contained in the region of attraction of

RH(T, δ). Moreover, given any compact subset Λ of Γ∞, there is a T ∗ such that
Λ ⊂ ΓT

r̄(T ) for all T ≥ T ∗.

Theorem 3.1 shows that for any horizon length T > 0 and any sampling time
δ ∈ (0, T ], the receding horizon scheme is exponentially stabilizing over the set ΓT

rv
.

For a given T , the region of attraction estimate is enlarged by increasing r beyond
rv to r̄(T ) according to the requirement that V (x∗T (T ;x)) ≤ r2v on that set. An
important feature of the above result is that, for operations with the set ΓT

r̄(T ),
there is no need to impose stability ensuring constraints which would likely make
the online optimizations more difficult and time consuming to solve.

Sketch of proof. Let xu(τ ;x) represent the state trajectory at time τ starting from
initial state x and applying a control trajectory u(·), and let (x∗T , u

∗
T )(·, x) represent

the optimal trajectory of the finite horizon, optimal control problem with horizon
T . Assume that x∗T (T ;x) ∈ Ωr for some r > 0. Then for any δ ∈ [0, T ] we want to
show that the optimal cost x∗T (δ;x) satisfies

J∗
T

(

x∗T (δ;x)
)

≤ J∗
T (x)−

∫ δ

0

q
(

L(x∗T (τ ;x), u
∗
T (τ ;x)) dτ. (3.10)

This expression says that solution to the finite-horizon, optimal control problem
starting at time t = δ has cost that is less than the cost of the solution from time
t = 0, with the initial portion of the cost subtracted off.. In other words, we are
closer to our solution by a finite amount at each iteration of the algorithm. It follows
using Lyapunov analysis that we must converge to the zero cost solution and hence
our trajectory converges to the desired terminal state (given by the minimum of
the cost function).

To show equation (3.10) holds, consider a trajectory in which we apply the op-
timal control for the first T seconds and then apply a closed loop controller using a
stabilizing feedback u = −k(x) for another T seconds. (The stabilizing compensator
is guaranteed to exist since V is a control Lyapunov function.) Let (x∗T , u

∗
T )(t;x),

t ∈ [0, T ] represent the optimal control and (xk, uk)(t−T ;x∗T (T ;x)), t ∈ [T, 2T ] rep-
resent the control with u = −k(x) applied where k satisfies (V̇ +L)(x,−k(x)) ≤ 0.
Finally, let (x̃(t), ũ(t)), t ∈ [0, 2T ] represent the trajectory obtained by concatenat-
ing the optimal trajectory (x∗T , u

∗
T ) with the CLF trajectory (xk, uk).

We now proceed to show that the inequality (3.10) holds. The cost of using ũ(·)
for the first T seconds starting from the initial state x∗T (δ;x)), δ ∈ [0, , T ] is given
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by

JT (x
∗
T (δ;x), ũ(·)) =

∫ T+δ

δ

L(x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

= J∗
T (x)−

∫ δ

0

L(x∗T (τ ;x), u
∗
T (τ ;x)) dτ − V (x∗T (T ;x))

+

∫ T+δ

T

L(x̃(τ), ũ(τ)) dτ + V (x̃(T + δ)).

Note that the second line is simply a rewriting of the integral in terms of the optimal
cost J∗

T with the necessary additions and subtractions of the additional portions of
the cost for the interval [δ, T + δ]. We can how use the bound

L(x̃(τ), ũ(τ)) ≤ V̇ (x̃(τ), ũ(τ), τ ∈ [T, 2T ],

which follows from the definition of the CLF V and stabilizing controller k(x). This
allows us to write

JT (x
∗
T (δ;x), ũ(·)) ≤ J∗

T (x)−

∫ δ

0

L(x∗T (τ ;x), u
∗
T (τ ;x)) dτ − V (x∗T (T ;x))

−

∫ T+δ

T

V̇ (x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

= J∗
T (x)−

∫ δ

0

L(x∗T (τ ;x), u
∗
T (τ ;x)) dτ − V (x∗T (T ;x))

− V (x̃(τ))
∣

∣

∣

T+δ

T
+ V (x̃(T + δ))

= J∗
T (x)−

∫ δ

0

L(x∗T (τ ;x), u
∗
T (τ ;x)).

Finally, using the optimality of u∗T we have that J∗
T (x

∗
T (δ;x)) ≤ JT (x

∗
T (δ;x), ũ(·))

and we obtain equation (3.10).

An important benefit of receding horizon control is its ability to handle state
and control constraints. While the above theorem provides stability guarantees
when there are no constraints present, it can be modified to include constraints
on states and controls as well. In order to ensure stability when state and control
constraints are present, the terminal cost V (·) should be a local CLF satisfying
minu∈U V̇ +L(x, u) ≤ 0 where U is the set of controls where the control constraints
are satisfied. Moreover, one should also require that the resulting state trajectory
xCLF (·) ∈ X , where X is the set of states where the constraints are satisfied. (Both
X and U are assumed to be compact with origin in their interior). Of course, the
set Ωrv will end up being smaller than before, resulting in a decrease in the size of
the guaranteed region of operation (see [MRRS00] for more details).

3.3 Receding Horizon Control Using Differential Flatness

In this section we demonstrate how to use differential flatness to find fast numerical
algorithms for solving the optimal control problems required for the receding hori-
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zon control results of the previous section. We consider the affine nonlinear control
system

ẋ = f(x) + g(x)u, (3.11)

where all vector fields and functions are smooth. For simplicity, we focus on the
single input case, u ∈ R. We wish to find a trajectory of equation (3.11) that
minimizes the performance index (3.8), subject to a vector of initial, final, and
trajectory constraints

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,

lbf ≤ ψf (x(tf ), u(tf )) ≤ ubf ,

lbt ≤ S(x, u) ≤ ubt,

(3.12)

respectively. For conciseness, we will refer to this optimal control problem as

min
(x,u)

J(x, u) subject to

{

ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.
(3.13)

Numerical Solution Using Collocation

A numerical approach to solving this optimal control problem is to use the direct
collocation method outlined in Hargraves and Paris [HP87]. The idea behind this
approach is to transform the optimal control problem into a nonlinear programming
problem. This is accomplished by discretizing time into a grid of N − 1 intervals

t0 = t1 < t2 < . . . < tN = tf (3.14)

and approximating the state x and the control input u as piecewise polynomials
x̃ and ũ, respectively. Typically a cubic polynomial is chosen for the states and
a linear polynomial for the control on each interval. Collocation is then used at
the midpoint of each interval to satisfy equation (3.11). Let x̃(x(t1), ..., x(tN )) and
ũ(u(t1), ..., u(tN )) denote the approximations to x and u, respectively, depending
on (x(t1), ..., x(tN )) ∈ R

nN and (u(t1), ..., u(tN )) ∈ R
N corresponding to the value

of x and u at the grid points. Then one solves the following finite dimension ap-
proximation of the original control problem (3.13):

min
y∈RM

F (y) = J(x̃(y), ũ(y)) subject to















˙̃x− f(x̃(y)) + g(x̃(y))ũ(y) = 0,

lb ≤ c(x̃(y), ũ(y)) ≤ ub,

∀t =
tj + tj+1

2
j = 1, . . . , N − 1

(3.15)
where y = (x(t1), u(t1), . . . , x(tN ), u(tN )), and M = dim y = (n+ 1)N .

Seywald [Sey94] suggested an improvement to the previous method (see also [Bry99,
p. 362]). Following this work, one first solves a subset of system dynamics in equa-
tion (3.13) for the the control in terms of combinations of the state and its time
derivative. Then one substitutes for the control in the remaining system dynamics
and constraints. Next all the time derivatives ẋi are approximated by the finite
difference approximations

˙̄x(ti) =
x(ti+1)− x(ti)

ti+1 − ti
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to get
p( ˙̄x(ti), x(ti)) = 0
q( ˙̄x(ti), x(ti)) ≤ 0

}

i = 0, ..., N − 1.

The optimal control problem is turned into

min
y∈RM

F (y) subject to

{

p( ˙̄x(ti), x(ti)) = 0

q( ˙̄x(ti), x(ti)) ≤ 0
(3.16)

where y = (x(t1), . . . , x(tN )), and M = dim y = nN . As with the Hargraves and
Paris method, this parameterization of the optimal control problem (3.13) can be
solved using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimensionality
of the Hargraves and Paris method, where both the states and the input are the
unknowns. This induces substantial improvement in numerical implementation.

Differential Flatness Based Approach

The results of Seywald give a constrained optimization problem in which we wish
to minimize a cost functional subject to n−1 equality constraints, corresponding to
the system dynamics, at each time instant. In fact, it is usually possible to reduce
the dimension of the problem further. Given an output, it is generally possible to
parameterize the control and a part of the state in terms of this output and its
time derivatives. In contrast to the previous approach, one must use more than one
derivative of this output for this purpose.

When the whole state and the input can be parameterized with one output, the
system is differentially flat, as described in Section ??. When the parameterization
is only partial, the dimension of the subspace spanned by the output and its deriva-
tives is given by r the relative degree of this output [Isi89]. In this case, it is possible
to write the system dynamics as

x = α(z, ż, . . . , z(q))

u = β(z, ż, . . . , z(q))

Φ(z, ż, . . . , zn−r) = 0

(3.17)

where z ∈ R
p, p > m represents a set of outputs that parameterize the trajectory

and Φ : Rn×R
m represents n−r remaining differential constraints on the output. In

the case that the system is flat, r = n and we eliminate these differential constraints.
Unlike the approach of Seywald, it is not realistic to use finite difference ap-

proximations as soon as r > 2. In this context, it is convenient to represent z using
B-splines. B-splines are chosen as basis functions because of their ease of enforcing
continuity across knot points and ease of computing their derivatives. A pictorial
representation of such an approximation is given in Figure 3.2. Doing so we get

zj =

pj
∑

i=1

Bi,kj
(t)Cj

i , pj = lj(kj −mj) +mj

where Bi,kj
(t) is the B-spline basis function defined in [dB78] for the output zj with

order kj , C
j
i are the coefficients of the B-spline, lj is the number of knot intervals,
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zj(to)

knotpoint

mj at knotpoints defines smoothness

collocation point

kj − 1 degree polynomial between knotpoints

zj(t)

zj(tf )

Figure 3.2: Spline representation of a variable.

and mj is number of smoothness conditions at the knots. The set (z1, z2, . . . , zn−r)
is thus represented by M =

∑

j∈{1,r+1,...,n} pj coefficients.
In general, w collocation points are chosen uniformly over the time interval

[to, tf ] (though optimal knots placements or Gaussian points may also be consid-
ered). Both dynamics and constraints will be enforced at the collocation points.
The problem can be stated as the following nonlinear programming form:

min
y∈RM

F (y) subject to

{

Φ(z(y), ż(y), . . . , z(n−r)(y)) = 0

lb ≤ c(y) ≤ ub
(3.18)

where

y = (C1
1 , . . . , C

1
p1
, Cr+1

1 , . . . , Cr+1
pr+1

, . . . , Cn
1 , . . . , C

n
pn
).

The coefficients of the B-spline basis functions can be found using nonlinear pro-
gramming.

A software package called Nonlinear Trajectory Generation (NTG) has been
written to solve optimal control problems in the manner described above (see [MMM00]
for details). The sequential quadratic programming package NPSOL by [GMSW] is
used as the nonlinear programming solver in NTG. When specifying a problem to
NTG, the user is required to state the problem in terms of some choice of outputs
and its derivatives. The user is also required to specify the regularity of the vari-
ables, the placement of the knot points, the order and regularity of the B-splines,
and the collocation points for each output.

3.4 Implementation on the Caltech Ducted Fan

To demonstrate the use of the techniques described in the previous section, we
present an implementation of optimization-based control on the Caltech Ducted
Fan, a real-time, flight control experiment that mimics the longitudinal dynamics
of an aircraft. The experiment is show in Figure 3.3.
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Figure 3.3: Caltech ducted fan.

Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research and devel-
opment of nonlinear flight guidance and control techniques for Uninhabited Combat
Aerial Vehicles (UCAVs). The fan is a scaled model of the longitudinal axis of a
flight vehicle and flight test results validate that the dynamics replicate qualities of
actual flight vehicles [MM99].

The ducted fan has three degrees of freedom: the boom holding the ducted fan
is allowed to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting
horizontal and vertical displacements. A counterweight is connected to the vertical
axis of the stand, allowing the effective mass of the fan to be adjusted. Also, the
wing/fan assembly at the end of the boom is allowed to rotate about its center of
mass. Optical encoders mounted on the ducted fan, counterweight pulley, and the
base of the stand measure the three degrees of freedom. The fan is controlled by
commanding a current to the electric motor for fan thrust and by commanding RC
servos to control the thrust vectoring mechanism.

The sensors are read and the commands sent by a DSP-based multi-processor
system, comprised of a D/A card, a digital I/O card, two Texas Instruments C40
signal processors, two Compaq Alpha processors, and a high-speed host PC inter-
face. A real-time interface provides access to the processors and I/O hardware. The
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NTG software resides on both of the Alpha processors, each capable of running
real-time optimization.

The ducted fan is modeled in terms of the position and orientation of the fan,
and their velocities. Letting x represent the horizontal translation, z the vertical
translation and θ the rotation about the boom axis, the equations of motion are
given by

mẍ+ FXa
− FXb

cos θ − FZb
sin θ = 0,

mz̈ + FZa
+ FXb

sin θ − FZb
cos θ = mgeff,

Jθ̈ −Ma +
1

rs
IpΩẋ cos θ − FZb

rf = 0,

(3.19)

where FXa
= D cos γ + L sin γ and FZa

= −D sin γ + L cos γ are the aerodynamic
forces and FXb

and FZb
are thrust vectoring body forces in terms of the lift (L),

drag (D), and flight path angle (γ). Ip and Ω are the moment of inertia and angular
velocity of the ducted fan propeller, respectively. J is the moment of ducted fan and
rf is the distance from center of mass along the Xb axis to the effective application
point of the thrust vectoring force. The angle of attack α can be derived from the
pitch angle θ and the flight path angle γ by

α = θ − γ.

The flight path angle can be derived from the spatial velocities by

γ = arctan
−ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(α) D = qSCD(α) M = c̄SCM (α),

respectively. The dynamic pressure is given by q = 1
2ρV

2. The norm of the velocity is
denoted by V , S the surface area of the wings, and ρ is the atmospheric density. The
coefficients of lift (CL(α)), drag (CD(α)) and the moment coefficient (CM (α)) are
determined from a combination of wind tunnel and flight testing and are described
in more detail in [MM99], along with the values of the other parameters.

Real-Time Trajectory Generation

In this section we describe the implementation of the trajectory generation al-
gorithms by using NTG to generate minimum time trajectories in real time. An
LQR-based regulator is used to stabilize the system. We focus in this section on
aggressive, forward flight trajectories. The next section extends the controller to
use a receding horizon controller, but on a simpler class of trajectories.

Stabilization Around Reference Trajectory

The results in this section rely on the traditional two degree of freedom design
paradigm described in Chapter ??. In this approach, a local control law (inner loop)
is used to stabilize the system around the trajectory computed based on a nominal
model. This compensates for uncertainties in the model, which are predominantly
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due to aerodynamics and friction. Elements such as the ducted fan flying through
its own wake, ground effects and velocity- and angle-of-attack dependent thrust
contribute to the aerodynamic uncertainty. Actuation models are not used when
generating the reference trajectory, resulting in another source of uncertainty.

Since only the position of the fan is measured, we must estimate the velocities.
We use an extended Kalman filter (described in later chapters) with the optimal
gain matrix is gain scheduled on the (estimated) forward velocity.

The stabilizing LQR controllers were gain scheduled on pitch angle, θ, and the
forward velocity, ẋ. The pitch angle was allowed to vary from −π/2 to π/2 and the
velocity ranged from 0 to 6 m/s. The weights were chosen differently for the hover-
to-hover and forward flight modes. For the forward flight mode, a smaller weight
was placed on the horizontal (x) position of the fan compared to the hover-to-hover
mode. Furthermore, the z weight was scheduled as a function of forward velocity
in the forward flight mode. There was no scheduling on the weights for hover-to-
hover. The elements of the gain matrices for each of the controller and observer are
linearly interpolated over 51 operating points.

Nonlinear Trajectory Generation Parameters

We solve a minimum time optimal control problem to generate a feasible trajectory
for the system. The system is modeled using the nonlinear equations described
above and computed the open loop forces and state trajectories for the nominal
system. This system is not known to be differentially flat (due to the aerodynamic
forces) and hence we cannot completely eliminate the differential constraints.

We choose three outputs, z1 = x, z2 = z, and z3 = θ, which results in a
system with one remaining differential constraint. Each output is parameterized
with four, sixth order C4 piecewise polynomials over the time interval scaled by the
minimum time. A fourth output, z4 = T , is used to represent the time horizon to
be minimized and is parameterized by a scalar. There are a total of 37 variables in
this optimization problem. The trajectory constraints are enforced at 21 equidistant
breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the
outputs. Clearly there is a trade between the parameters (variables, initial values
of the variables, and breakpoints) and measures of performance (convergence, run-
time, and conservative constraints). Extensive simulations were run to determine
the right combination of parameters to meet the performance goals of our system.

Forward Flight

To obtain the forward flight test data, an operator commanded a desired forward
velocity and vertical position with joysticks. We set the trajectory update time δ to
2 seconds. By rapidly changing the joysticks, NTG produces high angle of attack
maneuvers. Figure 3.4aa depicts the reference trajectories and the actual θ and ẋ
over 60 s. Figure 3.4b shows the commanded forces for the same time interval. The
sequence of maneuvers corresponds to the ducted fan transitioning from near hover
to forward flight, then following a command from a large forward velocity to a large
negative velocity, and finally returning to hover.
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Figure 3.5: Forward flight test case: altitude and x position (actual (solid) and
desired (dashed)). Airfoil represents actual pitch angle (θ) of the ducted fan.

Figure 3.5 is an illustration of the ducted fan altitude and x position for these
maneuvers. The air-foil in the figure depicts the pitch angle (θ). It is apparent from
this figure that the stabilizing controller is not tracking well in the z direction. This
is due to the fact that unmodeled frictional effects are significant in the vertical
direction. This could be corrected with an integrator in the stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average com-
putation time was less than one second. Each of the 30 trajectories converged to
an optimal solution and was approximately between 4 and 12 seconds in length.
A random initial guess was used for the first NTG trajectory computation. Sub-
sequent NTG computations used the previous solution as an initial guess. Much
improvement can be made in determining a “good” initial guess. Improvement in
the initial guess will improve not only convergence but also computation times.

Receding Horizon Control

The results of the previous section demonstrate the ability to compute optimal
trajectories in real time, although the computation time was not sufficiently fast
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for closing the loop around the optimization. In this section, we make use of a
shorter update time δ, a fixed horizon time T with a quadratic integral cost, and
a CLF terminal cost to implement the receding horizon controller described in
Section 3.2. We also limit the operation of the system to near hover, so that we can
use the local linearization to find the terminal CLF.

We have implemented the receding horizon controller on the ducted fan exper-
iment where the control objective is to stabilize the hover equilibrium point. The
quadratic cost is given by

L(x, u) =
1

2
x̂TQx̂+

1

2
ûTRû

V (x) = γx̂TP x̂
(3.20)

where
x̂ = x− xeq = (x, z, θ − π/2, ẋ, ż, θ̇)

û = u− ueq = (FXb
−mg,FZb

)

Q = diag{4, 15, 4, 1, 3, 0.3}

R = diag{0.5, 0.5},

For the terminal cost, we choose γ = 0.075 and P is the unique stable solution to
the algebraic Riccati equation corresponding to the linearized dynamics of equa-
tion (3.19) at hover and the weights Q and R. Note that if γ = 1/2, then V (·) is the
CLF for the system corresponding to the LQR problem. Instead V is a relaxed (in
magnitude) CLF, which achieved better performance in the experiment. In either
case, V is valid as a CLF only in a neighborhood around hover since it is based
on the linearized dynamics. We do not try to compute off-line a region of attrac-
tion for this CLF. Experimental tests omitting the terminal cost and/or the input
constraints leads to instability. The results in this section show the success of this
choice for V for stabilization. An inner-loop PD controller on θ, θ̇ is implemented
to stabilize to the receding horizon states θ∗T , θ̇

∗
T . The θ dynamics are the fastest

for this system and although most receding horizon controllers were found to be
nominally stable without this inner-loop controller, small disturbances could lead
to instability.

The optimal control problem is set-up in NTG code by parameterizing the three
position states (x, z, θ), each with 8 B-spline coefficients. Over the receding horizon
time intervals, 11 and 16 breakpoints were used with horizon lengths of 1, 1.5, 2,
3, 4 and 6 seconds. Breakpoints specify the locations in time where the differential
equations and any constraints must be satisfied, up to some tolerance. The value
of Fmax

Xb
for the input constraints is made conservative to avoid prolonged input

saturation on the real hardware. The logic for this is that if the inputs are saturated
on the real hardware, no actuation is left for the inner-loop θ controller and the
system can go unstable. The value used in the optimization is Fmax

Xb
= 9 N.

Computation time is non-negligible and must be considered when implementing
the optimal trajectories. The computation time varies with each optimization as
the current state of the ducted fan changes. The following notational definitions
will facilitate the description of how the timing is set-up:
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Figure 3.6: Receding horizon input trajectories.

i Integer counter of RHC computations
ti Value of current time when RHC computation i started
δc(i) Computation time for computation i

u∗T (i)(t) Optimal output trajectory corresponding to computation
i, with time interval t ∈ [ti, ti + T ]

A natural choice for updating the optimal trajectories for stabilization is to do so
as fast as possible. This is achieved here by constantly resolving the optimization.
When computation i is done, computation i + 1 is immediately started, so ti+1 =
ti + δc(i). Figure 3.6 gives a graphical picture of the timing set-up as the optimal
input trajectories u∗T (·) are updated. As shown in the figure, any computation
i for u∗T (i)(·) occurs for t ∈ [ti, ti+1] and the resulting trajectory is applied for
t ∈ [ti+1, ti+2]. At t = ti+1 computation i+ 1 is started for trajectory u∗T (i+ 1)(·),
which is applied as soon as it is available (t = ti+2). For the experimental runs
detailed in the results, δc(i) is typically in the range of [0.05, 0.25] seconds, meaning
4 to 20 optimal control computations per second. Each optimization i requires the
current measured state of the ducted fan and the value of the previous optimal
input trajectories u∗T (i − 1) at time t = ti. This corresponds to, respectively, 6
initial conditions for state vector x and 2 initial constraints on the input vector u.
Figure 3.6 shows that the optimal trajectories are advanced by their computation
time prior to application to the system. A dashed line corresponds to the initial
portion of an optimal trajectory and is not applied since it is not available until that
computation is complete. The figure also reveals the possible discontinuity between
successive applied optimal input trajectories, with a larger discontinuity more likely
for longer computation times. The initial input constraint is an effort to reduce
such discontinuities, although some discontinuity is unavoidable by this method.
Also note that the same discontinuity is present for the 6 open-loop optimal state
trajectories generated, again with a likelihood for greater discontinuity for longer
computation times. In this description, initialization is not an issue because we
assume the receding horizon computations are already running prior to any test
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Figure 3.7: Receding horizon control: (a) moving one second average of compu-
tation time for RHC implementation with varying horizon time, (b) response of
RHC controllers to 6 meter offset in x for different horizon lengths.

runs. This is true of the experimental runs detailed in the results.
The experimental results show the response of the fan with each controller to a

6 meter horizontal offset, which is effectively engaging a step-response to a change
in the initial condition for x. The following details the effects of different receding
horizon control parameterizations, namely as the horizon changes, and the responses
with the different controllers to the induced offset.

The first comparison is between different receding horizon controllers, where
time horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses 16
breakpoints. Figure 3.7a shows a comparison of the average computation time as
time proceeds. For each second after the offset was initiated, the data correspond
to the average run time over the previous second of computation. Note that these
computation times are substantially smaller than those reported for real-time tra-
jectory generation, due to the use of the CLF terminal cost versus the terminal
constraints in the minimum-time, real-time trajectory generation experiments.

There is a clear trend toward shorter average computation times as the time
horizon is made longer. There is also an initial transient increase in average compu-
tation time that is greater for shorter horizon times. In fact, the 6 second horizon
controller exhibits a relatively constant average computation time. One explanation
for this trend is that, for this particular test, a 6 second horizon is closer to what
the system can actually do. After 1.5 seconds, the fan is still far from the desired
hover position and the terminal cost CLF is large, likely far from its region of at-
traction. Figure 3.7b shows the measured x response for these different controllers,
exhibiting a rise time of 8–9 seconds independent of the controller. So a horizon
time closer to the rise time results in a more feasible optimization in this case.
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3.5 Further Reading

Exercises

3.1 File missing: clf-linearization

3.2 In this problem we will explore the effect of constraints on control of the linear
unstable system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u

ẋ2 = x1 + 0.5u

subject to the constraint that |u| ≤ a where a is a postive constant.

(a) Ignore the constraint (a = ∞) and design an LQR controller to stabilize the
system. Plot the response of the closed system from the initial condition given by
x = (1, 0).

(b) Use SIMULINK or ode45 to simulate the system for some finite value of a
with an initial condition x(0) = (1, 0). Numerically (trial and error) determine the
smallest value of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable from
x(0) = (ρ, 0). Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control law for
this system. Show that this controller has larger region of attraction than the con-
troller designed in part (b). (Hint: solve the finite horizon LQ problem analytically,
using the bang-bang example as a guide to handle the input constraint.)

3.3 File missing: rhc-scalar.tex

3.4 File missing: rhc-constrained.tex


