
Optimization-Based Control

Richard M. Murray

Control and Dynamical Systems

California Institute of Technology

Version v2.2d (8 Jan 2022)

© California Institute of Technology

All rights reserved.

This manuscript is for personal use only and may not be reproduced,

in whole or in part, without written consent from the author.

Chapter 3

Optimal Control

This set of notes expands on Chapter 7 of FBS2e, which introduces the concepts of
reachability and state feedback. We also expand on topics in Section 8.5 of FBS2e
in the area of feedforward compensation. Beginning with a review of optimization,
we introduce the notion of Lagrange multipliers and provide a summary of the
Pontryagin’s maximum principle. Using these tools we derive the linear quadratic
regulator for linear systems and describe its usage.

Prerequisites. Readers should be familiar with modeling of input/output control
systems using di↵erential equations, linearization of a system around an equilib-
rium point and state space control of linear systems, including reachability and
eigenvalue assignment. Some familiarity with optimization of nonlinear functions
is also assumed.

3.1 Review: Optimization

Optimization refers to the problem of choosing a set of parameters that maximize
or minimize a given function. In control systems, we are often faced with having to
choose a set of parameters for a control law so that the some performance condition
is satisfied. In this chapter we will seek to optimize a given specification, choosing
the parameters that maximize the performance (or minimize the cost). In this
section we review the conditions for optimization of a static function, and then
extend this to optimization of trajectories and control laws in the remainder of
the chapter. More information on basic techniques in optimization can be found
in [Lue97] or the introductory chapter of [LS95].

Consider first the problem of finding the minimum of a smooth function F : Rn
!

R. That is, we wish to find a point x⇤
2 Rn such that F (x⇤) F (x) for all x 2 Rn.

A necessary condition for x⇤ to be a minimum is that the gradient of the function
be zero at x⇤:

@F

@x
(x⇤) = 0.

The function F (x) is often called a cost function and x
⇤ is the optimal value for x.

Figure 3.1 gives a graphical interpretation of the necessary condition for a minimum.
Note that these are not su�cient conditions; the points x1 and x2 and x

⇤ in the

3-1

3-2 CHAPTER 3. OPTIMAL CONTROL

dx

x
⇤

x1

x2

x

F (x)

@F
@x dx

Figure 3.1: Optimization of functions. The minimum of a function occurs at a
point where the gradient is zero.

x1

x⇤
F (x)

G(x) = 0

x2

(a) Constrained optimization

x2

G(x) = 0

@G
@x x3

x1

(b) Constraint normal vectors

Figure 3.2: Optimization with constraints. (a) We seek a point x⇤ that minimizes
F (x) while lying on the surface G(x) = 0 (a line in the x1x2 plane). (b) We can
parameterize the constrained directions by computing the gradient of the constraint
G. Note that x 2 R2 in (a), with the third dimension showing F (x), while x 2 R3

in (b).

figure all satisfy the necessary condition but only one is the (global) minimum.
The situation is more complicated if constraints are present. Let Gi : Rn

!

R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0 representing the
constraints. Suppose that we wish to find x

⇤
2 Rn such that Gi(x⇤) = 0 and

F (x⇤) F (x) for all x 2 {x 2 Rn : Gi(x) = 0, i = 1, . . . , k}. This situation can be
visualized as constraining the point to a surface (defined by the constraints) and
searching for the minimum of the cost function along this surface, as illustrated in
Figure 3.2a.

A necessary condition for being at a minimum is that there are no directions
tangent to the constraints that also decrease the cost. Given a constraint function
G(x) = (G1(x), . . . , Gk(x)), x 2 Rn we can represent the constraint as a n � k

dimensional surface in Rn, as shown in Figure 3.2b. The tangent directions to the
surface can be computed by considering small perturbations of the constraint that
remain on the surface:

Gi(x+ �x) ⇡ Gi(x) +
@Gi

@x
(x)�x = 0. =)

@Gi

@x
(x)�x = 0,

where �x 2 Rn is a vanishingly small perturbation. It follows that the normal

3.1. REVIEW: OPTIMIZATION 3-3

directions to the surface are spanned by @Gi/@x, since these are precisely the
vectors that annihilate an admissible tangent vector �x.

Using this characterization of the tangent and normal vectors to the constraint, a
necessary condition for optimization is that the gradient of F is spanned by vectors
that are normal to the constraints, so that the only directions that increase the
cost violate the constraints. We thus require that there exist scalars �i, i = 1, . . . , k
such that

@F

@x
(x⇤) +

kX

i=1

�i
@Gi

@x
(x⇤) = 0.

If we let G =
⇥
G1 G2 . . . Gk

⇤T
, then we can write this condition as

@F

@x
+ �

T @G

@x
= 0 (3.1)

the term @F/@x is the usual (gradient) optimality condition while the term @G/@x

is used to “cancel” the gradient in the directions normal to the constraint.
An alternative condition can be derived by modifying the cost function to incor-

porate the constraints. Defining eF = F +
P
�iGi, the necessary condition becomes

@ eF
@x

(x⇤) = 0.

The scalars �i are called Lagrange multipliers. Minimizing eF is equivalent to the
optimization given by

min
x

�
F (x) + �

T
G(x)

�
. (3.2)

The variables � can be regarded as free variables, which implies that we need to
choose x such that G(x) = 0 in order to insure the cost is minimized. Otherwise,
we could choose � to generate a large cost.

Example 3.1 Two free variables with a constraint
Consider the cost function given by

F (x) = F0 + (x1 � a)2 + (x2 � b)2,

which has an unconstrained minimum at x = (a, b). Suppose that we add a con-
straint G(x) = 0 given by

G(x) = x1 � x2.

With this constraint, we seek to optimize F subject to x1 = x2. Although in this
case we could do this by simple substitution, we instead carry out the more general
procedure using Lagrange multipliers.

The augmented cost function is given by

F̃ (x) = F0 + (x1 � a)2 + (x2 � b)2 + �(x1 � x2),

where � is the Lagrange multiplier for the constraint. Taking the derivative of F̃ ,
we have

@F̃

@x
=

⇥
2x1 � 2a+ � 2x2 � 2b� �

⇤
.

3-4 CHAPTER 3. OPTIMAL CONTROL

Setting each of these equations equal to zero, we have that at the minimum

x
⇤
1 = a� �/2, x

⇤
2 = b+ �/2.

The remaining equation that we need is the constraint, which requires that x⇤
1 = x

⇤
2.

Using these three equations, we see that �⇤ = a� b and we have

x
⇤
1 =

a+ b

2
, x

⇤
2 =

a+ b

2
.

To verify the geometric view described above, note that the gradients of F and
G are given by

@F

@x
=

⇥
2x1 � 2a 2x2 � 2b

⇤
,

@G

@x
=

⇥
1 �1

⇤
.

At the optimal value of the (constrained) optimization, we have

@F

@x
=

⇥
b� a a� b

⇤
,

@G

@x
=

⇥
1 �1

⇤
.

Although the derivative of F is not zero, it is pointed in a direction that is normal
to the constraint, and hence we cannot decrease the cost while staying on the
constraint surface. r

We have focused on finding the minimum of a function. We can switch back
and forth between maximum and minimum by simply negating the cost function:

max
x

F (x) = min
x

�
�F (x)

�

We see that the conditions that we have derived are independent of the sign of F
since they only depend on the gradient begin zero in approximate directions. Thus
finding x

⇤ that satisfies the conditions corresponds to finding an extremum for the
function.

Very good software is available for numerically solving optimization problems
of this sort. The NPSOL, SNOPT, and IPOPT libraries are available in FOR-
TRAN and C. In Python, the scipy.optimize module of SciPy can be used to solve
constrained optimization problems.

3.2 Optimal Control of Systems

We now return to the problem of finding a feasible trajectory for a system that
satisfies some performance condition. The basic idea is to try to optimize a given
cost function over all trajectories of a system that satisfy the possible dynamics
of the system. The input to the system is used to “parameterize” the possible
trajectories of the system.

More concretely, we consider the optimal control problem:

min
u(·)

Z T

0
L(x, u) dt+ V

�
x(T)

�

3.2. OPTIMAL CONTROL OF SYSTEMS 3-5

subject to the constraint

ẋ = f(x, u), x 2 Rn
, u 2 ⌦ ⇢ Rm

.

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (x(t), u(t)) that minimizes the cost function

J(x, u) =

Z T

0
L(x, u) dt+ V

�
x(T)

�
.

More formally, this problem is equivalent to the “standard” problem of minimizing a
cost function J(x, u) where (x, u) 2 L2[0, T] (the set of square integrable functions)
and g(z) = ẋ(t) � f(x(t), u(t)) = 0 models the dynamics. The term L(x, u) is
referred to as the integral cost and V (x(T)) is the final (or terminal) cost.

There are many variations and special cases of the optimal control problem. We
mention a few here:

Infinite horizon optimal control. If we let T = 1 and set V = 0, then we seek to
optimize a cost function over all time. This is called the infinite horizon optimal
control problem, versus the finite horizon problem with T < 1. Note that if an
infinite horizon problem has a solution with finite cost, then the integral cost term
L(x, u) must approach zero as t ! 1.

Linear quadratic (LQ) optimal control. If the dynamical system is linear and the
cost function is quadratic, we obtain the linear quadratic optimal control problem:

ẋ = Ax+Bu, J =

Z T

0

�
x
T
Qx+ u

T
Ru

�
dt+ x

T(T)P1x(T).

In this formulation, Q � 0 penalizes state error, R > 0 penalizes the input and
P1 > 0 penalizes terminal state. This problem can be modified to track a desired
trajectory (xd, ud) by rewriting the cost function in terms of (x�xd) and (u�ud).

Terminal constraints. It is often convenient to ask that the final value of the
trajectory, denoted xf , be specified. We can do this by requiring that x(T) = xf

or by using a more general form of constraint:

 i(x(T)) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining i(x(T)) =
xi(T)�xi,f . For a control problem with a full set of terminal constraints, V (x(T))
can be omitted (since its value is fixed).

Time optimal control. If we constrain the terminal condition to x(T) = xf , let the
terminal time T be free (so that we can optimize over it) and choose L(x, u) = 1,
we can find the time-optimal trajectory between an initial and final condition. This
problem is usually only well-posed if we additionally constrain the inputs u to be
bounded.

A very general set of conditions is available for the optimal control problem that
captures most of these special cases in a unifying framework. Consider a nonlinear
system

ẋ = f(x, u), x = Rn
,

x(0) given, u 2 ⌦ ⇢ Rm
,

3-6 CHAPTER 3. OPTIMAL CONTROL

where f(x, u) = (f1(x, u), . . . fn(x, u)) : Rn
⇥ Rm

! Rn. We wish to minimize a
cost function J with terminal constraints:

J =

Z T

0
L(x, u) dt+ V (x(T)), (x(T)) = 0.

The function : Rn
! Rq gives a set of q terminal constraints. Analogous to the

case of optimizing a function subject to constraints, we construct the Hamiltonian:

H = L+ �
T
f = L+

nX

i=1

�ifi.

The variables � are functions of time and are often referred to as the costate vari-
ables. A set of necessary conditions for a solution to be optimal was derived by
Pontryagin [PBGM62].

Theorem 3.1 (Maximum Principle). If (x⇤
, u

⇤) is optimal, then there exists �⇤(t) 2
Rn and ⌫⇤ 2 Rq such that

ẋ
⇤
i =

@H

@�i
(x⇤

,�
⇤) x(0) given, (x(T)) = 0

��̇
⇤
i =

@H

@xi
(x⇤

,�
⇤) �

⇤
i (T) =

@V

@xi

�
x
⇤(T)

�
+

qX

j=1

⌫
⇤
j
@ j

@xi

�
x
⇤(T)

�

and

H(x⇤(t), u⇤(t),�⇤(t)) H(x⇤(t), u,�⇤(t)) for all u 2 ⌦

The form of the optimal solution is given by the solution of a di↵erential equa-
tion with boundary conditions. If u = arg minH(x, u,�) exists, we can use this to
choose the control law u and solve for the resulting feasible trajectory that mini-
mizes the cost. The boundary conditions are given by the n initial states x(0), the
q terminal constraints on the state (x(T)) = 0 and the n � q final values for the
Lagrange multipliers

�
T(T) =

@V

@x
(x(T)) + ⌫

T @

@x
.

In this last equation, ⌫ is a free variable and so there are n equations in n+ q free
variables, leaving n � q constraints on �(T). In total, we thus have 2n boundary
values.

The maximum principle is a very general (and elegant) theorem. It allows the
dynamics to be nonlinear and the input to be constrained to lie in a set ⌦, allowing
the possibility of bounded inputs. If ⌦ = Rm (unconstrained input) and H is
di↵erentiable, then a necessary condition for the optimal input is

@H

@ui
= 0, i = 1, . . . ,m.

We note that even though we are minimizing the cost, this is still usually called
the maximum principle (an artifact of history).

3.2. OPTIMAL CONTROL OF SYSTEMS 3-7

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95], omitting
some of the details required for a fully rigorous proof. We use the method of
Lagrange multipliers, augmenting our cost function by the dynamical constraints
and the terminal constraints:

J̃(x(·), u(·),�(·), ⌫) = J(x, u) +

Z T

0
��

T(t)
�
ẋ(t)� f(x, u)

�
dt+ ⌫

T
 (x(T))

=

Z T

0

�
L(x, u)� �

T(t)
�
ẋ(t)� f(x, u)

�
dt

+ V (x(T)) + ⌫
T
 (x(T)).

Note that � is a function of time, with each �(t) corresponding to the instantaneous
constraint imposed by the dynamics. The integral over the interval [0, T] plays the
role of the sum of the finite constraints in the regular optimization.

Making use of the definition of the Hamiltonian, the augmented cost becomes

J̃(x(·), u(·),�(·), ⌫) =

Z T

0

�
H(x, u)� �

T(t)ẋ
�
dt+ V (x(T)) + ⌫

T
 (x(T)).

We can now “linearize” the cost function around the optimal solution x(t) = x
⇤(t)+

�x(t), u(t) = u
⇤(t)+ �u(t), �(t) = �

⇤(t)+ ��(t) and ⌫ = ⌫
⇤+ �⌫. Taking T as fixed

for simplicity (see [LS95] for the more general case), the incremental cost can be
written as

�J̃ = J̃(x⇤ + �x, u
⇤ + �u,�

⇤ + ��, ⌫
⇤ + �⌫)� J̃(x⇤

, u
⇤
,�

⇤
, ⌫

⇤)

⇡

Z T

0

✓
@H

@x
�x+

@H

@u
�u� �

T
�ẋ+

⇣
@H

@�
� ẋ

T
⌘
��

◆
dt

+
@V

@x
�x(T) + ⌫

T @

@x
�x(T) + �⌫

T

�
x(T), u(T)

�
,

where we have omitted the time argument inside the integral and all derivatives
are evaluated along the optimal solution.

We can eliminate the dependence on �ẋ using integration by parts:

�

Z T

0
�
T
�ẋ dt = ��

T(T)�x(T) + �
T(0)�x(0) +

Z T

0
�̇
T
�x dt.

Since we are requiring x(0) = x0, the �x(0) term vanishes and substituting this into
�J̃ yields

�J̃ ⇡

Z T

0

⇣
@H

@x
+ �̇

T
⌘
�x+

@H

@u
�u+

⇣
@H

@�
� ẋ

T
⌘
��

�
dt

+
⇣
@V

@x
+ ⌫

T @

@x
� �

T(T)
⌘
�x(T) + �⌫

T

�
x(T), u(T)

�
.

To be optimal, we require �J̃ = 0 for all �x, �u, �� and �⌫, and we obtain the
(local) conditions in the theorem.

3-8 CHAPTER 3. OPTIMAL CONTROL

3.3 Examples

To illustrate the use of the maximum principle, we consider a number of analytical
examples. Additional examples are given in the exercises.

Example 3.2 Scalar linear system
Consider the optimal control problem for the system

ẋ = ax+ bu, (3.3)

where x = R is a scalar state, u 2 R is the input, the initial state x(t0) is given,
and a, b 2 R are positive constants. We wish to find a trajectory (x(t), u(t)) that
minimizes the cost function

J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf),

where the terminal time tf is given and c > 0 is a constant. This cost function
balances the final value of the state with the input required to get to that state.

To solve the problem, we define the various elements used in the maximum
principle. Our integral and terminal costs are given by

L = 1
2u

2(t) V = 1
2cx

2(tf).

We write the Hamiltonian of this system and derive the following expressions for
the costate �:

H = L+ �f = 1
2u

2 + �(ax+ bu)

�̇ = �
@H

@x
= �a�, �(tf) =

@V

@x
= cx(tf).

This is a final value problem for a linear di↵erential equation in � and the solution
can be shown to be

�(t) = cx(tf)e
a(tf�t)

.

The optimal control is given by

@H

@u
= u+ b� = 0) u

⇤(t) = �b�(t) = �bcx(tf)e
a(tf�t)

.

Substituting this control into the dynamics given by equation (3.3) yields a first-
order ODE in x:

ẋ = ax� b
2
cx(tf)e

a(tf�t)
.

This can be solved explicitly as

x
⇤(t) = x(to)e

a(t�to) +
b
2
c

2a
x
⇤(tf)

h
e
a(tf�t)

� e
a(t+tf�2to)

i
.

Setting t = tf and solving for x(tf) gives

x
⇤(tf) =

2a ea(tf�to)x(to)

2a� b2c
�
1� e2a(tf�to)

�

3.3. EXAMPLES 3-9

and finally we can write

u
⇤(t) = �

2abc ea(2tf�to�t)
x(to)

2a� b2c
�
1� e2a(tf�to)

� (3.4)

x
⇤(t) = x(to)e

a(t�to) +
b
2
c e

a(tf�to)x(to)

2a� b2c
�
1� e2a(tf�to)

�
h
e
a(tf�t)

� e
a(t+tf�2to)

i
. (3.5)

We can use the form of this expression to explore how our cost function a↵ects
the optimal trajectory. For example, we can ask what happens to the terminal
state x

⇤(tf) and c ! 1. Setting t = tf in equation (3.5) and taking the limit we
find that

lim
c!1

x
⇤(tf) = 0.

r

Example 3.3 Bang-bang control
The time-optimal control program for a linear system has a particularly simple
solution. Consider a linear system with bounded input

ẋ = Ax+Bu, |u| 1,

and suppose we wish to minimize the time required to move from an initial state
x0 to a final state xf . Without loss of generality we can take xf = 0. We choose
the cost functions and terminal constraints to satisfy

J =

Z T

0
1 dt, (x(T)) = x(T).

In this case, the time T is not fixed and so it turns out that one additional condition
is required for the optimal controller. For the case considered in Theorem 3.1, where
the cost functions and constraints do not depend explictly on time, the additional
condition is

H(x(T), u(T)) = 0

(see [LS95]).
To find the optimal control, we form the Hamiltonian

H = 1 + �
T(Ax+Bu) = 1 + (�TA)x+ (�TB)u.

Now apply the conditions in the maximum principle:

ẋ =

✓
@H

@�

◆T

= Ax+Bu,

��̇ =

✓
@H

@x

◆T

= A
T
�,

u = arg min H = �sgn(�TB),

1 + �
T(T)(Ax(T) +Bu(T)) = 0.

The optimal solution always satisfies this set of equations (since the maximum
principle gives a necessary condition) with x(0) = x0 and x(T) = 0. It follows

3-10 CHAPTER 3. OPTIMAL CONTROL

that the input is always either +1 or �1, depending on �TB. This type of control
is called “bang-bang” control since the input is always on one of its limits. If
�
T(t)B = 0 then the control is not well defined, but if this is only true for a specific

time instant (e.g., �T(t)B crosses zero) then the analysis still holds. r

3.4 Python Implementation1

The optimal module of the Python Control Systems Library (python-control) pro-
vides support for optimization-based controllers for nonlinear systems with state
and input constraints.

The optimal control module provides a means of computing optimal trajectories
for nonlinear systems and implementing optimization-based controllers, including
model predictive control (described in Chapter 4). The basic optimal control prob-
lem is to solve the optimization

min
u(·)

Z T

0
L(x, u) dt+ V

�
x(T)

�

subject to the constraint

ẋ = f(x, u), x 2 Rn
, u 2 Rm

.

Constraints on the states and inputs along the trajectory and at the end of the
trajectory can also be specified:

lbi gi(x, u) ubi, i = 1, . . . , k

 i(x(T)) = 0, i = 1, . . . , q.

The python-control implementation of optimal control follows the basic problem
setup described here, but carries out all computations in discrete time (so that
integrals become sums) and over a finite horizon.

To describe an optimal control problem we need an input/output system, a time
horizon, a cost function, and (optionally) a set of constraints on the state and/or
input, either along the trajectory and at the terminal time. The optimal control
module operates by converting the optimal control problem into a standard opti-
mization problem that can be solved by scipy.optimize.minimize(). The optimal
control problem can be solved by using the solve_ocp() function:

res = obc.solve_ocp(sys, horizon, X0, cost, constraints)

The sys parameter should be an InputOutputSystem and the horizon parameter
should represent a time vector that gives the list of times at which the cost and
constraints should be evaluated.

The cost function has call signature cost(t, x, u) and should return the (in-
cremental) cost at the given time, state, and input. It will be evaluated at each
point in the horizon vector. The terminal_cost parameter can be used to specify a
cost function for the final point in the trajectory.

The constraints parameter is a list of constraints similar to that used by the
scipy.optimize.minimize() function. Each constraint is a tuple of one of the fol-
lowing forms:

1
The material in this section is drawn from [FGM

+
21].

3.5. LINEAR QUADRATIC REGULATORS 3-11

(LinearConstraint, A, lb, ub)

(NonlinearConstraint, f, lb, ub)

For a linear constraint, the 2D array A is multiplied by a vector consisting of the
current state x and current input u stacked vertically, then compared with the upper
and lower bound. This constraint is satisfied if

lb <= A @ np.hstack([x, u]) <= ub

A nonlinear constraint is satisfied if

lb <= f(x, u) <= ub

By default, constraints are taken to be trajectory constraints holding at all points
on the trajectory. The terminal_constraint parameter can be used to specify a
constraint that only holds at the final point of the trajectory.

The return value for solve_ocp() is a bundle object that has the following ele-
ments:

res.success: True if solved successfully
res.inputs: optimal input
res.states: state trajectory (if return_x == True)
res.time: copy of the time horizon vector

In addition, the results from scipy.optimize.minimize() are also available.

3.5 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a system, we
can also use optimal control theory to design a feedback law u = ↵(x) that stabilizes
a given equilibrium point. Roughly speaking, we do this by continuously re-solving
the optimal control problem from our current state x(t) and applying the resulting
input u(t). Of course, this approach is impractical unless we can solve explicitly
for the optimal control and somehow rewrite the optimal control as a function of
the current state in a simple way. In this section we explore exactly this approach
for the linear quadratic optimal control problem.

We begin with the the finite horizon, linear quadratic regulator (LQR) problem,
given by

ẋ = Ax+Bu, x 2 Rn
, u 2 Rn

, x0 given,

J̃ =
1

2

Z T

0

�
x
T
Qxx+ u

T
Quu

�
dt+

1

2
x
T(T)P1x(T),

where Qx � 0, Qu > 0, P1 � 0 are symmetric, positive (semi-) definite matrices.
Note the factor of 1

2 is usually left out, but we included it here to simplify the
derivation. (The optimal control will be unchanged if we multiply the entire cost
function by 2.)

To find the optimal control, we apply the maximum principle. We begin by
computing the Hamiltonian H:

H =
1

2
x
T
Qxx+

1

2
u
T
Quu+ �

T(Ax+Bu).

3-12 CHAPTER 3. OPTIMAL CONTROL

Applying the results of Theorem 3.1, we obtain the necessary conditions

ẋ =

✓
@H

@�

◆T

= Ax+Bu, x(0) = x0,

��̇ =

✓
@H

@x

◆T

= Qxx+A
T
�, �(T) = P1x(T),

0 =

✓
@H

@u

◆T

= Quu+B
T
�.

(3.6)

The last condition can be solved to obtain the optimal controller

u = �Q
�1
u B

T
�,

which can be substituted into the dynamic equation (3.6) To solve for the optimal
control we must solve a two point boundary value problem using the initial condition
x(0) and the final condition �(T). Unfortunately, it is very hard to solve such
problems in general.

Given the linear nature of the dynamics, we attempt to find a solution by setting
�(t) = P (t)x(t) where P (t) 2 Rn⇥n. Substituting this into the necessary condition,
we obtain

�̇ = Ṗ x+ Pẋ = Ṗ x+ P (Ax�BQ
�1
u B

T
P)x,

=) �Ṗ x� PAx+ PBQ
�1
u BPx = Qxx+A

T
Px.

This equation is satisfied if we can find P (t) such that

� Ṗ = PA+A
T
P � PBQ

�1
u B

T
P +Qx, P (T) = P1. (3.7)

This is a matrix di↵erential equation that defines the elements of P (t) from a final
value P (T). Solving it is conceptually no di↵erent than solving the initial value
problem for vector-valued ordinary di↵erential equations, except that we must solve
for the individual elements of the matrix P (t) backwards in time. Equation (3.7)
is called the Riccati ODE.

An important property of the solution to the optimal control problem when
written in this form is that P (t) can be solved without knowing either x(t) or u(t).
This allows the two point boundary value problem to be separated into first solving
a final-value problem and then solving a time-varying initial value problem. More
specifically, given P (t) satisfying equation (3.7), we can apply the optimal input

u(t) = �Q
�1
u B

T
P (t)x.

and then solve the original dynamics of the system forward in time from the ini-
tial condition x(0) = x0. Note that this is a (time-varying) feedback control that
describes how to optimally move from any state toward the origin in time T .

An important variation of this problem is the case when we choose T = 1 and
eliminate the terminal cost (set P1 = 0). This gives us the cost function

J =

Z 1

0
(xT

Qxx+ u
T
Quu) dt. (3.8)

3.5. LINEAR QUADRATIC REGULATORS 3-13

Since we do not have a terminal cost, there is no constraint on the final value of � or,
equivalently, P (t). We can thus seek to find a constant P satisfying equation (3.7).
In other words, we seek to find P such that

PA+A
T
P � PBQ

�1
u B

T
P +Qx = 0. (3.9)

This equation is called the algebraic Riccati equation. Given a solution, we can
choose our input as

u = �Q
�1
u B

T
Px.

This represents a constant gain K = Q
�1
u B

T
P where P is the solution of the

algebraic Riccati equation.
The implications of this result are interesting and important. First, we notice

that if Qx > 0 and the control law corresponds to a finite minimum of the cost,
then we must have that limt!1 x(t) = 0, otherwise the cost will be unbounded.
This means that the optimal control for moving from any state x toward the origin
can be achieved by applying a feedback u = �Kx for K chosen as described as
above and letting the system evolve in closed loop. More amazingly, the gain matrix
K can be written in terms of the solution to a (matrix) quadratic equation (3.9).
This quadratic equation can be solved numerically: in python-control the command
K = control.lqr(A, B, Qx, Qu) provides the optimal feedback compensator.

In deriving the optimal quadratic regulator, we have glossed over a number of
important details. It is clear from the form of the solution that we must have
Qu > 0 since its inverse appears in the solution. We would typically also have
Qx > 0 so that the integral cost is only zero when x = 0, but in some instances
we might only care about certain states, which would imply that Qx � 0. For this
case, if we let Qx = H

T
H (always possible), our cost function becomes

J =

Z 1

0
x
T
H

T
Hx+ u

T
Quu dt =

Z 1

0
kHxk

2 + u
T
Quu dt.

A technical condition for the optimal solution to exist is that the pair (A,H) be
detectable (implied by observability). This makes sense intuitively by considering
y = Hx as an output. If y is not observable then there may be non-zero initial
conditions that produce no output and so the cost would be zero. This would lead
to an ill-conditioned problem and hence we will require that Qx � 0 satisfy an
appropriate observability condition.

We summarize the main results as a theorem.

Theorem 3.2. Consider a linear control system with quadratic cost:

ẋ = Ax+Bu, J =

Z 1

0
x
T
Qxx+ u

T
Quu dt.

Assume that the system defined by (A,B) is reachable, Qx = Q
T
x � 0 and Qu =

Q
T
u > 0. Further assume that Qx = H

T
H and that the linear system with dynamics

matrix A and output matrix H is observable. Then the optimal controller satisfies

u = �Q
�1
u B

T
Px, PA+A

T
P � PBQ

�1
u B

T
P = �Qx,

and the minimum cost from initial condition x(0) is given by J
⇤ = x

T(0)Px(0).

3-14 CHAPTER 3. OPTIMAL CONTROL

The basic form of the solution follows from the necessary conditions, with the
theorem asserting that a constant solution exists for T = 1 when the additional
conditions are satisfied. The full proof can be found in standard texts on optimal
control, such as Lewis and Syrmos [LS95] or Athans and Falb [AF06]. A simplified
version, in which we first assume the optimal control is linear, is left as an exercise.

Example 3.4 Optimal control of a double integrator
Consider a double integrator system

dx

dt
=

0 1
0 0

�
x+

0
1

�
u

with quadratic cost given by

Qx =

q
2 0
0 0

�
, Qu = 1.

The optimal control is given by the solution of matrix Riccati equation (3.9). Let
P be a symmetric positive definite matrix of the form

P =

a b

b c

�
.

Then the Riccati equation becomes

�b

2 + q
2

a� bc

a� bc 2b� c
2

�
=

0 0
0 0

�
,

which has solution

P =

"p
2q3 q

q
p
2q

#
.

The controller is given by

K = Q
�1
u B

T
P = [q

p
2q].

The feedback law minimizing the given cost function is then u = �Kx.
To better understand the structure of the optimal solution, we examine the

eigenstructure of the closed loop system. The closed-loop dynamics matrix is given
by

Acl = A�BK =

0 1
�q �

p
2q

�
.

The characteristic polynomial of this matrix is

�
2 +

p
2q�+ q.

Comparing this to �2 + 2⇣!0�+ !
2
0 , we see that

!0 =
p
q, ⇣ =

1
p
2
.

Thus the optimal controller gives a closed loop system with damping ratio ⇣ = 0.707,
giving a good tradeo↵ between rise time and overshoot (see FBS2e). r

3.6. CHOOSING LQR WEIGHTS 3-15

3.6 Choosing LQR weights

One of the key questions in LQR design is how to choose the weights Qx and Qu.
To choose specific values for the cost function weights Qx and Qu, we must use our
knowledge of the system we are trying to control. A particularly simple choice is
to use diagonal weights

Qx =

2

64
q1 0

. . .
0 qn

3

75 , Qu =

2

64
⇢1 0

. . .
0 ⇢n

3

75 .

For this choice of Qx and Qu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through
choice of the corresponding input weight ⇢j .

Choosing the individual weights for the (diagonal) elements of the Qx and Qu

matrix can be done by deciding on a weighting of the errors from the individual
terms. Bryson and Ho [BH75] have suggested the following method for choosing
the matrices Qx and Qu in equation (3.8): (1) choose qi and ⇢j as the inverse of
the square of the maximum value for the corresponding xi or uj ; (2) modify the
elements to obtain a compromise among response time, damping and control e↵ort.
This second step can be performed by trial and error.

It is also possible to choose the weights such that only a given subset of variable
are considered in the cost function. Let z = Hx be the output we want to keep
small and verify that (A,H) is observable. Then we can use a cost function of the
form

Qx = H
T
H Qu = ⇢I.

The constant ⇢ allows us to trade o↵ kzk
2 versus ⇢kuk2.

We illustrate the various choices through an example application.

Example 3.5 Thrust vectored aircraft
Consider the thrust vectored aircraft example introduced in FBS2e, Example 3.12.
The system is shown in Figure 3.3, reproduced from FBS2e. The linear quadratic
regulator problem was illustrated in Example 6.8, where the weights were chosen
as Qx = I and Qu = ⇢I. Figure 3.4 reproduces the step response for this case.

A more physically motivated weighted can be computing by specifying the com-
parable errors in each of the states and adjusting the weights accordingly. Suppose,
for example that we consider a 1 cm error in x, a 10 cm error in y and a 5� error in ✓
to be equivalently bad. In addition, we wish to penalize the forces in the sidewards
direction (F1) since these results in a loss in e�ciency. This can be accounted for
in the LQR weights be choosing

Qx =

2

666664

100 0 0 0 0 0
0 1 0 0 0 0
0 0 2⇡/9 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

777775
, Qu =

10 0
0 1

�
.

The results of this choice of weights are shown in Figure 3.5. r

3-16 CHAPTER 3. OPTIMAL CONTROL

(a) Harrier “jump jet”

y

✓

F1

F2

r

x

(b) Simplified model

Figure 3.3: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F1 and a vertical force F2 acting at a distance r from the center of mass.

3.7 Advanced Topics

In this section we briefly touch on some related topics in optimal control, with
reference to more detailed treatments where appropriate.

Dynamic programming. An alternative formulation to the optimal control problem
is to make use of the “principle of optimality”, which states (roughly) that if we are
given an optimal policy, then the optimal policy from any point along the imple-
mentation of that policy must also be optimal. In the context of optimal trajectory
generation, we can interpret this as saying that if we solve an optimal control prob-
lem from any state along an optimal trajectory, we will get the remainder of the
optimal trajectory (how could it be otherwise!?).

The implication of this statement for trajectory generation is that we can work
“backwards” from the final time of our optimal control problem and compute the
cost by moving backwards in time until we reach the initial time. Toward this end,
we define the “cost to go” from a given state x at time t as

J(x, t) =

Z tf

t
L(x(⌧), u(⌧)) d⌧ + V (x(tf)).

Given a state x(t), We see that the cost at time tf is given by J(tf, x) = V (x(tf))
and the cost at other times includes the integral of the cost from time t to tf plus
the terminal cost.

It can be shown that a necessary condition for a trajectory x(·), u(·) to be
optimal is that the Hamilton-Jacobi-Bellman equation (HJB equation) be satisfied:

@J
⇤

@t
(x, t) = �H(x, u⇤

,
@J

⇤T

@x
(x, t)), J(x, tf) = V (x), (3.10)

3.7. ADVANCED TOPICS 3-17

(a) Step response in x and y (b) E↵ect of control weight ⇢

Figure 3.4: Step response for a vectored thrust aircraft. The plot in (a) shows
the x and y positions of the aircraft when it is commanded to move 1 m in each
direction. In (b) the xmotion is shown for control weights ⇢ = 1, 102, 104. A higher
weight of the input term in the cost function causes a more sluggish response.

(a) Step response in x and y (b) Inputs for the step response

Figure 3.5: Step response for a vector thrust aircraft using physically motivated
LQR weights (a). The rise time for x is much faster than in Figure 3.4a, but there
is a small oscillation and the inputs required are quite large (b).

where H is the Hamiltonian function, u⇤ is the optimal input, and V : Rn
! R

is the terminal cost. As in the case of the maximum principle, we choose u
⇤ to

minimize the Hamiltonian:

u
⇤ = argmin

u
H(x⇤

, u,
@J

⇤T

@x
(x⇤

, u).

Equation (3.10) is a partial di↵erential equation for J(x, t) with boundary condition
J(x, tf) = V (x).

From the form of the Hamilton-Jacobi-Bellman equation, we see that we can
interpret the costate variables � as

�
T =

@J
⇤

@x
(x, t).

Thus the costate variables can be thought of as the sensitivity of the cost to go at
a given point along the optimal trajectory. This interpretation allows some alter-
native formulations of the optimal control problem, as well as additional insights.

3-18 CHAPTER 3. OPTIMAL CONTROL

While solving the Hamilton-Jacobi-Bellman equation is not particularly easy in
the continuous case, it turns out that discrete version of the problem can make good
use of the principle of optimality. In particular, for problems with variables that
take on a sequence of values from a finite set (known as discrete-decision making
problems), we can compute the optimal set of decisions by starting with the cost
at the end of the sequence and then computing the values of the optimized cost
stepping backwards in time. This technique is known as dynamic programming and
arises in a number of di↵erent applications in computer science, economics, and
other areas.

Detailed explanations of dynamic programming formulations of optimal control
are available in a wide variety of textbooks. The online notes from Daniel Liberzon
are a good open source resource for this material:

http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html

Chapter 5 in these notes provides a more detailed explanation of the material briefly
summarized here.

Singular extremals. The necessary conditions in the maximum principle enforce
the constraints through the of the Lagrange multipliers �(t). In some instances, we
can get an extremal curve that has one or more of the �’s identically equal to zero.
This corresponds to a situation in which the constraint is satisfied strictly through
the minimization of the cost function and does not need to be explicitly enforced.
We illustrate this case through an example.

Example 3.6 Nonholonomic integrator
Consider the minimum time optimization problem for the nonholonomic integrator
introduced in Example 2.2 with input constraints |ui| 1. The Hamiltonian for
the system is given by

H = 1 + �1u1 + �2u2 + �3x2u1

and the resulting equations for the Lagrange multipliers are

�̇1 = 0, �̇2 = �3x2, �̇3 = 0. (3.11)

It follows from these equations that �1 and �3 are constant. To find the input u

corresponding to the extremal curves, we see from the Hamiltonian that

u1 = �sgn(�1 + �3x2u1), u2 = �sgn�2.

These equations are well-defined as long as the arguments of sgn(·) are non-zero
and we get switching of the inputs when the arguments pass through 0.

An example of an abnormal extremal is the optimal trajectory between x0 =
(0, 0, 0) to xf = (⇢, 0, 0) where ⇢ > 0. The minimum time trajectory is clearly given
by moving on a straight line with u1 = 1 and u2 = 0. This extremal satisfies the
necessary conditions but with �2 ⌘ 0, so that the “constraint” that ẋ2 = u2 is not
strictly enforced through the Lagrange multipliers. r

http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html

3.8. FURTHER READING 3-19

3.8 Further Reading

There are a number of excellent books on optimal control. One of the first (and
best) is the book by Pontryagin et al. [PBGM62]. During the 1960s and 1970s a
number of additional books were written that provided many examples and served
as standard textbooks in optimal control classes. Athans and Falb [AF06] and
Bryson and Ho [BH75] are two such texts. A very elegant treatment of optimal
control from the point of view of optimization over general linear spaces is given by
Luenberger [Lue97]. Finally, a modern engineering textbook that contains a very
compact and concise derivation of the key results in optimal control is the book by
Lewis and Syrmos [LS95].

Exercises

3.1 (a) Let G1, G2, . . . , Gk be a set of row vectors on Rn. Let F be another row
vector on Rn such that for every x 2 Rn satisfying Gix = 0, i = 1, . . . , k, we have
Fx = 0. Show that there are constants �1,�2, . . . ,�k such that

F =
kX

i=1

�iGi.

(b) Let x
⇤
2 Rn be an the extremal point (maximum or minimum) of a function

f subject to the constraints gi(x) = 0, i = 1, . . . , k. Assuming that the gradients
@gi(x⇤)/@x are linearly independent, show that there are k scalers �i, i = 1, . . . , k
such that

f̃(x⇤) = f(x⇤) +
kX

i=1

�igi(x
⇤).

3.2 Consider the following control system

q̇ = u

Ẏ = qu
T
� uq

T

where u 2 Rm and Y 2 Rm⇥m is a skew symmetric matrix, Y T = Y .

(a) For the fixed end point problem, derive the form of the optimal controller
minimizing the following integral

1

2

Z 1

0
u
T
u dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =

2

4
0 �y3 y2

y3 0 �y1

�y2 y1 0

3

5

for some y 2 R3, give an explicit formula for the optimal inputs u.

3-20 CHAPTER 3. OPTIMAL CONTROL

(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ) 2 Rm
⇥

Rm⇥m where Ỹ
T = �Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

3.3 In this problem, you will use the maximum principle to show that the shortest
path between two points is a straight line. We model the problem by constructing
a control system

ẋ = u,

where x 2 R2 is the position in the plane and u 2 R2 is the velocity vector along
the curve. Suppose we wish to find a curve of minimal length connecting x(0) = x0

and x(1) = xf . To minimize the length, we minimize the integral of the velocity
along the curve,

J =

Z 1

0
kẋk dt =

Z 1

0

p

ẋTẋ dt,

subject to to the initial and final state constraints. Use the maximum principle to
show that the minimal length path is indeed a straight line at maximum velocity.
(Hint: try minimizing using the integral cost kẋk2 = u

T
u first and then show this

also optimizes the optimal control problem with integral cost kẋk.)

3.4 Consider the optimal control problem for the system

ẋ = �ax+ bu,

where x = R is a scalar state, u 2 R is the input, the initial state x(t0) is given,
and a, b 2 R are positive constants. (Note that this system is not quite the same
as the one in Example 3.2.) The cost function is given by

J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf),

where the terminal time tf is given and c is a constant.

(a) Solve explicitly for the optimal control u⇤(t) and the corresponding state x
⇤(t)

in terms of t0, tf , x(t0) and t and describe what happens to the terminal state
x
⇤(tf) as c ! 1.

(b) Show that the system is di↵erentially flat with appropriate choice of output(s)
and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . ,M � 1} with an appropriate choice
of M , solve for the (non-optimal) trajectory between x(t0) and x(tf). Your answer
should specify the explicit input ud(t) and state xd(t) in terms of t0, tf , x(t0), x(tf)
and t.

(d) Let a = 1 and c = 1. Use your solution to the optimal control problem and
the flatness-based trajectory generation to find a trajectory between x(0) = 0 and
x(1) = 1. Plot the state and input trajectories for each solution and compare the
costs of the two approaches.

3.8. FURTHER READING 3-21

(e) (Optional) Suppose that we choose more than the minimal number of basis
functions for the di↵erentially flat output. Show how to use the additional degrees
of freedom to minimize the cost of the flat trajectory and demonstrate that you can
obtain a cost that is closer to the optimal.

3.5 Repeat Exercise 3.4 using the system

ẋ = �ax
3 + bu.

For part (a) you need only write the conditions for the optimal cost.

3.6 Consider the problem of moving a two-wheeled mobile robot (e.g., a Segway)
from one position and orientation to another. The dynamics for the system is given
by the nonlinear di↵erential equation

ẋ = cos ✓ v, ẏ = sin ✓ v, ✓̇ = !,

where (x, y) is the position of the rear wheels, ✓ is the angle of the robot with
respect to the x axis, v is the forward velocity of the robot and ! is spinning rate.
We wish to choose an input (v,!) that minimizes the time that it takes to move
between two configurations (x0, y0, ✓0) and (xf , yf , ✓f), subject to input constraints
|v| L and |!| M .

Use the maximum principle to show that any optimal trajectory consists of
segments in which the robot is traveling at maximum velocity in either the forward
or reverse direction, and going either straight, hard left (! = �M) or hard right
(! = +M).

Note: one of the cases is a bit tricky and cannot be completely proven with the
tools we have learned so far. However, you should be able to show the other cases
and verify that the tricky case is possible.

3.7 Consider a linear system with input u and output y and suppose we wish to
minimize the quadratic cost function

J =

Z 1

0

�
y
T
y + ⇢u

T
u
�
dt.

Show that if the corresponding linear system is observable, then the closed loop
system obtained by using the optimal feedback u = �Kx is guaranteed to be stable.

3.8 Consider the system transfer function

H(s) =
s+ b

s(s+ a)
, a, b > 0

with state space representation

ẋ =

0 1
0 �a

�
x+

0
1

�
u,

y =
⇥
b 1

⇤
x

and performance criterion

V =

Z 1

0
(x2

1 + u
2)dt.

3-22 CHAPTER 3. OPTIMAL CONTROL

(a) Let

P =

p11 p12

p21 p22

�
,

with p12 = p21 and P > 0 (positive definite). Write the steady state Riccati
equation as a system of four explicit equations in terms of the elements of P and
the constants a and b.

(b) Find the gains for the optimal controller assuming the full state is available for
feedback.

3.9 Consider the optimal control problem for the system

ẋ = ax+ bu J = 1
2

Z tf

t0

u
2(t) dt+ 1

2cx
2(tf),

where x 2 R is a scalar state, u 2 R is the input, the initial state x(t0) is given, and
a, b 2 R are positive constants. We take the terminal time tf as given and let c > 0
be a constant that balances the final value of the state with the input required to
get to that position. The optimal trajectory is derived in Example 3.2.

Now consider the infinite horizon cost

J = 1
2

Z 1

t0

u
2(t) dt

with x(t) at t = 1 constrained to be zero.

(a) Solve for u
⇤(t) = �bPx

⇤(t) where P is the positive solution corresponding
to the algebraic Riccati equation. Note that this gives an explicit feedback law
(u = �bPx).

(b) Plot the state solution of the finite time optimal controller for the following
parameter values

a = 2, b = 0.5, x(t0) = 4,

c = 0.1, 10, tf = 0.5, 1, 10.

(This should give you a total of 6 curves.) Compare these to the infinite time
optimal control solution. Which finite time solution is closest to the infinite time
solution? Why?

3.10 Consider the lateral control problem for an autonomous ground vehicle from
Example 2.1. We assume that we are given a reference trajectory r = (xd, yd)
corresponding to the desired trajectory of the vehicle. For simplicity, we will assume
that we wish to follow a straight line in the x direction at a constant velocity vd > 0
and hence we focus on the y and ✓ dynamics:

ẏ = sin ✓ vd, ✓̇ =
1

l
tan� vd.

We let vd = 10 m/s and l = 2 m.

3.8. FURTHER READING 3-23

(a) Design an LQR controller that stabilizes the position y to yd = 0. Plot the
step and frequency response for your controller and determine the overshoot, rise
time, bandwidth and phase margin for your design. (Hint: for the frequency domain
specifications, break the loop just before the process dynamics and use the resulting
SISO loop transfer function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given by yd(t) =
r(t). Modify your control law so that you track r(t) and demonstrate the perfor-
mance of your controller on a “slalom course” given by a sinusoidal trajectory with
magnitude 1 meter and frequency 1 Hz.

3.11 Consider the dynamics of the vectored thrust aircraft described in Exam-
ples 2.4 and 3.5. The equations of motion are given by

mẍ = F1 cos ✓ � F2 sin ✓,

mÿ = F1 sin ✓ + F2 cos ✓ �mg,

J ✓̈ = rF1.

(3.12)

with parameter values

m = 4 kg, J = 0.0475 kg m2
, r = 0.25 m, g = 9.8 m/s2, c = 0.05 Ns/m,

which corresponds roughly to the values for the Caltech ducted fan flight control
testbed.

We wish to generate an optimal trajectory for the system that corresponds to
moving the system for an initial hovering position to a hovering position one meter
to the right (xf = x0 + 1).

(a) Use the python-control toolbox to solve for an optimal trajectory using a
quadratic cost from the final point with weights

Qx = diag([1, 1, 10, 0, 0, 0]), Qu = diag([10, 1]).

This cost function attempts to minimize the angular deviation ✓ and the sideways
for F1. Measure the computation time required to solve the optimal control prob-
lem.

(b) Resolve the problem using Bezier curves as the basis function for the optimiza-
tion and measure the computation time required.

(c) Resolve the problem using a terminal cost to try to get the system closer to the
final value and measure the computation time required.

(d) Resolve the problem using a terminal constraint to try to get the system closer
to the final value and measure the computation time required.

(e) Resolve the problem using di↵erential flatness and measure the computation
time required.

3-24 CHAPTER 3. OPTIMAL CONTROL

	1 Introduction
	1.1 System and Control Design
	1.2 The Control System ``Standard Model''
	1.3 Layered Control Systems
	1.4 The Python Control Systems Library

	2 Trajectory Generation and Tracking
	2.1 Two Degree of Freedom Design
	2.2 Trajectory Tracking and Gain Scheduling
	2.3 Trajectory Generation and Differential Flatness
	2.4 Python Implementation
	2.5 Other Methods for Generating Trajectories
	2.6 Further Reading

	3 Optimal Control
	3.1 Review: Optimization
	3.2 Optimal Control of Systems
	3.3 Examples
	3.4 Python Implementation
	3.5 Linear Quadratic Regulators
	3.6 Choosing LQR weights
	3.7 Advanced Topics
	3.8 Further Reading

	4 Receding Horizon Control
	4.1 Optimization-Based Control
	4.2 Receding Horizon Control with CLF Terminal Cost
	4.3 Receding Horizon Control Using Differential Flatness
	4.4 Implementation on the Caltech Ducted Fan
	4.5 Further Reading

	5 Stochastic Systems
	5.1 Brief Review of Random Variables
	5.2 Introduction to Random Processes
	5.3 Continuous-Time, Vector-Valued Random Processes
	5.4 Linear Stochastic Systems with Gaussian Noise
	5.5 Random Processes in the Frequency Domain
	5.6 Further Reading

	6 Kalman Filtering
	6.1 Linear Quadratic Estimators
	6.2 Extensions of the Kalman Filter
	6.3 LQG Control
	6.4 Application to a Thrust Vectored Aircraft
	6.5 Further Reading

	7 Sensor Fusion
	7.1 Discrete-Time Stochastic Systems
	7.2 Kalman Filters in Discrete Time (FBS2e)
	7.3 Predictor-Corrector Form
	7.4 Sensor Fusion
	7.5 Information Filters
	7.6 Additional topics
	7.7 Further Reading

	Bibliography
	Index

