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Chapter 6

Kalman Filtering

In this chapter we derive the optimal estimator for a linear system in continuous
time (also referred to as the Kalman-Bucy filter). This estimator minimizes the
covariance and can be implemented as a recursive filter. We also show how to com-
bine optimal estimation with state feedback to solve the linear quadratic Gaussian
(LQG) control problem, and explore extensions of Kalman filtering for continuous
time systems, such as the extended Kalman filter. Optimal estimation of discrete
time systems is described in more detail in Chapter 7, in the context of sensor
fusion.

Prerequisites. Readers should have basic familiarity with continuous-time stochastic
systems at the level presented in Chapter 5 as well as the material in FBS2e,
Chapter 8 on state space observability and estimators.

6.1 Linear Quadratic Estimators

Consider a stochastic system

Ẋ = AX +Bu+ FV, Y = CX +W,

where X represents that state, u is the (deterministic) input, V represents dis-
turbances that a↵ect the dynamics of the system and W represents measurement
noise. Assume that the disturbance V and noise W are zero-mean, Gaussian white
noise (but not necessarily stationary):

p(w) =
1p

det(2⇡RV )
e
� 1

2w
TR�1

V w E(V (t1)V
T(t2)) = RV (t1)�(t2 � t1)

p(v) =
1p

det(2⇡RV )
e
� 1

2 v
TR�1

W v E(W (t1)W
T(t2)) = RW (t1)�(t2 � t1)

We also assume that the cross correlation between V and W is zero, so that the
disturbances are not correlated with the noise. Note that we use multi-variable
Gaussians here, with noise intensities RV 2 Rm⇥m and RW 2 Rp⇥p. In the scalar
case, RV = �

2
V and RW = �

2
W .
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We formulate the optimal estimation problem as finding the estimate x̂(t) that
minimizes the mean square error E((x(t)� X̂(t))(X(t)� x̂(t))T) given {y(⌧) : 0 

⌧  t} where X and X̂ satisfy the dynamics for the system and y is the measured
outputs of the system. Note that our system state is not known, but we do have a
description of X as a random process, and hence we can reason over the distribution
of possible states of that process that are consistent with the output measurements.

The estimation problem be viewed as solving a least squares problem: given all
previous y(t), find the estimate X̂(t) that satisfies the dynamics and minimizes the
square error between the system state and the estimated state. It can be shown
that this is equivalent to finding the expected value of X subject to the “constraint”
given by all of the previous measurements, so that X̂(t) = E(X(t) | Y (⌧), ⌧  t).
(This was the way that Kalman originally formulated the problem, and is explored
in Exercise 6.1.)

The following theorem provides the solution to the optimal estimation problem
for a linear system driven by disturbances and noise that are modeled as white
noise processes.

Theorem 6.1 (Kalman-Bucy, 1961). The optimal estimator has the form of a
linear observer

˙̂x = Ax̂+Bu� L(Cx̂� y)

where L(t) = P (t)CT
R

�1
W and P (t) = E((X(t)� x̂(t))(X(t)� x̂(t))T) satisfies

Ṗ = AP + PA
T
� PC

T
R

�1
W (t)CP + FRV (t)F

T
,

P (0) = E(X(0)XT(0)).

Sketch of proof. The error dynamics are given by

Ė = (A� LC)E + ⇠, ⇠ = FV � LW, R⇠ = FRV F
T + LRWL

T

The covariance matrix PE = P for this process satisfies

Ṗ = (A� LC)P + P (A� LC)T + FRV F
T + LRWL

T

= AP + PA
T + FRV F

T
� LCP � PC

T
L
T + LRWL

T

= AP + PA
T + FRV F

T + (LRW � PC
T)R�1

W (LRW � PC
T)T

� PC
T
R

�1
W CP,

where the last line follows by completing the square. We need to find L such that
P (t) is as small as possible, which can be done by choosing L so that Ṗ decreases
by the maximum amount possible at each instant in time. This is accomplished by
setting

LRW = PC
T =) L = PC

T
R

�1
W ,

and the final form of the update law for P follows by substitution of L.

Note that the Kalman filter has the form of a recursive filter: given P (t) =
E(E(t)ET(t)) at time t, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X̂(t) and the covariance PE(t), so you can see how
well the error is converging.
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Another observation is that form of the covariance update can be considered to
consist of a prediction step and a correction step. If we had no information about
the output, then the covariance matrix would change just as in the case of the
stochastic response from Chapter 5:

Ṗ = AP + PA
T + FRV (t)F

T
.

If A is stable then the first two terms tend to decrease the error covariance, but the
third term will increase the covariance (because of the e↵ect of disturbances). The
remaining term in the covariance update is

�PC
T
R

�1
W (t)CP,

which we can regard as a correction term due to the feedback term �L(Cx̂ � y).
This term decreases the covariance (because we have new data), but the amount to
which it does so is limited by the noisiness of the measurement (hence the scaling
by R

�1
W ).

Example 6.1 First-order system
Consider a first-order linear system of the form

Ẋ = �aX + V, Y = cX +W,

where V is white noise with variance �
2
V and W is white noise with variance �

2
W .

The optimal estimator has the form

˙̂x = �ax̂� L(x̂� y) where L = p(t)c/�2
W ,

and the error covariance p(t) satisfies the di↵erential equation

ṗ = �2ap�
c
2
p
2

�
2
W

+ �
2
V , p(0) = E(x(0)2).

Figure 6.1 shows a sample plot of p(t) and the estimate x̂ versus x for an instance of
the noise and disturbance signals. We see that while there is a large initial error in
the state estimate, it quickly reduces the error and then (roughly) tracks the state
of the underlying (noisy) process. (Since the disturbances are large and unknown,
it is not possible to exactly track the actual system state.) r

If the noise is stationary (RV , RW constant) and if the dynamics for P (t) are
stable, then the observer gain converges to a constant and satisfies the algebraic
Riccati equation:

L = PC
T
R

�1
W AP + PA

T
� PC

T
R

�1
W CP + FRV F

T
.

This is the most commonly used form of the controller since it gives an explicit
formula for the estimator gains that minimize the error covariance. The gain matrix
for this case can solved use the control.lqe command in Python or MATLAB.

Another property of the Kalman filter is that it extracts the maximum possible
information about output data. To see this, consider the residual random process

R = Y � CX̂
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(a) Covariance p(t) (b) State x and estimate x̂

Figure 6.1: Optimal estimator for a first-order linear system with parameter
values a = 1, c = 1, �V = 1, �W = 0.1, starting from initial condition x(0) = 1.

(this process is also called the innovations process). It can be shown for the Kalman
filter that the correlation matrix of R is given by

RR(t1, t2) = V (t1)�(t2 � t1).

This implies that the residuals are a white noise process and so the output error
has no remaining dynamic information content.

6.2 Extensions of the Kalman Filter

The Kalman filter has a number of extensions that are used to extend its utility to
cases where the noise and disturbances are not white noise and when the process
is not linear. We summarize some of these extensions briefly here, with additional
extensions provided in the next chapter.

Correlated disturbances and noise

The derivation of the Kalman filter assumes that the disturbances and noise are
independent and white. Removing the assumption of independence is straightfor-
ward and simply results in a cross term (E(V (t)W (s)) = RVW �(s�t)) being carried
through all calculations.

To remove the assumption of white noise for the process disturbances or sensor
noise, we can construct a filter that takes white noise as an input and produces a
random process with the appropriate correlation function (or equivalently, spectral
power density function). The intuition behind this approach is that we must have an
internal model of the noise and/or disturbances in order to capture the correlation
between di↵erent times.

Extended Kalman filters

Consider a nonlinear system

Ẋ = f(X,u, V ), X 2 Rn
, u 2 Rm

,

Y = CX +W, Y 2 Rp
,
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where V and W are Gaussian white noise processes with covariance matrices RV

and RW . A nonlinear observer for the system can be constructed by using the
process

˙̂
X = f(X̂, u, 0) + L(Y � CX̂).

If we define the error as E = X � X̂, the error dynamics are given by

Ė = f(X,u, V )� f(X̂, u, 0)� LC(X � X̂)

= F (E, X̂, u, V )� LCe,

where
F (E, X̂, u, V ) = f(E + X̂, u, V )� f(X̂, u, 0).

We can now linearize around current estimate X̂:

Ê =
@F

@E
E + F (0, X̂, u, 0)

| {z }
=0

+
@F

@V
V

| {z }
noise

� LCe

|{z}
observer gain

+ h.o.t

⇡ ÃE + F̃ V � LCE,

where the matrices

Ã =
@F

@e

����
(0,X̂,u,0)

=
@f

@X

����
(X̂,u,0)

,

F̃ =
@F

@V

����
(0,X̂,u,0)

=
@f

@V

����
(X̂,u,0)

depend on current estimate X̂. We can now design an observer for the linearized
system around the current estimate:

˙̂
X = f(X̂, u, 0) + L(Y � CX̂), L = PC

T
R

�1
V ,

Ṗ = (Ã� LC)P + P (Ã� LC)T + F̃RV F̃
T + LRWL

T
,

P (t0) = E(X(t0)X
T(t0)).

This is called the (Schmidt) extended Kalman filter (EKF).
The intuition in the Kalman filter is that we replace the prediction portion of

the filter with the nonlinear modeling while using the instantaneous linearization
to compute the observer gain. Although we lose optimality, in applications the
extended Kalman filter often works well and it is very versatile, as illustrated in
the following example.

Example 6.2 Online parameter estimation
Consider a linear system with unknown parameters ⇠

Ẋ = A(⇠)X +B(⇠)u+ FV, ⇠ 2 Rp
,

Y = C(⇠)X +W.

We wish to solve the parameter identification problem: given u(t) and Y (t), esti-
mate the value of the parameters ⇠.
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Figure 6.2: Block diagram of a basic feedback loop.
.

One approach to this online parameter estimation problem is to treat ⇠ as an
unknown state that has zero derivative:

Ẋ = A(⇠)X +B(⇠)u+ FV, ⇠̇ = 0.

We can now write the dynamics in terms of the extended state Z = (X, ⇠):

d

dt


X

⇠

�
=

f(
h
X
⇠

i
,u,V )

z }| {
A(⇠) 0
0 0

� 
X

⇠

�
+


B(⇠)
0

�
u+


F

0

�
V,

Y = C(⇠)X +W| {z }
h(

h
X
⇠

i
,V )

.

This system is nonlinear in the extended state Z, but we can use the extended
Kalman filter to estimate Z. If this filter converges, then we obtain both an estimate
of the original state X and an estimate of the unknown parameter ⇠ 2 Rp.

Remark: need various observability conditions on augmented system in order
for this to work. r

6.3 LQG Control

We now return to the full control problem, in which we wish to design a controller
that uses the estimated state and tracks a trajectory. Figure 1.4 shows the high
level view of the system, which we replicate in Figure 6.3, leaving out the unmodeled
dynamics for simplicity. We assume that all processes are linear and hence it will
su�ce to consider the problem of stabilizing the origin.

The model for our process dynamics now must include the control input u and
so we write

Ẋ = AX +Bu+ FV,

Y = CX +W,

where V and W are white noise processes with appropriate covariances.
The linear quadratic Gaussian control problem is to find a controller that will

minimize

J = E
✓Z 1

0

⇥
(Y � yd)

T
Qy(Y � yd) + (U � ud)

T
Qu(U � ud)

⇤
dt

◆
,
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where U is now considered as a random variable. While in general we might imag-
ine that the optimal controller could require some complex combination of state
estimation and state feedback, it turns out that it can be shown that the struc-
ture of the optimal control separates into an optimal controller assuming perfect
state knowledge and an optimal estimator that is independent of the control system
gains.

Theorem 6.2 (Separation principle). The optimal controller for a linear system
with white noise process disturbances and sensor noise has the form

˙̂x = Ax̂+Bu� L(Cx̂� y)

u = ud �K(x̂� xd)

where L is the optimal observer gain ignoring the controller and K is the optimal
controller gain ignoring the noise.

This is called the separation principle (for H2 control). A proof of this theorem
can be found in Friedland [Fri04] (and many other textbooks).

6.4 Implementation in Python

Stationary Kalman gains can be computed in python-control using the lqe function,
which constructs an optimal estimator gain and covariance for a linear system. The
Python command

L, P, E = ct.lqe(sys, Qv, Qw[, Qvw])

computes the optimal estimator gain L, steady state error covariance matrix P, and
closed loop poles for the estimator E given the system dynamics and covariance of
the process disturbances (Qv) and sensor noise (Qw), as well as any cross-covariance
between the two sets of signals (Qvw).

The create_estimator_iosystem function can be used to create an I/O system
implementing a Kalman filter, including integration of the Riccati ODE. The com-
mand has the form

estim = ct.create_estimator_iosystem(sys, Qv, Qw)

The input to the estimator is the measured outputs y and the system input u. To
run the estimator on a noisy signal, use the command

resp = ct.input_output_response(est, timepts, [Y, U], [X0, P0])

If desired, the correct parameter can be set to False to allow prediction with no
additional sensor information:

resp = ct.input_output_response(
estim, timepts, 0, [X0, P0], param={’correct’: False})

The create_statefbk_iosystem function can be used to combine an estimator
with a state feedback controller:

K, _, _ = ct.lqr(sys, Qx, Qu)
estim = ct.create_estimator_iosystem(sys, Qv, Qw, P0)
ctrl, clsys = ct.create_statefbk_iosystem(sys, K, estimator=estim)
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The controller will have the same form as a full state feedback controller, but with
the system state x input replaced by the estimated state x̂ (output of estim):

u = ud �K(x̂� xd).

The closed loop controller clsys includes both the state feedback and the estimator
dynamics and takes as its input the desired state xd and input ud:

resp = ct.input_output_response(
clsys, timepts, [Xd, Ud], [X0, np.zeros_like(X0), P0])

6.5 Application to a Thrust Vectored Aircraft

To illustrate the use of the Kalman filter, we consider the problem of estimating
the state for the Caltech ducted fan, described already in Section 4.6. We use the
simplified model described in Example 3.5, with added disturbances and noise.

We begin by defining an extended Kalman filter that uses the nonlinear dynam-
ics to estimate the current state. The dynamics of the system with disturbances on
the x and y variables is given by

mẍ = F1 cos ✓ � F2 sin ✓ � cẋ+ dx,

mÿ = F1 sin ✓ + F2 cos ✓ � cẏ �mg + dy,

J ✓̈ = rF1.

(6.1)

The measured values of the system are the position and orientation, with added
noise nx, ny, and n✓:

~y =

2

4
x

y

✓

3

5+

2

4
nx

ny

nz

3

5 . (6.2)

We assume that the disturbances are represented by white noise with intensity
�
2 = 0.01 and that the sensor noise has noise intensity matrix

QN =

2

4
2⇥ 10�4 0 1⇥ 10�5

0 2⇥ 10�4 1⇥ 10�5

1⇥ 10�5 1⇥ 10�5 1⇥ 10�4

3

5 .

To compute the update for the Kalman filter, we require the linearization of the
system at a state ~x = (x, y, ✓, ẋẏ, ż), which can be computed from equation (6.1)
to be

Ẋ = AX +Bu+ FV,

where

A =

2

6666664

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 �F1

m s✓ � F2
m c✓ � c

m 0 0

0 0 F1
m c✓ � F2

m s✓ 0 � c
m 0

0 0 0 0 0 0

3

7777775
, B =

2

6666664

0 0
0 0
0 0

1
m c✓ � 1

ms✓

1
ms✓

1
m c✓

r/J 0

3

7777775
, F =

2

666664

0
0
0
1
1
0

3

777775
,
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with c✓ = cos ✓ and s✓ = sin ✓.
The state estimate is given by using the nonlinear dynamics for the prediction

of the state error with a linear correction term, and the linearized dynamics for the
update of the covariance matrix. If we let ⇠ = (x, y, ✓, ẋ, ẏ, ✓̇) 2 R6 represent the
states and ⌘ = (x, y, ✓) 2 R3 represent write the the output, the dynamics of the
state estimate written as

˙̂
⇠ = f(⇠, u)� L(C ⇠̂ � ⌘),

where f(⇠, u) represents the full nonlinear dynamics in equation (6.1) and C =⇥
I 0

⇤
2 R3⇥6 represents the output matrix. The gain matrix L = P (t)CT

R
�1
W is

chosen based on the time-varying error covariance matrix P (t), which evolves using
the linearized dynamics:

Ṗ = A(⇠)P + PA(⇠)T � PC
T
R

�1
W (t)CP + FRV (t)F

T
,

P (0) = E(X(0)XT(0)).

To show how this estimator can be used, consider the problem of stabilizing
the system to the origin with an LQR controller that uses the estimated state.
We compute the LQR controller as if the entire state ⇠ were available directly, so
the computations are identical to those in Example 3.5. We choose the physically
motivated set of weights given by

Q⇠ =

2

666664

100 0 0 0 0 0
0 10 0 0 0 0
0 0 36/⇡ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

777775
, Qu =


10 0
0 1

�
.

For the (extended) Kalman filter, we model the process disturbances and sensor
noise as white noise processes with noise intensities

RV =


0.01 0
0 0.01

�
, RW =

2

4
2⇥ 10�4 0 1⇥ 10�5

0 2⇥ 10�4 1⇥ 10�5

1⇥ 10�5 1⇥ 10�5 1⇥ 10�4

3

5

Figure 6.4 shows the response of the system starting from an initial position
(x0, y0) = (2, 1) and with disturbances and noise with intensity 10-100X smaller
than the worst case for which we designed the system.

6.6 Further Reading

There is a vast literature on Kalman filtering and linear quadratic Gaussian (LQG)
control theory. The treatment in this chapter follows fairly closely to that of Fried-
land [Fri04]. A compact treatment of LQG theory is given in the books by Anderson
and Moore [?], Åström [?], and Lindquist and Picci [?].
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(a) Estimated states (b) Full state versus EKF

Figure 6.3: LQR control of the VTOL system with an extended Kalman filter to
estimate the state. (a) The x and y positions as a function of time, with dashed
lines showing the estimated values from the extended Kalman filter. (b) The xy

path of the system with full state feedback (and no noise) versus the controller
using the extended Kalman filter.

Exercises

6.1. Show that if we define the estimated state of a random process X as the
conditional mean

x̂(t) = E(X(t) | y(⌧), ⌧  t)

that x̂ minimizes

E(x̂(t)�X(t) | y(⌧), ⌧  t).

6.2. Consider a scalar control system

Ẋ = �X + u+ �vV

Y = X + �wW,

where V and W are zero-mean, Gaussian white noise processes with covariance 1
and �v,�w > 0. Assume that the initial value of X is modeled as a Gaussian with
mean X0 and variance �

2
X0

.

(a) Assume that we initialize a Kalman filter such that the initial covariance starts
near a steady state value p

⇤. Given conditions on � such that error covariance is
locally stable about this solution.

(b) Suppose that V is no longer taken to be white noise and instead has a correla-
tion function given by

⇢V (⌧) = e
�↵|⌧ |

, ↵ > 0.

Write down an estimator that minimizes the mean square error of the output under
these conditions. You do not need to explicitly solve the resulting equations, just
write them down in a form that is similar to an appropriate Kalman filter equation.
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6.3. Consider a discrete-time, scalar linear system with dynamics

x[k + 1] = ax[k] + v[k], y[k] = x[k] + w[k],

where v and w are discrete-time, Gaussian random processes with mean zero and
variances 1 and �

2, respectively. Assume that the initial value of the state has zero
mean and variance �

2
0 .

(a) Compute the optimal estimator for the system using y as a (noisy) measure-
ment. Your solution should be in the form of an explicit, time-varying, discrete-time
system.

(b) Assume that a < 1. Write down an explicit formula for the mean and covariance
of the steady-state error of the optimal estimator.

(c) Suppose the mean value of the initial condition is E(x[0]) = 1 and a = 1.
Determine the optimal steady-state estimator for the system.

6.4. Consider the dynamics of an inverted pendulum whose dynamics are given by

dx

dt
=


x2

sinx1 � cx2 + u cosx1

�
,

where x = (✓, ✓̇) and c > 0 is the damping coe�cient. We assume that we have a
sensor that can measure the o↵set of a point along the inverted pendulum

y = r sin ✓,

where r 2 [0, `] is a point along the pendulum and ` is the length of the pendulum.
Assume that the pendulum is subject to input disturbances v that are modeled as
white noise with intensity �

2
v and that the sensor is subject to additive Guassian

white noise with noise intensity �
2
w.

(a) Determine the optimal location of the sensor (r⇤) that minimizes the steady
state covariance of the error P and justify your answer.

(b) Show that the Kalman filter gain L = PC
T
R

�1
w does not depend on the covari-

ance of the error in ✓̇.

(c) Take c = 0 and compute the steady state gain for the Kalman filter as a function
of the sensor location r.

Note: for the first two parts it is not necessary to solve equations for the steady
state covariance of the error. For the last part, your answer should not require
a substantial amount of algebra if you organize your calculations a bit (and set
c = 0).

6.5. Consider the problem of estimating the position of an autonomous mobile ve-
hicle using a GPS receiver and an IMU (inertial measurement unit). The dynamics
of the vehicle are given by
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x

l

�

✓
y ẋ = cos ✓ v

ẏ = sin ✓ v

✓̇ =
1

`
tan � v,

We assume that the vehicle has disturbances in the inputs v and � with standard
deviation of up to 10% and noisy measurements from the GPS receiver and IMU.

We consider a trajectory in which the car is driving on a constant radius curve
at v = 10 m/s forward speed with � = 5� for a duration of 10 seconds.

(a) Suppose first that we only have the GPS measurements for the xy position of
the vehicle. These measurements give the position of the vehicle with approximately
10 cm accuracy. Model the GPS error as Gaussian white noise with � = 0.1 meter
in each direction. Design an optimization-based estimator for the system and plot
the estimated states versus the actual states. What is the covariance of the estimate
at the end of the trajectory?

(b) An IMU can be used to measure angular rates and linear acceleration. For
simplicity, we assume that the IMU is able to directly measure the angle of the car
with a standard deviation of 1 degree. Design an optimal estimator for the system
using the GPS and IMU measurements, and plot the estimated states versus the
actual states. What is the covariance of the estimate at the end of the trajectory?
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