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Chapter Two
Optimal Control

This set of notes expands on Chapter 6 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the concepts of reachability and state
feedback. We also expand on topics in Section 7.5 of ÅM08 in the area
of feedforward compensation. Beginning with a review of optimization, we
introduce the notion of Lagrange multipliers and provide a summary of
the Pontryagin’s maximum principle. Using these tools we derive the linear
quadratic regulator for linear systems and describe its usage.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment. Some familiarity with optimization
of nonlinear functions is also assumed.

2.1 Review: Optimization

Optimization refers to the problem of choosing a set of parameters that
maximize or minimize a given function. In control systems, we are often
faced with having to choose a set of parameters for a control law so that
the some performance condition is satisfied. In this chapter we will seek to
optimize a given specification, choosing the parameters that maximize the
performance (or minimize the cost). In this section we review the conditions
for optimization of a static function, and then extend this to optimization
of trajectories and control laws in the remainder of the chapter. More infor-
mation on basic techniques in optimization can be found in [Lue97] or the
introductory chapter of [LS95].

Consider first the problem of finding the minimum of a smooth function
F : Rn → R. That is, we wish to find a point x∗ ∈ Rn such that F (x∗) ≤
F (x) for all x ∈ Rn. A necessary condition for x∗ to be a minimum is that
the gradient of the function be zero at x∗:

∂F

∂x
(x∗) = 0.

The function F (x) is often called a cost function and x∗ is the optimal value
for x. Figure 2.1 gives a graphical interpretation of the necessary condition
for a minimum. Note that these are not sufficient conditions; the points x1
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Figure 2.1: Optimization of functions. The minimum of a function occurs at a
point where the gradient is zero.
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Figure 2.2: Optimization with constraints. (a) We seek a point x∗ that minimizes
F (x) while lying on the surface G(x) = 0 (a line in the x1x2 plane). (b) We can
parameterize the constrained directions by computing the gradient of the constraint
G. Note that x ∈ R

2 in (a), with the third dimension showing F (x), while x ∈ R
3

in (b).

and x2 and x∗ in the figure all satisfy the necessary condition but only one
is the (global) minimum.

The situation is more complicated if constraints are present. Let Gi :
Rn → R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0 repre-
senting the constraints. Suppose that we wish to find x∗ ∈ Rn such that
Gi(x∗) = 0 and F (x∗) ≤ F (x) for all x ∈ {x ∈ Rn : Gi(x) = 0, i = 1, . . . , k}.
This situation can be visualized as constraining the point to a surface (de-
fined by the constraints) and searching for the minimum of the cost function
along this surface, as illustrated in Figure 2.2a.

A necessary condition for being at a minimum is that there are no di-
rections tangent to the constraints that also decrease the cost. Given a con-
straint function G(x) = (G1(x), . . . , Gk(x)), x ∈ Rn we can represent the
constraint as a n − k dimensional surface in Rn, as shown in Figure 2.2b.
The tangent directions to the surface can be computed by considering small
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perturbations of the constraint that remain on the surface:

Gi(x+ δx) ≈ Gi(x) +
∂Gi

∂x
(x)δx = 0. =⇒

∂Gi

∂x
(x)δx = 0,

where δx ∈ Rn is a vanishingly small perturbation. It follows that the normal
directions to the surface are spanned by ∂Gi/∂x, since these are precisely
the vectors that annihilate an admissible tangent vector δx.

Using this characterization of the tangent and normal vectors to the
constraint, a necessary condition for optimization is that the gradient of F
is spanned by vectors that are normal to the constraints, so that the only
directions that increase the cost violate the constraints. We thus require that
there exist scalars λi, i = 1, . . . , k such that

∂F

∂x
(x∗) +

k∑

i=1

λi
∂Gi

∂x
(x∗) = 0.

If we let G =
[
G1 G2 . . . Gk

]T
, then we can write this condition as

∂F

∂x
+ λT

∂G

∂x
= 0 (2.1)

the term ∂F/∂x is the usual (gradient) optimality condition while the term
∂G/∂x is used to “cancel” the gradient in the directions normal to the
constraint.

An alternative condition can be derived by modifying the cost function
to incorporate the constraints. Defining F̃ = F +

∑
λiGi, the necessary

condition becomes
∂F̃

∂x
(x∗) = 0.

The scalars λi are called Lagrange multipliers. Minimizing F̃ is equivalent
to the optimization given by

min
x

(
F (x) + λTG(x)

)
. (2.2)

The variables λ can be regarded as free variables, which implies that we need
to choose x such that G(x) = 0 in order to insure the cost is minimized.
Otherwise, we could choose λ to generate a large cost.

Example 2.1 Two free variables with a constraint
Consider the cost function given by

F (x) = F0 + (x1 − a)2 + (x2 − b)2,

which has an unconstrained minimum at x = (a, b). Suppose that we add a
constraint G(x) = 0 given by

G(x) = x1 − x2.
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With this constraint, we seek to optimize F subject to x1 = x2. Although in
this case we could do this by simple substitution, we instead carry out the
more general procedure using Lagrange multipliers.

The augmented cost function is given by

F̃ (x) = F0 + (x1 − a)2 + (x2 − b)2 + λ(x1 − x2),

where λ is the Lagrange multiplier for the constraint. Taking the derivative
of F̃ , we have

∂F̃

∂x
=

[
2x1 − 2a+ λ 2x2 − 2b− λ

]
.

Setting each of these equations equal to zero, we have that at the minimum

x∗1 = a− λ/2, x∗2 = b+ λ/2.

The remaining equation that we need is the constraint, which requires that
x∗1 = x∗2. Using these three equations, we see that λ∗ = a− b and we have

x∗1 =
a+ b

2
, x∗2 =

a+ b

2
.

To verify the geometric view described above, note that the gradients of
F and G are given by

∂F

∂x
=

[
2x1 − 2a 2x2 − 2b

]
,

∂G

∂x
=

[
1 −1

]
.

At the optimal value of the (constrained) optimization, we have

∂F

∂x
=

[
b− a a− b

]
,

∂G

∂x
=

[
1 −1

]
.

Although the derivative of F is not zero, it is pointed in a direction that
is normal to the constraint, and hence we cannot decrease the cost while
staying on the constraint surface. ∇

We have focused on finding the minimum of a function. We can switch
back and forth between maximum and minimum by simply negating the
cost function:

max
x

F (x) = min
x

(
−F (x)

)

We see that the conditions that we have derived are independent of the sign
of F since they only depend on the gradient begin zero in approximate di-
rections. Thus finding x∗ that satisfies the conditions corresponds to finding
an extremum for the function.

Very good software is available for numerically solving optimization prob-
lems of this sort. The NPSOL and SNOPT libraries are available in FOR-
TRAN (and C). In MATLAB, the fmin function can be used to solve a
constrained optimization problem.
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2.2 Optimal Control of Systems

Consider now the optimal control problem:

min
u(·)

∫ T

0
L(x, u) dt+ V

(
x(T )

)

subject to the constraint

ẋ = f(x, u), x ∈ R
n, u ∈ R

m.

Abstractly, this is a constrained optimization problem where we seek a fea-
sible trajectory (x(t), u(t)) that minimizes the cost function

J(x, u) =

∫ T

0
L(x, u) dt+ V

(
x(T )

)
.

More formally, this problem is equivalent to the “standard” problem of min-
imizing a cost function J(x, u) where (x, u) ∈ L2[0, T ] (the set of square
integrable functions) and h(z) = ẋ(t)− f(x(t), u(t)) = 0 models the dynam-
ics. The term L(x, u) is referred to as the integral cost and V (x(T )) is the
final (or terminal) cost.

There are many variations and special cases of the optimal control prob-
lem. We mention a few here:

Infinite horizon optimal control. If we let T = ∞ and set V = 0, then we seek
to optimize a cost function over all time. This is called the infinite horizon
optimal control problem, versus the finite horizon problem with T < ∞.
Note that if an infinite horizon problem has a solution with finite cost, then
the integral cost term L(x, u) must approach zero as t → ∞.

Linear quadratic (LQ) optimal control. If the dynamical system is linear and
the cost function is quadratic, we obtain the linear quadratic optimal control
problem:

ẋ = Ax+Bu, J =

∫ T

0

(
xTQx+ uTRu

)
dt+ xT (T )P1x(T ).

In this formulation, Q ≥ 0 penalizes state error, R > 0 penalizes the input
and P1 > 0 penalizes terminal state. This problem can be modified to track a
desired trajectory (xd, ud) by rewriting the cost function in terms of (x−xd)
and (u− ud).

Terminal constraints. It is often convenient to ask that the final value of
the trajectory, denoted xf , be specified. We can do this by requiring that
x(T ) = xf or by using a more general form of constraint:

ψi(x(T )) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining ψi(x(T )) =
xi(T ) − xi,f . For a control problem with a full set of terminal constraints,
V (x(T )) can be omitted (since its value is fixed).
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Time optimal control. If we constrain the terminal condition to x(T ) = xf ,
let the terminal time T be free (so that we can optimize over it) and choose
L(x, u) = 1, we can find the time-optimal trajectory between an initial and
final condition. This problem is usually only well-posed if we additionally
constrain the inputs u to be bounded.

A very general set of conditions are available for the optimal control problem
that captures most of these special cases in a unifying framework. Consider
a nonlinear system

ẋ = f(x, u), x = R
n,

x(0) given, u ∈ Ω ⊂ R
m,

where f(x, u) = (f1(x, u), . . . fn(x, u)) : Rn×Rm → Rn. We wish to minimize
a cost function J with terminal constraints:

J =

∫ T

0
L(x, u) dt+ V (x(T )), ψ(x(T )) = 0.

The function ψ : Rn → Rq gives a set of q terminal constraints. Analogous
to the case of optimizing a function subject to constraints, we construct the
Hamiltonian:

H = L+ λT f = L+
∑

λifi.

The variables λ are functions of time and are often referred to as the costate
variables. A set of necessary conditions for a solution to be optimal was
derived by Pontryagin [PBGM62].

Theorem 2.1 (Maximum Principle). If (x∗, u∗) is optimal, then there exists
λ∗(t) ∈ Rn and ν∗ ∈ Rq such that

ẋi =
∂H

∂λi
− λ̇i =

∂H

∂xi

x(0) given, ψ(x(T )) = 0

λ(T ) =
∂V

∂x
(x(T )) + νT

∂ψ

∂x

and
H(x∗(t), u∗(t),λ∗(t)) ≤ H(x∗(t), u,λ∗(t)) for all u ∈ Ω

The form of the optimal solution is given by the solution of a differential
equation with boundary conditions. If u = arg minH(x, u,λ) exists, we can
use this to choose the control law u and solve for the resulting feasible
trajectory that minimizes the cost. The boundary conditions are given by
the n initial states x(0), the q terminal constraints on the state ψ(x(T )) = 0
and the n− q final values for the Lagrange multipliers

λ(T ) =
∂V

∂x
(x(T )) + νT

∂ψ

∂x
.

In this last equation, ν is a free variable and so there are n equations in n+q
free variables, leaving n − q constraints on λ(T ). In total, we thus have 2n
boundary values.
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The maximum principle is a very general (and elegant) theorem. It allows
the dynamics to be nonlinear and the input to be constrained to lie in a set
Ω, allowing the possibility of bounded inputs. If Ω = Rm (unconstrained
input) and H is differentiable, then a necessary condition for the optimal
input is

∂H

∂u
= 0.

We note that even though we are minimizing the cost, this is still usually
called the maximum principle (an artifact of history).

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95],
omitting some of the details required for a fully rigorous proof. We use
the method of Lagrange multipliers, augmenting our cost function by the
dynamical constraints and the terminal constraints:

J̃(x(·), u(·),λ(·), ν) = J(x, u) +

∫ T

0
−λT (t)

(
ẋ(t)− f(x, u)

)
dt+ νTψ(x(T ))

=

∫ T

0

(
L(x, u)− λT (t)

(
ẋ(t)− f(x, u)

)
dt

+ V (x(T )) + νTψ(x(T )).

Note that λ is a function of time, with each λ(t) corresponding to the instan-
taneous constraint imposed by the dynamics. The integral over the interval
[0, T ] plays the role of the sum of the finite constraints in the regular opti-
mization.

Making use of the definition of the Hamiltonian, the augmented cost
becomes

J̃(x(·), u(·),λ(·), ν) =
∫ T

0

(
H(x, u)− λT (t)ẋ

)
dt+ V (x(T )) + νTψ(x(T )).

We can now “linearize” the cost function around the optimal solution x(t) =
x∗(t) + δx(t), u(t) = u∗(t) + δu(t), λ(t) = λ∗(t) + δλ(t) and ν = ν∗ + δν.
Taking T as fixed for simplicity (see [LS95] for the more general case), the
incremental cost can be written as

δJ̃ = J̃(x∗ + δx, u∗ + δu,λ∗ + δλ, ν∗ + δν)− J̃(x∗, u∗,λ∗, ν∗)

≈
∫ T

0

(
∂H

∂x
δx+

∂H

∂u
δu− λT δẋ+

(∂H
∂λ

− ẋT
)
δλ

)
dt

+
∂V

∂x
δx(T ) + νT

∂ψ

∂x
δx(T ) + δνTψ

(
x(T ), u(T )

)
,

where we have omitted the time argument inside the integral and all deriva-
tives are evaluated along the optimal solution.
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We can eliminate the dependence on δẋ using integration by parts:

−
∫ T

0
λT δẋ dt = −λT (T )δx(T ) + λT (0)δx(0) +

∫ T

0
λ̇T δx dt.

Since we are requiring x(0) = x0, the δx(0) term vanishes and substituting
this into δJ̃ yields

δJ̃ ≈
∫ T

0

[(∂H
∂x

+ λ̇T
)
δx+

∂H

∂u
δu+

(∂H
∂λ

− ẋT
)
δλ

]
dt

+
(∂V
∂x

+ νT
∂ψ

∂x
− λT (T )

)
δx(T ) + δνTψ

(
x(T ), u(T )

)
.

To be optimal, we require δJ̃ = 0 for all δx, δu, δλ and δν, and we obtain
the (local) conditions in the theorem.

2.3 Examples

To illustrate the use of the maximum principle, we consider a number of
analytical examples. Additional examples are given in the exercises.

Example 2.2 Scalar linear system
Consider the optimal control problem for the system

ẋ = ax+ bu, (2.3)

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0)
is given, and a, b ∈ R are positive constants. We wish to find a trajectory
(x(t), u(t)) that minimizes the cost function

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c > 0 is a constant. This cost
function balances the final value of the state with the input required to get
to that state.

To solve the problem, we define the various elements used in the maxi-
mum principle. Our integral and terminal costs are given by

L = 1
2u

2(t) V = 1
2cx

2(tf ).

We write the Hamiltonian of this system and derive the following expressions
for the costate λ:

H = L+ λf = 1
2u

2 + λ(ax+ bu)

λ̇ = −
∂H

∂x
= −aλ, λ(tf ) =

∂V

∂x
= cx(tf ).

This is a final value problem for a linear differential equation in λ and the
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solution can be shown to be

λ(t) = cx(tf )e
a(tf−t).

The optimal control is given by

∂H

∂u
= u+ bλ = 0 ⇒ u∗(t) = −bλ(t) = −bcx(tf )e

a(tf−t).

Substituting this control into the dynamics given by equation (2.3) yields a
first-order ODE in x:

ẋ = ax− b2cx(tf )e
a(tf−t).

This can be solved explicitly as

x∗(t) = x(to)e
a(t−to) +

b2c

2a
x∗(tf )

[
ea(tf−t) − ea(t+tf−2to)

]
.

Setting t = tf and solving for x(tf ) gives

x∗(tf ) =
2a ea(tf−to)x(to)

2a− b2c
(
1− e2a(tf−to)

)

and finally we can write

u∗(t) = −
2abc ea(2tf−to−t)x(to)

2a− b2c
(
1− e2a(tf−to)

) (2.4)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a− b2c
(
1− e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

(2.5)

We can use the form of this expression to explore how our cost function
affects the optimal trajectory. For example, we can ask what happens to
the terminal state x∗(tf ) and c → ∞. Setting t = tf in equation (2.5) and
taking the limit we find that

lim
c→∞

x∗(tf ) = 0.

∇

Example 2.3 Bang-bang control
The time-optimal control program for a linear system has a particularly
simple solution. Consider a linear system with bounded input

ẋ = Ax+Bu, |u| ≤ 1,

and suppose we wish to minimize the time required to move from an initial
state x0 to a final state xf . Without loss of generality we can take xf = 0.
We choose the cost functions and terminal constraints to satisfy

J =

∫ T

0
1 dt, ψ(x(T )) = x(T ).
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To find the optimal control, we form the Hamiltonian

H = 1 + λT (Ax+Bu) = 1 + (λTA)x+ (λTB)u.

Now apply the conditions in the maximum principle:

ẋ =
∂H

∂λ
= Ax+Bu

−λ̇ =
∂H

∂x
= ATλ

u = arg min H = −sgn(λTB)

The optimal solution always satisfies this equation (since the maximum prin-
ciple gives a necessary condition) with x(0) = x0 and x(T ) = 0. It follows
that the input is always either +1 or −1, depending on λTB. This type of
control is called “bang-bang” control since the input is always on one of its
limits. If λT (t)B = 0 then the control is not well defined, but if this is only
true for a specific time instant (e.g., λT (t)B crosses zero) then the analysis
still holds. ∇

2.4 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a
system, we can also use optimal control theory to design a feedback law
u = α(x) that stabilizes a given equilibrium point. Roughly speaking, we do
this by continuously re-solving the optimal control problem from our current
state x(t) and applying the resulting input u(t). Of course, this approach is
impractical unless we can solve explicitly for the optimal control and some-
how rewrite the optimal control as a function of the current state in a simple
way. In this section we explore exactly this approach for the linear quadratic
optimal control problem.

We begin with the the finite horizon, linear quadratic regulator (LQR)
problem, given by

ẋ = Ax+Bu, x ∈ R
n, u ∈ R

n, x0 given,

J̃ =
1

2

∫ T

0

(
xTQxx+ uTQuu

)
dt+

1

2
xT (T )P1x(T ),

where Qx ≥ 0, Qu > 0, P1 ≥ 0 are symmetric, positive (semi-) definite
matrices. Note the factor of 1

2 is usually left out, but we included it here
to simplify the derivation. (The optimal control will be unchanged if we
multiply the entire cost function by 2.)

To find the optimal control, we apply the maximum principle. We begin
by computing the Hamiltonian H:

H =
1

2
xTQxx+

1

2
uTQuu+ λT (Ax+Bu).
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Applying the results of Theorem 2.1, we obtain the necessary conditions

ẋ =

(
∂H

∂λ

)T

= Ax+Bu x(0) = x0

−λ̇ =

(
∂H

∂x

)T

= Qxx+ATλ λ(T ) = P1x(T )

0 =
∂H

∂u
= Quu+ λTB.

(2.6)

The last condition can be solved to obtain the optimal controller

u = −Q−1
u BTλ,

which can be substituted into the dynamic equation (2.6) To solve for the
optimal control we must solve a two point boundary value problem using the
initial condition x(0) and the final condition λ(T ). Unfortunately, it is very
hard to solve such problems in general.

Given the linear nature of the dynamics, we attempt to find a solution
by setting λ(t) = P (t)x(t) where P (t) ∈ Rn×n. Substituting this into the
necessary condition, we obtain

λ̇ = Ṗ x+ Pẋ = Ṗ x+ P (Ax−BQ−1
u BTP )x,

=⇒ −Ṗ x− PAx+ PBQ−1
u BPx = Qxx+ATPx.

This equation is satisfied if we can find P (t) such that

− Ṗ = PA+ATP − PBQ−1
u BTP +Qx, P (T ) = P1. (2.7)

This is a matrix differential equation that defines the elements of P (t) from
a final value P (T ). Solving it is conceptually no different than solving the
initial value problem for vector-valued ordinary differential equations, except
that we must solve for the individual elements of the matrix P (t) backwards
in time. Equation (2.7) is called the Riccati ODE.

An important property of the solution to the optimal control problem
when written in this form is that P (t) can be solved without knowing either
x(t) or u(t). This allows the two point boundary value problem to be sepa-
rated into first solving a final-value problem and then solving a time-varying
initial value problem. More specifically, given P (t) satisfying equation (2.7),
we can apply the optimal input

u(t) = −Q−1
u BTP (t)x.

and then solve the original dynamics of the system forward in time from
the initial condition x(0) = x0. Note that this is a (time-varying) feedback
control that describes how to move from any state to the origin in time T .

An important variation of this problem is the case when we choose T = ∞
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and eliminate the terminal cost (set P1 = 0). This gives us the cost function

J =

∫ ∞

0
(xTQxx+ uTQuu) dt. (2.8)

Since we do not have a terminal cost, there is no constraint on the final value
of λ or, equivalently, P (t). We can thus seek to find a constant P satisfying
equation (2.7). In other words, we seek to find P such that

PA+ATP − PBQ−1
u BTP +Qx = 0. (2.9)

This equation is called the algebraic Riccati equation. Given a solution, we
can choose our input as

u = −Q−1
u BTPx.

This represents a constant gain K = Q−1
u BTP where P is the solution of

the algebraic Riccati equation.
The implications of this result are interesting and important. First, we

notice that if Qx > 0 and the control law corresponds to a finite minimum
of the cost, then we must have that limt→∞ x(t) = 0, otherwise the cost will
be unbounded. This means that the optimal control for moving from any
state x to the origin can be achieved by applying a feedback u = −Kx for
K chosen as described as above and letting the system evolve in closed loop.
More amazingly, the gain matrixK can be written in terms of the solution to
a (matrix) quadratic equation (2.9). This quadratic equation can be solved
numerically: in MATLAB the command K = lqr(A, B, Qx, Qu) provides
the optimal feedback compensator.

In deriving the optimal quadratic regulator, we have glossed over a num-
ber of important details. It is clear from the form of the solution that we
must have Qu > 0 since its inverse appears in the solution. We would typ-
ically also have Qx > 0 so that the integral cost is only zero when x = 0,
but in some instances we might only care about certain states, which would
imply that Qx ≥ 0. For this case, if we let Qx = HTH (always possible),
our cost function becomes

J =

∫ ∞

0
xTHTHx+ uTQuu dt =

∫ ∞

0
∥Hx∥2 + uTQuu dt.

A technical condition for the optimal solution to exist is that the pair (A,H)
be detectable (implied by observability). This makes sense intuitively by
considering y = Hx as an output. If y is not observable then there may be
non-zero initial conditions that produce no output and so the cost would
be zero. This would lead to an ill-conditioned problem and hence we will
require that Qx ≥ 0 satisfy an appropriate observability condition.

We summarize the main results as a theorem.

Theorem 2.2. Consider a linear control system with quadratic cost:

ẋ = Ax+Bu, J =

∫ ∞

0
xTQxx+ uTQuu dt.
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Assume that the system defined by (A,B) is reachable, Qx = QT
x ≥ 0 and

Qu = QT
u > 0. Further assume that Qx = HTH and that the linear sys-

tem with dynamics matrix A and output matrix H is observable. Then the
optimal controller satisfies

u = −Q−1
u BTPx, PA+ATP − PBQ−1

u BTP = −Qx,

and the minimum cost from initial condition x(0) is given by J∗ = xT (0)Px(0).

The basic form of the solution follows from the necessary conditions, with
the theorem asserting that a constant solution exists for T = ∞ when the
additional conditions are satisfied. The full proof can be found in standard
texts on optimal control, such as Lewis and Syrmos [LS95] or Athans and
Falb [AF06]. A simplified version, in which we first assume the optimal
control is linear, is left as an exercise.

Example 2.4 Optimal control of a double integrator
Consider a double integrator system

dx

dt
=

[
0 1
0 0

]
x+

[
0
1

]
u

with quadratic cost given by

Qx =

[
q2 0
0 0

]
, Qu = 1.

The optimal control is given by the solution of matrix Riccati equation (2.9).
Let P be a symmetric positive definite matrix of the form

P =

[
a b
b c

]
.

Then the Riccati equation becomes
[
−b2 + q2 a− bc
a− bc 2b− c2

]
=

[
0 0
0 0

]
,

which has solution

P =

[√
2q3 q

q
√
2q

]

.

The controller is given by

K = Q−1
u BTP = [q

√
2q].

The feedback law minimizing the given cost function is then u = −Kx.
To better understand the structure of the optimal solution, we exam-

ine the eigenstructure of the closed loop system. The closed-loop dynamics
matrix is given by

Acl = A−BK =

[
0 1
−q −

√
2q

]
.
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The characteristic polynomial of this matrix is

λ2 +
√

2qλ+ q.

Comparing this to λ2 + 2ζω0λ+ ω2
0, we see that

ω0 =
√
q, ζ =

1√
2
.

Thus the optimal controller gives a closed loop system with damping ratio
ζ = 0.707, giving a good tradeoff between rise time and overshoot (see
ÅM08). ∇

2.5 Choosing LQR weights

One of the key questions in LQR design is how to choose the weights Qx and
Qu. To choose specific values for the cost function weights Qx and Qu, we
must use our knowledge of the system we are trying to control. A particularly
simple choice is to use diagonal weights

Qx =

⎡

⎢⎣
q1 0

. . .
0 qn

⎤

⎥⎦ , Qu =

⎡

⎢⎣
ρ1 0

. . .
0 ρn

⎤

⎥⎦ .

For this choice of Qx and Qu, the individual diagonal elements describe how
much each state and input (squared) should contribute to the overall cost.
Hence, we can take states that should remain small and attach higher weight
values to them. Similarly, we can penalize an input versus the states and
other inputs through choice of the corresponding input weight ρj .

Choosing the individual weights for the (diagonal) elements of the Qx and
Qu matrix can be done by deciding on a weighting of the errors from the in-
dividual terms. Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Qx and Qu in equation (2.8): (1) choose qi and ρj
as the inverse of the square of the maximum value for the corresponding xi
or uj ; (2) modify the elements to obtain a compromise among response time,
damping and control effort. This second step can be performed by trial and
error.

It is also possible to choose the weights such that only a given subset of
variable are considered in the cost function. Let z = Hx be the output we
want to keep small and verify that (A,H) is observable. Then we can use a
cost function of the form

Qx = HTH Qu = ρI.

The constant ρ allows us to trade off ∥z∥2 versus ρ∥u∥2.
We illustrate the various choices through an example application.
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(a) Harrier “jump jet”

y

θ

F1

F2

r

x

(b) Simplified model

Figure 2.3: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F1 and a vertical force F2 acting at a distance r from the center of mass.

Example 2.5 Thrust vectored aircraft
Consider the thrust vectored aircraft example introduced in ÅM08, Exam-
ple 2.9. The system is shown in Figure 2.3, reproduced from ÅM08. The
linear quadratic regulator problem was illustrated in Example 6.8, where
the weights were chosen as Qx = I and Qu = ρI. Figure 2.4 reproduces the
step response for this case.

A more physically motivated weighted can be computing by specifying
the comparable errors in each of the states and adjusting the weights ac-
cordingly. Suppose, for example that we consider a 1 cm error in x, a 10 cm
error in y and a 5◦ error in θ to be equivalently bad. In addition, we wish
to penalize the forces in the sidewards direction (F1) since these results in a
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(a) Step response in x and y
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(b) Effect of control weight ρ

Figure 2.4: Step response for a vectored thrust aircraft. The plot in (a) shows
the x and y positions of the aircraft when it is commanded to move 1 m in each
direction. In (b) the x motion is shown for control weights ρ = 1, 102, 104. A higher
weight of the input term in the cost function causes a more sluggish response.
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(a) Step response in x and y
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(b) Inputs for the step response

Figure 2.5: Step response for a vector thrust aircraft using physically motivated
LQR weights (a). The rise time for x is much faster than in Figure 2.4a, but there
is a small oscillation and the inputs required are quite large (b).

loss in efficiency. This can be accounted for in the LQR weights be choosing

Qx =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

100 0 0 0 0 0
0 1 0 0 0 0
0 0 2π/9 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Qu =

[

10 0
0 1

]

.

The results of this choice of weights are shown in Figure 2.5. ∇

2.6 Advanced Topics

In this section we briefly touch on some related topics in optimal control,
with reference to more detailed treatments where appropriate.

Singular extremals. The necessary conditions in the maximum principle en-
force the constraints through the of the Lagrange multipliers λ(t). In some
instances, we can get an extremal curve that has one or more of the λ’s
identically equal to zero. This corresponds to a situation in which the con-
straint is satisfied strictly through the minimization of the cost function and
does not need to be explicitly enforced. We illustrate this case through an
example.

Example 2.6 Nonholonomic integrator
Consider the minimum time optimization problem for the nonholonomic
integrator introduced in Example 1.2 with input constraints |ui| ≤ 1. The
Hamiltonian for the system is given by

H = 1 + λ1u1 + λ2u2 + λ3x2u1

and the resulting equations for the Lagrange multipliers are

λ̇1 = 0, λ̇2 = λ3x2, λ̇3 = 0. (2.10)
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It follows from these equations that λ1 and λ3 are constant. To find the
input u corresponding to the extremal curves, we see from the Hamiltonian
that

u1 = −sgn(λ1 + λ3x2u1), u2 = −sgnλ2.

These equations are well-defined as long as the arguments of sgn(·) are non-
zero and we get switching of the inputs when the arguments pass through
0.

An example of an abnormal extremal is the optimal trajectory between
x0 = (0, 0, 0) to xf = (ρ, 0, 0) where ρ > 0. The minimum time trajectory
is clearly given by moving on a straight line with u1 = 1 and u2 = 0. This
extremal satisfies the necessary conditions but with λ2 ≡ 0, so that the
“constraint” that ẋ2 = u2 is not strictly enforced through the Lagrange
multipliers. ∇

2.7 Further Reading

There are a number of excellent books on optimal control. One of the first
(and best) is the book by Pontryagin et al. [PBGM62]. During the 1960s and
1970s a number of additional books were written that provided many ex-
amples and served as standard textbooks in optimal control classes. Athans
and Falb [AF06] and Bryson and Ho [BH75] are two such texts. A very el-
egant treatment of optimal control from the point of view of optimization
over general linear spaces is given by Luenberger [Lue97]. Finally, a modern
engineering textbook that contains a very compact and concise derivation of
the key results in optimal control is the book by Lewis and Syrmos [LS95].

Exercises

2.1 (a) Let G1, G2, . . . , Gk be a set of row vectors on a Rn. Let F be
another row vector on Rn such that for every x ∈ Rn satisfying
Gix = 0, i = 1, . . . , k, we have Fx = 0. Show that there are con-
stants λ1,λ2, . . . ,λk such that

F =
k∑

i=1

λkGk.

(b) Let x∗ ∈ Rn be an the extremal point (maximum or minimum) of a
function f subject to the constraints gi(x) = 0, i = 1, . . . , k. Assum-
ing that the gradients ∂gi(x∗)/∂x are linearly independent, show that
there are k scalers λk, i = 1, . . . , n such that the function

f̃(x) = f(x) +
n∑

i=1

λigi(x)
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has an extremal point at x∗.

2.2 Consider the following control system

q̇ = u

Ẏ = quT − uqT

where u ∈ Rm and Y ∈ Rm×∋ is a skew symmetric matrix, Y T = Y .

(a) For the fixed end point problem, derive the form of the optimal con-
troller minimizing the following integral

1

2

∫ 1

0
uTu dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =

⎡

⎣
0 −y3 y2
y3 0 −y1
−y2 y1 0

⎤

⎦

for some y ∈ R3, give an explicit formula for the optimal inputs u.

(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ ) ∈
Rm × Rm×m where Ỹ T = −Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

2.3 In this problem, you will use the maximum principle to show that the
shortest path between two points is a straight line. We model the problem
by constructing a control system

ẋ = u,

where x ∈ R2 is the position in the plane and u ∈ R2 is the velocity vector
along the curve. Suppose we wish to find a curve of minimal length con-
necting x(0) = x0 and x(1) = xf . To minimize the length, we minimize the
integral of the velocity along the curve,

J =

∫ 1

0
∥ẋ∥ dt =

∫ 1

0

√
ẋT ẋ dt,

subject to to the initial and final state constraints. Use the maximum prin-
ciple to show that the minimal length path is indeed a straight line at max-
imum velocity. (Hint: try minimizing using the integral cost ẋT ẋ first and
then show this also optimizes the optimal control problem with integral cost
∥ẋ∥.)

2.4 Consider the optimal control problem for the system

ẋ = −ax+ bu,
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where x = R is a scalar state, u ∈ R is the input, the initial state x(t0)
is given, and a, b ∈ R are positive constants. (Note that this system is not
quite the same as the one in Example 2.2.) The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),

where the terminal time tf is given and c is a constant.

(a) Solve explicitly for the optimal control u∗(t) and the corresponding
state x∗(t) in terms of t0, tf , x(t0) and t and describe what happens
to the terminal state x∗(tf ) as c → ∞.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat
output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M−1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and
x(tf ). Your answer should specify the explicit input ud(t) and state
xd(t) in terms of t0, tf , x(t0), x(tf ) and t.

(d) Let a = 1 and c = 1. Use your solution to the optimal control prob-
lem and the flatness-based trajectory generation to find a trajectory
between x(0) = 0 and x(1) = 1. Plot the state and input trajectories
for each solution and compare the costs of the two approaches.

(e) (Optional) Suppose that we choose more than the minimal number of
basis functions for the differentially flat output. Show how to use the
additional degrees of freedom to minimize the cost of the flat trajec-
tory and demonstrate that you can obtain a cost that is closer to the
optimal.

2.5 Repeat Exercise 2.4 using the system

ẋ = −ax3 + bu.

For part (a) you need only write the conditions for the optimal cost.

2.6 Consider the problem of moving a two-wheeled mobile robot (e.g., a
Segway) from one position and orientation to another. The dynamics for the
system is given by the nonlinear differential equation

ẋ = cos θ v, ẏ = sin θ v, θ̇ = ω,

where (x, y) is the position of the rear wheels, θ is the angle of the robot
with respect to the x axis, v is the forward velocity of the robot and ω is
spinning rate. We wish to choose an input (v,ω) that minimizes the time
that it takes to move between two configurations (x0, y0, θ0) and (xf , yf , θf ),
subject to input constraints |v| ≤ L and |ω| ≤ M .
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Use the maximum principle to show that any optimal trajectory consists
of segments in which the robot is traveling at maximum velocity in either the
forward or reverse direction, and going either straight, hard left (ω = −M)
or hard right (ω = +M).

Note: one of the cases is a bit tricky and cannot be completely proven
with the tools we have learned so far. However, you should be able to show
the other cases and verify that the tricky case is possible.

2.7 Consider a linear system with input u and output y and suppose we
wish to minimize the quadratic cost function

J =

∫ ∞

0

(
yT y + ρuTu

)
dt.

Show that if the corresponding linear system is observable, then the closed
loop system obtained by using the optimal feedback u = −Kx is guaranteed
to be stable.

2.8 Consider the system transfer function

H(s) =
s+ b

s(s+ a)
, a, b > 0

with state space representation

ẋ =

[
0 1
0 −a

]
x+

[
0
1

]
u,

y =
[
b 1

]
x

and performance criterion

V =

∫ ∞

0
(x21 + u2)dt.

(a) Let

P =

[
p11 p12
p21 p22

]
,

with p12 = p21 and P > 0 (positive definite). Write the steady state
Riccati equation as a system of four explicit equations in terms of the
elements of P and the constants a and b.

(b) Find the gains for the optimal controller assuming the full state is
available for feedback.

(c) Find the closed loop natural frequency and damping ratio.

2.9 Consider the optimal control problem for the system

ẋ = ax+ bu J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf ),
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where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. We take the terminal time tf as
given and let c > 0 be a constant that balances the final value of the state
with the input required to get to that position. The optimal trajectory is
derived in Example 2.2.

Now consider the infinite horizon cost

J = 1
2

∫ ∞

t0

u2(t) dt

with x(t) at t = ∞ constrained to be zero.

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution corre-
sponding to the algebraic Riccati equation. Note that this gives an
explicit feedback law (u = −bPx).

(b) Plot the state solution of the finite time optimal controller for the
following parameter values

a = 2, b = 0.5, x(t0) = 4,

c = 0.1, 10, tf = 0.5, 1, 10.

(This should give you a total of 6 curves.) Compare these to the infinite
time optimal control solution. Which finite time solution is closest to
the infinite time solution? Why?

2.10 Consider the lateral control problem for an autonomous ground vehicle
from Example 1.1. We assume that we are given a reference trajectory r =
(xd, yd) corresponding to the desired trajectory of the vehicle. For simplicity,
we will assume that we wish to follow a straight line in the x direction at a
constant velocity vd > 0 and hence we focus on the y and θ dynamics:

ẏ = sin θ vd, θ̇ =
1

l
tanφ vd.

We let vd = 10 m/s and l = 2 m.

(a) Design an LQR controller that stabilizes the position y to yd = 0. Plot
the step and frequency response for your controller and determine the
overshoot, rise time, bandwidth and phase margin for your design.
(Hint: for the frequency domain specifications, break the loop just
before the process dynamics and use the resulting SISO loop transfer
function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given
by yd(t) = r(t). Modify your control law so that you track r(t) and
demonstrate the performance of your controller on a “slalom course”
given by a sinusoidal trajectory with magnitude 1 meter and frequency
1 Hz.
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