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Chapter 1

Introduction

This chapter provides an introduction to the optimization-based framework that
is used in throughout this supplement and also introduces the Python Control
Systems Library (python-control), which implements all the functionality required
for material presented in this supplement.

Prerequisites. Readers should be familiar with standard concepts in control the-
ory, including input/output modeling, feedback interconnections, and the role of
feedback in allowing the design of (closed loop) dynamics and providing robustness
to uncertainty. We utilize state sapce representations using ordinary di↵erential
equations, though detailed knowledge of di↵erential equations is not required.

1.1 System and Control Design1

System design starts by developing an understanding of the system and its environ-
ment. It includes analysis of static and dynamic properties of the physical system
and its sensors and actuators, bounds for safe operation, and characterization of
the nature of the disturbances and the users of the system. There are a wide range
of problems. Sometimes the process is given a priori and the task is to design a
controller for a given process. In other cases the process and the controller are
designed jointly. Co-design has many advantages because performance can be opti-
mized. Sometimes it is an enabler, as was illustrated by the Wright Flyer, which was
discussed in FBS2e Section 1.5. We quote from the 43rd Wilbur Wright Memorial
Lecture by Charles Stark Draper [Dra55]:

The Wright Brothers rejected the principle that aircraft should be made
inherently so stable that the human pilot would only have to steer the
vehicle, playing no part in stabilization. Instead they deliberately made
their airplane with negative stability and depended on the human pilot
to operate the movable surface controls so that the flying system—pilot
and machine—would be stable. This resulted in increased maneuver-
ability and controllability.

1
The material in this section is drawn from FBS2e, Chapter 15 (online version).

1-1
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(a) Design Flow (b) Costs

Figure 1.1: Engineering design process. A typical design cycle is shown in (a) and
(b) illustrates the costs of correcting faults or making design changes at di↵erent
stages in the design process.

In design of modern control systems, the engineering workflow is broken down
into phases to manage the complexity of overall system. Early phases of the design
create a basic architecture for the system, with interaction between subsystems
that provide the main functionality of the system. For an aircraft, those subsys-
tems might be the airframe (fuselage and wings), propulsion system (engines), the
hydraulic system, the electric power system, the flight control system, and other
critical components. For a cell phone, the subsystems might be the chassis, the
display (including touch interface), the communications subsystem (5G, wifi), the
audio system (speakers and microphone), the power system (batteries and charg-
ing), among others. In each case, a high level architecture is required that describes
what the subsystems are responsible for and how they will interact. Each subsystem
is itself comprised of a variety of components, which also have their own specifica-
tions and interfaces. The engineering workflow typically operates by carrying out
a succession of refinements of the design from one level of abstraction down to the
next, and then assembly the components of the design from the components to the
subsystems to the overall system, with validation and testing at each stage.

Figure 1.1a shows a typical design process for a modern engineering system.
Design is broken into phases such as research and development (R&D), conceptu-
alization, development, manufacturing, and life-cycle support. One of the features
of engineering complex systems is that it can be very costly to make corrections
late in the product development cycle, since a substantial amount of engineering
e↵ort has already been carried out and may need to be redone. These costs are
illustrated in Figure 1.1b. Notice the significant value in correcting faults early.
Design of complex systems is a major e↵ort where many people and groups are
involved.

A variety to methods have been developed for e�cient design. The so-called
design V, shown in Figure 1.2a, dates back to NASA’s Apollo program [SC92]
and is a common design pattern for both hardware and software. The left leg of
the V illustrates the design process starting with requirements and ending with
system, module, and component designs. The right leg of the V represents the
implementation, starting with the components and ending with the finished process
and its validation. There are many substeps in the design, they include functional
requirements, architecture generation and exploration, analysis, and optimization.
Notice that validation is made only on the finished product.

The cost of faults or changes increase dramatically if they are discovered late in
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(a) Classical Design V (b) Design V for Model Based Design

Figure 1.2: Design methodologies for complex systems. (a) The traditional design
V. The left side of the V represents the decomposition of requirements and creation
of system specifications. The right side represents the activities in implementation,
including validation (building the right thing) and verification (building it right).
Notice that validation and verification are performed late in the design process
when all hardware is available. (b) A model-based design process where virtual
validation is be made at many stages in the design process, shortening the feedback
for validation.

the development process or even worse when systems are in operation, as illustrated
in Figure 1.1b. Model-based systems engineering can reduce the costs because
models allow partial validation using models as virtual hardware at many steps
in the development process, as illustrated in Figure 1.2b. When hardware and
subsystems are built they can replace the corresponding models using hardware-in-
the-loop simulations.

To perform verification e�ciently it is necessary that requirements are expressed
mathematically and checked automatically using models of the system and its envi-
ronment, along with a variety of tools for analysis. Regression analysis can be used
to ensure that changes in one part of a system do not create unexpected errors in
other parts of the system. E�cient regression analysis requires robust system-level
models and good scripting software that allows analyses to be performed auto-
matically over many operating conditions with little to no human intervention.
System-level models are also useful for root cause analysis by allowing errors to be
reproduced, which is helpful to ensure that the real cause has been found.

There are strong interactions between the models and the analysis tools that
are used; therefore, the models must satisfy the requirements of the algorithms
for analysis and design. For example, when using Newton’s method for solution
of nonlinear equations and optimization, the models must be continuous and have
continuous first (and sometimes second) derivatives. This property, which is called
smoothness, is essential for algorithms to work well. Lack of smoothness can be due
to many factors: if-then-else statements, an actuator that saturates, or by careless
modeling of fluid systems with reversing flows. Having tools that check if a given
system model has functions with continuous first and second derivatives is valuable.

An alternative to the use of the traditional design V is the agile development model,
which has been driven by software developers for products with short time to mar-
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Figure 1.3: Schematic diagram of a control system with sensors, actuators, com-
munications, computer, and interfaces.

ket, where requirements change and close interaction with customers is required.
The method is characterized by the Agile Manifesto [BBvB+01], which values in-
dividuals and interactions over processes and tools; working software over com-
prehensive documentation; customer collaboration over contract negotiation; and
responding to change over following a plan. When choosing a design methodology
it is also important to keep in mind that products involving hardware are more
di�cult to change than software.

Control system design is a subpart of system design that includes many ac-
tivities, starting with requirements and system modeling and ending with imple-
mentation, testing, commissioning, operation, and upgrading. In between are the
important steps of detailed modeling, architecture selection, analysis, design, and
simulation. The V-model used in an iterative fashion is well suited to control de-
sign, particular if it is supported by a tool chain that admits a combination of
modeling, control design, and simulation. Testing is done iteratively at every step
of the design using models of di↵erent granularity as virtual systems. Hardware in
the loop simulations are also used when they are available.

Today most control systems are implemented using computer control. Imple-
mentation then involves selection of hardware for signal conversion, communication,
and computing. A block diagram of a system with computer control is shown in
Figure 1.3. The overall system consists of sensors, actuators, analog-to-digital and
digital-to-analog converters, and computing elements. The filter before the A/D
converter is necessary to ensure that high-frequency disturbances do not appear as
low-frequency disturbances after sampling because of aliasing. The operations of
the system are synchronized by a clock.

Real-time operating systems that coordinate sensing, actuation, and computing
have to be selected, and algorithms that implement the control laws must be gener-
ated. The sampling period and the anti-alias filter must be chosen carefully. Since
a computer can only do basic arithmetic, the control algorithms have to be repre-
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sented as di↵erence equations. They can be obtained by approximating di↵erential
equations, as was illustrated in FBS2e Section 8.5, but there are also design meth-
ods that automatically give controllers in the form of di↵erence equations. Code
can be generated automatically. It must also be ensured that computational delays
and synchronization of algorithms do not create problems.

When the design is implemented and tested the system must be commissioned.
This step may involve adjustment of controller parameters, and automatic tuning
(discussed in FBS2e, Section 11.3) can be very beneficial at this stage. During
operation it is important to monitor the behavior of the system to ensure that
specifications are still satisfied. It may be necessary to upgrade the system when
it has been operating. Specifications may also be modified due to operational
experiences.

1.2 The Control System “Standard Model”

Feedback control appears across an enormous variety of applications and in various
forms. Despite the wide range of applications and implementations, there is a
common design pattern for most modern feedback control systems, as illustrated
in Figure 1.4. The starting point for the control system is the process that we wish
to control, which we model as an input/output system. The inputs to the process
consist of both those inputs that the controller specifies as well as inputs that may
come from external disturbances and uncertainties in the model. The outputs from
the process, possibly corrupted by noise, are processed by an “observer”, whose
function is to estimate the state of the underlying process from the measured (and
sometimes noisy) signals. Finally, the controller is responsible for taking some level
of description of the task to be accomplished and generating those inputs that will
cause the process to carry out the desired operation.

While this general diagram is likely familiar to anyone with experience in clas-
sical control theory (e.g., PID control of a linear dynamical system represented by
its transfer function), it is perhaps useful to point out that this basic pattern is
present in many systems that use di↵erent representations of the dynamics and
uncertainty. For example, the process that we are controlling may be an infrastruc-
ture management system in which there are requests for resources that must be
managed and balanced. Uber is one example of such a “control system”, with the
process consisting of the dynamics of individually driven Uber vehicles that can be
dispatched based on observations of riders requesting transport. The models used

Figure 1.4: Control system standard model.
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Figure 1.5: Nested control systems.

for this type of process are likely to be based on stochastic queuing system models,
but the basic pattern is still there. Other examples of control systems that match
this pattern range from aircraft, to the supply chain, to your cell phone.

Another common feature of control systems is that the process itself may be
a control system, so that we have a nested set of controllers, as illustrated in
Figure 1.5. Note that in this view the inputs and outputs of the overall system
are themselves coming from other modules. We have also expanded the view of
the controller to include its three key functions: comparing the current and desired
state of the process, computing the possible actions that can be taken to bring
these closer, and then “actuating” the process being controlled via some appropriate
command. This type of nested system could emerge, for example, if Uber vehicles
were autonomous vehicles, where there is a control system in place for each car
(which is itself a nested set of control systems, as we shall discuss in the next
section).

Based on these observations, we define key elements of the “standard model” of
a control system as follows:

Process. The process represents that system that we wish to control. The inputs
to the system include controller and environmental inputs, and the outputs to the
system are the measurable variables.

Task Description. The task description is an input to the controller that describes
the “task” to be performed. Depending on the type of system that is being con-
trolled, the task description could be anything from a simple signal that should be
tracked to a description of a complex task with cost functions and constraints.

Observer. The observer takes the outputs of the process and performs calculations
to estimate the underlying state of the process and/or the environment. In some
cases the observer may also make predictions about the future state of the system
or the environment.

Controller. The controller is responsible for determining what inputs should be
applied to the system in order to carry out the desired task. It takes as inputs the
description of the task as well as the output of the observer (often the estimated
state and/or the state of the environment).

Disturbances. Disturbances represent exogenous inputs to the process dynamics
that are not dependent on the dynamics of system or the controller. In Figure 1.4
the disturbances are modeled as being added to the inputs, but more general dis-
turbances are also possible.
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Figure 1.6: Layered control systems. The system consists of four layers: the
physical layer (lowest), the feedback regulation layer (green), the trajectory gener-
ation layer (red), and the decision-making layer (blue). Networking and commu-
nications allows information to be transferred between the layers as well as with
outside resources (left). The entire system interacts with the external environment,
represented at the bottom of the figure.

Noise. Noise represents exogenous inputs to the observer that corrupt the measure-
ments of the system outputs. In Figure 1.4 the noise is modeled as being added to
the inputs, but more general noise signals are also possible.

Uncertainty. This block represents uncertainty in the dynamics of the process
or “reactive” uncertainty in the environment in which the process operates. We
represent the environment as a feedback interconnection with the process to reflect
the fact that the unmodeled dynamics and or environmental dynamics may depend
on the state of the system.

Other Modules. Control systems are often connected with other modules of the
overall system, in either a distributed, nested, or layered fashion. The type of in-
terconnection can be through the controllers of the other modules, through physical
interconnections, or both.

1.3 Layered Control Systems

A related view of a modern control system is as a “layered” control system in which
we reason about the system at di↵erent layers of abstraction, as shown in Figure 1.6.
To a large extent this is just a di↵erent view of the “nested” representation of a
control system in Figure 1.5, but here we are more explicit about the di↵erent
representations of the system. In this figure, the control system is described by
four layers of abstraction, separated by horizontal lines.
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The lowest layer is the physical layer, representing the physical process being
controlled as well as the sensors and actuators. This layer is often described in
terms of input/output dynamics that model how the system evolves over time. The
simplest (and one of the most common) representations is an ordinary di↵erential
equation model of the form

dx

dt
= f(x, u, d), y = h(x, n),

where x 2 Rn represents the state of the system, u 2 Rm represents the inputs
that can be commanded by the controller, d 2 D represents disturbance signals
that come from the external environment, y 2 Rp represents the measured outputs
o the system, and n 2 N represents process or sensor noise. The design of the
physical system will normally attempt to make sure that the region of the state
space in which the system is able to operate (called the operating envelope) satisfies
the needs of the user or customer. For an aircraft, for example, this might consist
of specifications on the altitude, speed, and maneuverability of the physical system.

The next layer is the feedback regulation layer (sometimes also called the “inner
loop”) in which we use feedback control to track a reference trajectory. This layer
commonly represents the abstractions used in classical control theory, where we
have a reference input r that we wish to track while at the same time attenuating
disturbances d and avoiding amplification of process or sensor noise n. The system
and controller at this level might be represented by transfer functions P (s) and C(s)
and our specification might be on various input/output transfer functions such as
the Gang of Four (see FBS2e, Section 12.1):

S =
1

1 + PC

sensitivity
function

PS =
P

1 + PC

load (or input)
sensitivity
function

T =
PC

1 + PC

complementary
sensitivity
function

CS =
C

1 + PC

noise (or output)
sensitivity
function

A typical specification for design at this layer of abstraction might be a weighted
sensitivity function, such as

k|W1S|+ |W2T |k1 < 1.

The feedback regulation phase of design will also often compensate for the e↵ects
of unmodeled dynamics, traditionally done by the specification of gain, phase, and
stability margins.

This layer also carries out some level of sensor processing to try to minimize the
e↵ects of noise. In classical control design the sensor processing is often integrated
into the controller design process (for example by imposing some amount of high
frequency rollo↵), but many modern control systems will use Kalman filtering to
process signals and also perform sensor fusion. Kalman filtering is described in
more detail in Chapter 6.

Continuing up our abstraction hierarchy, the next layer of abstraction is the
trajectory generation layer (sometimes also called the “outer loop”). In this layer
we attempt to find trajectories for the system that satisfy a commanded task,
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such as moving the system from one operating point to another while satisfying
constraints on the inputs and states. At this layer, we assume that the e↵ects of
noise, disturbances, and unmodeled dynamics have been taken care of at lower levels
but nonlinearities and constraints are explicitly accounted for. Thus we might use
a model of the form

dx

dt
= f(x, u), g(x, u)  0,

where g : Rn
⇥ Rn

! Rk is a nonlinear function describing constraints on inputs
and states. Our control objective might be to optimize according to a cost function
of the form

J(x, u) =

Z T

0
L(x, u) dt+ V

�
x(T )

�
,

where L(x, u) represents the integrated cost along the trajectory and V (x) repre-
sents the terminal cost (e.g., it should be small near the final operating point that
we seek to reach). We will study this problem and its variants in Chapters 2 and 3.

As in the case of the feedback regulation layer, the trajectory generation layer
also has a “observer” function, labeled as “state estimation” in Figure 1.6. The
details of this observer depend on the application, but could represent additional
sensor processing that is required for trajectory generation or sensing of the envi-
ronment for the purpose of satisfying specifications relative to that environment.
The latter case is particularly common in applications such as autonomous vehi-
cles, where the state estimation often includes perception and prediction tasks that
are used to identify other agents in the environment, their type (e.g., pedestrian,
bicycle, car, truck), and their predicted trajectory. This information will be used
by the trajectory generation algorithm to avoid collisions or to maintain the proper
position relative to those other agents. The applications of Kalman filtering and
sensor fusion to problems at this layer are considered in Chapters 6 and 7.

The highest layer of abstraction in Figure 1.6 is the decision-making layer (some-
times also called the “supervisory” layer). At this layer we often reason over discrete
events and logical relations. For example, we may care about discrete modes of be-
havior, which could correspond to di↵erent phases of operation (takeo↵, cruise,
landing) or di↵erent environment assumptions (highway driving, city streets, park-
ing lot). This layer can also be used to reason over discrete (as opposed to contin-
uous) decisions that we must make (stop, go, turn left, turn right). This final layer
is not explicitly part of the material covered in this book; a brief discussion of the
design problem at this layer can be found in FBS2e, Section 15.3.

In a full system design, the three control layers that we depict here may in
fact include additional layers within them, or be divided up slightly di↵erently.
Similarly, the physical layer may consist of system that themselves have internal
control loops running, potentially at multiple layers of abstraction. And the system
may be networked to other agents and information systems that provide information
and constraints on system operation. Thus, our system is a combination of nested,
layered, distributed systems, all operating together.

Another important element of modern control systems is their distributed and
interconnected nature. Much of this is already presented in the layered control
structure described above, but there can also be “external” interactions. On the
left side of Figure 1.6 are a set of blocks that represent some of the elements that
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can connected through networked information channels. These can include cloud
resources (such as computing or databases), operators (humans or automated),
and interactions with other systems and subsystems. The increased capability and
capacity of networking and communications is one of the drivers of complexity in
modern control systems and has created both new opportunities and new challenges.

Finally, we note the e↵ect of the environment, represented in Figure 1.6 as a
block at the bottom of the diagram. This block represents many things, including
noise, disturbances, unmodeled dynamics of the process, and the dynamics of other
systems with which our system is interacting. It is the uncertainty represented in
this catchall block that is driving the need for feedback control, and the impact of
these di↵erent types of uncertainty appears in each level of our controller design.

1.4 The Python Control Systems Library2

The Python Control Systems Library (python-control) is a Python package that
implements basic operations for analysis and design of feedback control systems.
The package was created in 2009, shortly after the publication of the first edition
of Feedback Systems. The initial goal of the project was to implement the oper-
ations needed to carry out all the examples in the book. A primary motivation
for the creation of the python-control library was the need for open-source control
design software built on the Python general-purpose programming language. The
“scientific stack” of NumPy, SciPy, and Matplotlib provide fast and e�cient array
operations, linear algebra and other numerical functions, and plotting capabilities
to Python users. Python-control has benefited from this foundation, using, e.g.,
optimization routines from SciPy in its optimal control methods, and Matplotlib
for Bode diagrams.

The python-control package provides the functionality required to implement
all of the techniques described in this supplement. This section provides a brief
overview of the python-control package, with the intent of indicating the calling
structure of the code and including a few simple examples. More detailed examples
are given in subsequent chapters, and more detailed documentation is available at
http://python-control.org.

Package Structure and Basic Functionality

The python-control package implements an inheritance hierarchy of dynamical sys-
tem objects. For the most part, when two systems are combined in some way
through a mathematical operation, one will be promoted to the type that is the
highest of the two. Arranged in order from most to least general, they are:

• InputOutputSystem: Input/output system that may be nonlinear and time-
varying

– InterconnectedSystem: Interconnected I/O system consisting of mul-
tiple subsystems

– NonlinearIOSystem: Nonlinear I/O system

2
The material in this section is drawn from [FGM

+
21].

http://python-control.org
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– LinearICSystem: Linear interconnected I/O systems

– LinearIOSystem: Linear I/O system

• LTI: Linear, time-invariant system

– FrequencyResponseData: Frequency response data systems

– StateSpace: State space systems

– TransferFunction: Transfer functions

Each system type can be either discrete-time, that is, x(k + 1) = f(x(k), u(k));
y(k) = g(x(k), u(k)) or continuous time, that is, ẋ = f(x, u); y = g(x, u). A
discrete-time system is created by specifying a nonzero ‘timebase’ dt when the
system is constructed:

• dt = 0: continuous time system (default)

• dt > 0: discrete time system with sampling period dt

• dt = True: discrete time with unspecified sampling period

• dt = None: no timebase specified

Linear, time-invariant systems can be interconnected using mathematical opera-
tions +, -, *, and /, as well as the domain-specific functions feedback, parallel
(+), and series (*). Some important functions for LTI systems and their descrip-
tions are given in Table 1.1. Other categories of tools that are available include
model simplification and reduction tools, matrix computations (Lyapunov and Ric-
cati equations), and a variety of system creation, interconnection and conversion
tools. A MATLAB compatibility layer is provided that has functions and call-
ing conventions that are equivalent to their MATLAB counterparts, e.g. tf, ss,

step, impulse, bode, margin, nyquist and so on. A complete list is available
at http://python-control.org.

http://python-control.org
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Table 1.1: Sample functions available in the python-control package.

Frequency domain analysis:

sys(s) Evaluate frequency response of an LTI system at
complex frequenc(ies) s

sys.frequency_response() Evaluate frequency response of an LTI system at
real angular frequenc(ies) omega

stability_margins() Calculate stability margins and associated
crossover frequencies

bode_plot() Bode plot for a system
nyquist_plot() Nyquist plot for a system
gangof4_plot() Plot the “Gang of 4” transfer functions for a

system
nichols_plot() Nichols plot for a system

Time domain analysis:

forced_response() Simulated response of a linear system to a gen-
eral input

impulse_response() Compute the impulse response for a linear sys-
tem

initial_response() Initial condition response of a linear system
step_response() Compute the step response for a linear system
step_info() Compute step response characteristics
phase_plot() Phase plot for 2D dynamical systems

Other analysis functions and methods:

sys.dcgain() Return the zero-frequency (or DC) gain of an
LTI system

sys.pole() Compute poles of an LTI system
sys.zero() Compute zeros of an LTI system
sys.damp() Compute natural frequency and damping ratio

of LTI system poles
pzmap() Plot a pole/zero map for a linear system
root_locus() Root locus plot
sisotool() Sisotool style collection of plots inspired by

MATLAB

Synthesis tools:

acker() Pole placement using the Ackermann method
h2syn() H2 control synthesis for plant P
hinfsyn() H1 control synthesis for plant P
lqr() Linear quadratic regulator design
lqe() Linear quadratic estimator design (Kalman fil-

ter) for continuous-time systems
mixsyn() Mixed-sensitivity H-infinity synthesis
place() Place closed-loop poles



1.4. THE PYTHON CONTROL SYSTEMS LIBRARY 1-13

Linear Systems Example

To illustrate the use of the package, we present an example of the design of an
inner/outer loop control architecture for the planar vertical takeo↵ and landing
(PVTOL) example in FBS2e, Example 12.9. A slightly di↵erent version of this
example is available in the python-control GitHub repository.

We begin by initializing the Python environment with the packages that we will
use in the example:

# pvtol-nested.py - inner/outer design for vectored thrust aircraft
# RMM, 5 Sep 2009 (updated 11 May 2021)
#
# This file works through a control design and
# analysis for the planar vertical takeoff and
# landing (PVTOL) aircraft in Astrom and Murray.

import control as ct
import matplotlib.pyplot as plt
import numpy as np

We next define the system that we plan to control:

# System parameters
m = 4 # mass of aircraft
J = 0.0475 # inertia around pitch axis
r = 0.25 # distance to center of force
g = 9.8 # gravitational constant
c = 0.05 # damping factor (estimated)

# Transfer functions for dynamics
Pi = ct.tf([r], [J, 0, 0]) # inner loop (roll)
Po = ct.tf([1], [m, c, 0]) # outer loop (posn)

The control design is performed by using a lead compensator to control the inner
loop (roll axis):

# Inner loop control design
#
# Controller for the pitch dynamics: the goal is
# to have a fast response so that we can use this
# as a simplified process for the lateral dynamics

# Design a simple lead controller for the system
k_i, a_i, b_i = 200, 2, 50
Ci = k_i * ct.tf([1, a_i], [1, b_i])
Li = Pi * Ci

We can now analyze the results by plotting the frequency response as well as the
Gang of 4:

# Loop transfer function Bode plot, with margins
plt.figure(); ct.bode_plot(Li, margins=True)
plt.savefig(’pvtol-inner-ltf.pdf’)

# Make sure inner loop specification is met
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plt.figure(); ct.gangof4_plot(Pi, Ci)
plt.savefig(’pvtol-gangof4.pdf’)

Figures 1.7a and b show the outputs from these commands.
The outer loop (lateral position) is designed using a second lead compensator,

using the roll angle as the input:

# Design lateral control system (lead compensator)
a_o, b_o, k_o = 0.3, 10, 2
Co = -k_o * ct.tf([1, a_o], [1, b_o])
Lo = -m * g * Po * Co

# Compute real outer-loop loop transfer function
L = Co * Hi * Po

We can analyze the results using Bode plots, Nyquist plots and time domain sim-
ulations:

# Compute stability margins
gm, pm, wgc, wpc = ct.margin(L)

# Check to make sure that the specification is met
plt.figure(); ct.gangof4_plot(-m * g * Po, Co)

# Nyquist plot for complete design
plt.figure(); ct.nyquist_plot(L)
plt.savefig(’pvtol-nyquist.pdf’)

# Step response
t, y = ct.step_response(T, np.linspace(0, 20))
plt.figure(); plt.plot(t, y)
plt.savefig(’pvtol-step.pdf’)

Figures 1.7c and d show the outputs from the nyquist_plot and step_response

commands (note that the step_response command only computes the response,
unlike MATLAB, which also plots the response).

Input/output systems

Python-control supports the notion of an input/output system in a manner that
is similar to the MATLAB “S-function” implementation. Input/output systems
can be combined using standard block diagram manipulation functions (including
overloaded operators), simulated to obtain input/output and initial condition re-
sponses, and linearized about an operating point to obtain a new linear system that
is both an input/output and an LTI system.

An input/output system is defined as a dynamical system that has a system
state as well as inputs and outputs (either inputs or states can be empty). The
dynamics of the system can be in continuous or discrete time. To simulate an
input/output system, the input_output_response() function is used:

t, y = input_output_response(io_sys, T, U, X0, params)

Here, the variable T is an array of times and the variable U is the corresponding
inputs at those times. The output will be evaluated at those times, though this
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(c) Nyquist plot for full system
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(d) Step response for full system

Figure 1.7: Sample outputs for PVTOL example.

can be overridden using the t_eval keyword, or the NumPy interp function can be
used to interpolate inputs at a finer timescale, if desired.

An input/output system can be linearized around an equilibrium point to obtain
a state space linear system. The find_eqpt() function can be used to obtain an
equilibrium point and the linearize() function to linearize about that equilibrium
point:

xeq, ueq = find_eqpt(io_sys, X0, U0)
ss_sys = linearize(io_sys, xeq, ueq)

The resulting ss_sys object is a LinearIOSystem object, which is both an I/O system
and an LTI system, allowing it to be used for further operations available to either
class.

Nonlinear input/output systems can be created using the NonlinearIOSystem
class, which requires the definition of an update function (for the right-hand side of
the di↵erential or di↵erence equation) and output function (computes the outputs
from the state):

io_sys = NonlinearIOSystem(
updfcn, outfcn, inputs=m, outputs=p, states=n)
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More complex input/output systems can be constructed by making use of the
interconnect() function, which allows a collection of input/output subsystems to
be combined with internal connections between the subsystems and a set of overall
system inputs and outputs that link to the subsystems:

summation = ct.summing_junction([’u1’, ’-u2’], ’y’, name=’summation’)

clsys = ct.interconnect(
[plant, controller, summation], name=’system’,
connections=[

[’summation.u2’, ’plant.y’],
[’controller.e’, ’summation.y’],
[’plant.u’, ’controller.u’],

],
inplist=[’summation.u1’], inputs=’r’,
outlist=[’plant.y’], outputs=’y’)

In addition to explicit interconnections, signals can also be interconnected automat-
ically using shared signal names by simply omitting the connections parameter.

Interconnected systems can also be created using block diagram manipulations such
as the series(), parallel(), and feedback() functions. The InputOutputSystem class
also supports various algebraic operations such as * (series interconnection) and +

(parallel interconnection).

Exercises

1.1 (Basics of python-control). Consider a second order linear system with dynam-
ics given by the following state space dynamics and transfer function:

d

dt


x1

x2

�
=


0 1
�k �b

� 
x1

x2

�
+


0
1

�
u,

y =
⇥
1 0

⇤ x1

x2

�
,

P (s) =
1

s2 + bs+ k
.

In this problem you will design a controller for this system in either the time or
frequency domain (depending on which you are most comfortable with).

(a) Design either a state space or frequency domain controller for the system that
can be used to track a reference signal r (corresponding to a desired state xd =
(r, 0)). Write down the closed loop dynamics for the system and give conditions on
the parameters of your controller such that the closed loop system is stable and the
steady state error (e = y � r) for a step input of magnitude 1 is no more than �.
(The conditions for the gains in your controller should be in terms of inequalities
involving the system parameters b and k and performance parameter �.)

(b) Suppose now that we take k = 1 and b = 0.1. Pick specific parameters for your
controller such that the steady state error is no more than 10% (� = 0.1) and the
settling time is more more than 5 seconds. Plot the step response for the sytem
and compute the rise time, settling time, overshoot, and steady state error for your
design in response to a step change in the input r. (You can do the computations
either analytically or computationally.)
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(c) Using the same parameters for the system and your controller, compute the
steady state ratio of the output magnitude to the reference magnitude and the
phase o↵set between the output and the reference for a reference signal r = sin(2t).
(You can do these computations either analyitically or computationally.)

If you carry out the computations for parts 0b and/or 0c numerially, include the
MATLAB or Python code used to generate your results, as well as any plots gen-
erated by your code and used to determine your answers.

1.2 (Frequency domain analysis using python-control). Consider a control system
with

P (s) =
b

(s+ a)2
, C(s) =

kps+ ki

s
,

and set a = b = 1 and kp = 1, ki = 0.1. Using the Python Control Systems Library
(python-control), do the following:

(a) Plot the step response of the closed loop system and compute the rise time,
settling time, and steady state error.

(b) Plot the frequency response of the open loop system (Bode plot) and compute
the gain margin, phase margins, and bandwidth of the system.

(c) Plot the Nyquist plot of the system and compute the stability margin (smallest
distance to the �1 point).

1.3 (I/O systems using python-control). Consider a simple mechanism for position-
ing a mechanical arm and the associated equations of motion:

k

Disk

Motor

⌧m

✓

J ✓̈ = �b✓̇ � kr sin ✓ + ⌧m

⌧̇m = �a(⌧m � u)

The system consists of a spring-loaded arm that is driven by a motor. The motor
applies a force against the spring and pulls the tip across a rotating platter. The
input to the system is the desired motor torque, ⌧m. In the diagram above, the
force exerted by the spring is a nonlinear function of the head position due to the
way it is attached. Take the system parameters to be

k = 1, J = 100, b = 10, r = 1, l = 2, ✏ = 0.01.

Starting with the template Jupyter notebook posted on the FBS2e website,
create a Jupyter notebook that documents the following operations:
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(a) Compute the linearization of the dynamics about the equilibrium point corre-
sponding to ✓e = 15�.

(b) Plot the step response of the linearized, open-loop system and compute the rise
time and settling time.

(c) Plot the frequency response of the linearized, open-loop system and compute
the bandwidth of the system.

(d) Design a feedback controller for the system that allows the system to track a
desired angle ✓d and sets the closed loop eigenvalues to �1,2 = �1±

p
3i. Plot the

step response for the closed loop system and compute the rise time, settling time,
and steady state error.

(e) Design a frequency domain compensator that provides tracking with less than
10% error up to 1 rad/sec and has a phase margin of at least 45�. Demonstrate
that your controller meets these requirements by showing Bode, Nyquist, and step
response plots, and compute the rise time, settling time, and steady state error for
the system using your controller design.

(f) Create simulations of the full nonlinear system with the linear controllers de-
signed in parts 0d and 0e and plot the response of the system from an initial position
of 0 mm at t = 0, to 0.4 mm at t = 30 ms, to 1.2 mm at t = 90 ms, to 0.8 mm at
t = 120 ms.
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