
Optimization-Based Control

Richard M. Murray

Control and Dynamical Systems

California Institute of Technology

Version v2.2b (21 Dec 2021)

© California Institute of Technology

All rights reserved.

This manuscript is for personal use only and may not be reproduced,

in whole or in part, without written consent from the author.

Chapter One
Introduction

This chapter provides an introduction to the optimization-based framework
that is used in throughout the text and also introduces the Python Control
Systems Library (python-control), which implements all the functionality
required for material presented in the text.

Prerequisites. Readers should be familiar with standard concepts in control
theory, including input/output modeling, feedback interconnections, and the
role of feedback in allowing the design of (closed loop) dynamics and pro-
viding robustness to uncertainty.

1.1 System and Control Design1

System design starts by developing an understanding of the system and its
environment. It includes analysis of static and dynamic properties of the
physical system and its sensors and actuators, bounds for safe operation,
and characterization of the nature of the disturbances and the users of the
system. There are a wide range of problems. Sometimes the process is given
a priori and the task is to design a controller for a given process. In other
cases the process and the controller are designed jointly. Co-design has many
advantages because performance can be optimized. Sometimes it is an en-
abler, as was illustrated by the Wright Flyer, which was discussed in FBS2e
Section 1.5. We quote from the 43rd Wilbur Wright Memorial Lecture by
Charles Stark Draper [Dra55]:

The Wright Brothers rejected the principle that aircraft should
be made inherently so stable that the human pilot would only
have to steer the vehicle, playing no part in stabilization. Instead
they deliberately made their airplane with negative stability and
depended on the human pilot to operate the movable surface
controls so that the flying system—pilot and machine—would
be stable. This resulted in increased maneuverability and con-
trollability.

In design of modern control systems, the engineering workflow is broken
down into phases to manage the complexity of overall system. Early phases
of the design create a basic architecture for the system, with interaction

1
The material in this section is drawn from FBS2e, Chapter 15 (online version).

1-2 CHAPTER 1. INTRODUCTION

(a) Design Flow (b) Costs

Figure 1.1: Engineering design process. A typical design cycle is shown in (a) and
(b) illustrates the costs of correcting faults or making design changes at di↵erent
stages in the design process.

between subsystems that provide the main functionality of the system. For
an aircraft, those subsystems might be the airframe (fuselage and wings),
propulsion system (engines), the hydraulic system, the electric power system,
the flight control system, and other critical components. For a cell phone, the
subsystems might be the chassis, the display (including touch interface), the
communications subsystem (5G, wifi), the audio system (speakers and mi-
crophone, the power system (batteries and charging), among others. In each
case, a high level architecture is requires that describes what the subsystems
are responsible for and how they will interact. Each subsystem is itself com-
prised of a variety of components, which also have their own specifications
and interfaces. The engineering workflow typically operates by carrying out
a succession of refinements of the design from one level of abstraction down
to the next, and then assembly the components of the design from the com-
ponents to the subsystems to the overall system, with validation and testing
at each stage.

Figure ?? shows a typical design process for a modern engineering sys-
tem. Design is broken into phases such as research and development (R&D),
conceptualization, development, manufacturing, and life-cycle support. One
of the features of engineering complex systems is that it can be very costly to
make corrections late in the product development cycle, since a substantial
amount of engineering e↵ort has already been carried out and may need to
be redone. These costs are illustrated in Figure ??. Notice the significant
value in correcting faults early. Design of complex systems is a major e↵ort
where many people and groups are involved. A variety to methods have been
developed for e�cient design.

A variety to methods have been developed for e�cient design. The so-
called design V, shown in Figure ??, dates back to NASA’s Apollo pro-
gram [SC92] and is a common design pattern for both hardware and software.
The left leg of the V illustrates the design process starting with requirements
and ending with system, module and component design. The right leg of the
V represents the implementation starting with the components and ending
with the finished process and its validation. There are many substeps in the

1.1. SYSTEM AND CONTROL DESIGN 1-3

(a) Classical Design V (b) Design V for Model Based Design

Figure 1.2: The top figure (a) shows a traditional design V. The left side of the
V represents the decomposition of requirements, and creation of system specifi-
cations. The right side represents the activities in implementation including vali-
dation (building the right thing) and verification (building it right). Notice that
validation and verification are performed late in the design process when all hard-
ware is available. The bottom figure (b) shows a model-based design process where
virtual validation is be made at many stages in the design process, shortening the
feedback for validation.

design, they include functional requirements, architecture generation and
exploration, analysis and optimization. Notice that validation is made only
on the finished product.

The cost of faults or changes increase dramatically if they are discovered
late in the development process or even worse when systems are in oper-
ation, as illustrated in Figure 1.1b. Model-based systems engineering can
reduce the costs because models allow partial validation using models as
virtual hardware at many steps in the development process as illustrated in
Figure 1.2b. When hardware and subsystems are built they can replace the
corresponding models in hardware-in-the-loop simulation.

To perform verification e�ciently it is necessary that requirements are
expressed mathematically and checked automatically against requirements
using models of the system and its environment and a variety of tools for
analysis. Regression analysis can be used to avoid that changes in one part
of a system do not create unexpected errors in other parts of the system.
E�cient regression analysis requires robust system-level models and good
scripting software that allows analyses to be performed automatically over
many operating conditions with little to no human intervention. System-
level models are also useful for root cause analysis by allowing errors to be
reproduced, which is helpful to ensure that the real cause has been found.

There are strong interactions between the models and the analysis tools
that are used; therefore, the models must satisfy the requirements of the al-
gorithms for analysis and design. For example, when using Newton’s method
for solution of nonlinear equations and optimization, the models must be
continuous and have continuous first (and sometimes second) derivatives.

1-4 CHAPTER 1. INTRODUCTION

This property, which is called smoothness, is essential for algorithms to work
well. Lack of smoothness can be due to: if-then-else statements, an actua-
tor that saturates or by careless modeling of fluid systems with reversing
flows. Having tools that check if a given system model has functions with
continuous first and second derivatives is valuable.

An alternative to the use of the traditional design V is the agile develop-
ment model, which has been driven by software developers for products
with short time to market, where requirements change and close interaction
with customers is required. The method is characterized by the Agile Man-
ifesto [BBvB+01], which values individuals and interactions over processes
and tool, working software over comprehensive documentation, customer
collaboration over contract negotiation, and responding to change over fol-
lowing a plan. When choosing a design methodology it is also important to
keep in mind that products involving hardware are more di�cult to change
than software.

Control system design is a subpart of system design that includes many
activities, starting with requirements and system modeling and ending with
implementation, testing, commissioning, operation, and upgrading. In be-
tween are the important steps of detailed modeling, architecture selection,
analysis, design, and simulation. The V-model used in an iterative fashion is
well suited to control design, particular if it is supported by a tool chain that
admits a combination of modeling, control design, and simulation. Testing
is done iteratively at every step of the design using models of di↵erent gran-
ularity as virtual systems. Hardware in the loop simulations are also used
when they are available.

Today most control systems are implemented using computer control.
Implementation then involves selection of hardware for signal conversion,
communication, and computing. A block diagram of a system with com-
puter control is shown in 15.4. The overall system consists of sensors, ac-
tuators, analog-to-digital and digital-to-analog converters, and computing
elements. The filter before the A/D converter is necessary to ensure that
high-frequency disturbances do not appear as low-frequency disturbances
after sampling because of aliasing. The operations of the system are syn-
chronized by a clock.

Real-time operating systems that coordinate sensing, actuation, and com-
puting have to be selected, and algorithms that implement the control laws
must be generated. The sampling period and the anti-alias filter must be
chosen carefully. Since a computer can only do basic arithmetic, the con-
trol algorithms have to be represented as di↵erence equations. They can
be obtained by approximating di↵erential equations, as was illustrated in
FBS2e Section 8.5, but there are also design methods that automatically
give controllers in the form of di↵erence equations. Code can be generated
automatically. It must also be ensured that computational delays and syn-
chronization of algorithms do not create problems.

1.2. THE CONTROL SYSTEM “STANDARD MODEL” 1-5

Output

Clock

operator input

D/A Computer A/D Filter

external disturbancesnoise

⌃ Actuators System

Controller

noise

⌃

Process

Sensors

Figure 1.3: Schematic diagram of a control system with sensors, actuators, com-
munications, computer, and interfaces.

Figure 1.4: Control system standard model.

When the design is implemented and tested the system must be com-
missioned. This step may involve adjustment of controller parameters, and
automatic tuning (discussed in FBS2e Section 11.3) can be very beneficial at
this stage. During operation it is important to monitor the behavior of the
system to ensure that specifications are still satisfied. It may be necessary
to upgrade the system when it has been operating. Specifications may also
be modified due to operational experiences.

1.2 The Control System “Standard Model”

Feedback control appears across an enormous variety of applications and in
various forms. Despite the wide range of applications and implementations,
there is a common design pattern for most modern feedback control systems,
as illustrated in Figure 1.4. The starting point for the control system is the
process that we wish to control, which we model as an input/output system.
The inputs to the process consist of both those inputs that the controller

1-6 CHAPTER 1. INTRODUCTION

Figure 1.5: Nested control systems.

specifies as well as inputs that may come from external disturbances and
uncertainties in the model. The outputs from the process, possibly corrupted
by noise, are process by an “observer”, whose function is to estimate the state
of the underlying process from the measured (and sometimes noisy) signals.
Finally, the controller is responsible for taking some level of description of
the task to be accomplished and generating those inputs that will cause the
process to carry out the desired operation.

While this general diagram is likely familiar to anyone with experience
in classical control theory (e.g.,, PID control of a linear dynamical system
represented by its transfer function), it is perhaps useful to point out that
this basic pattern is present in many system that use di↵erent representa-
tions of the dynamics and uncertainty. For example, the process that we
are controlling may be an infrastructure management system in which there
are requests for resources that must be managed and balanced. Uber is one
example of such a “control system”, with the process consisting of the dy-
namics of individually driven Uber vehicles that can be dispatched based on
observations of riders requesting transport. The models used for this type of
process are likely to be based on stochastic queuing system models, but the
basic pattern is still there. Other examples of control systems that match
this pattern range from aircraft, to the supply chain, to your cell phone.

Another common feature of control systems is that the process itself may
be a control system, so that we have a nested set of controllers, as illustrated
in Figure 1.5. Note that in this view the inputs and outputs of the overall
system are themselves coming from other modules. We have also expanded
the view of the controller to include its three key functions: comparing the
current and desired state of the process, computing the possible actions that
can be taken to bring these closer, and then “actuating” the process being
controlled via some appropriate command. This type of nested system could
emerge, for example, if Uber vehicles were autonomous vehicles, where there
is a control system in place for each car (which is itself a nested set of control
systems, as we shall discuss in the next section).

We thus define key elements of the “standard model” of a control system
as follows:

Process. The process represents that system that we wish to control. The

1.3. LAYERED CONTROL SYSTEMS 1-7

inputs to the system include controller and environmental inputs, and the
outputs to the system are the measurable variables.

Observer. The observer takes the outputs of the process and performs cal-
culations to estimate the underlying state of the process and/or the envi-
ronment. In some cases the observer may also make predictions about the
future state of the system or the environment.

Task Description. The task description is an input to the controller that
describes the “task” to be performed. Depending on the type of system that
is being controlled, the task description could be anything from a simple
signal that should be tracked to a description of a complex task with cost
functions and constraints.

Controller. The controller is responsible for determining what inputs should
be applied to the system in order to carry out the desired task. It takes as
inputs the description of the task as well as the output of the observer (often
the estimated state and/or the state of the environment).

Disturbances. Disturbances represent exogenous inputs to the process dy-
namics that are not dependent on the dynamics of system or the controller.
In Figure ?? the disturbances are modeled as being added to the inputs, but
more general disturbances are also possible.

Noise. Noise represents exogenous inputs to the observer that corrupt the
measurements of the system outputs. In Figure ?? the noise is modeled as
being added to the inputs, but more general noise signals are also possible.

Uncertainty. This block represents uncertainty in the dynamics of the pro-
cess or uncertainty in the environment in which the process operates. We
represent the environment as a feedback interconnection with the process to
reflect the fact that the unmodeled dynamics and or environmental dynamics
may depend on the state of the system.

Other Modules. Control systems are often connected with other modules of
the overall system, in either a distributed, nested, or layered fashion. The
type of interconnection can be through the controllers of the other modules,
through physical interconnections, or both.

1.3 Layered Control Systems

A related view of a modern control system is as a “layered” control system in
which we reason about the system at di↵erent layers of abstraction, as shown
in Figure 1.6. To a large extent this is just a di↵erent view of the “nested”
representation of a control system in Figure 1.5, but here we are explicit
about the di↵erent representations of the system. In this figure, the control
system is described by four layers of abstraction, separated by horizontal
lines.

1-8 CHAPTER 1. INTRODUCTION

Figure 1.6: Layered control systems. The system consists of four layers: the phys-
ical layer (lowest), the feedback regulation layer (green), the trajectory generation
layer (red), and the decision-making layer (blue). Networking and communications
allows information to be transferred between the layers as well as with outside
resources (left). The entire system interacts with the external environment, repre-
sented at the bottom of the figure.

The lowest layer is the physical layer, representing the physical process
being control as well as the sensors and actuators. This layer is often de-
scribed in terms of input/output dynamics that can be describe how the
system evolves over time. The simplest (and one of the most common) rep-
resentations is a ordinary di↵erential equation model of the form

dx

dt
= f(x, u, d), y = h(x, n),

where x 2 Rn represents the state of the system, u 2 Rm represents the
inputs that can be commanded by the controller, d 2 D represents distur-
bance signals that come from the external environment, y 2 Rp represents
the measured outputs o the system, and n 2 N represents process or sen-
sor noise. The design of the physical system will normally attempt to make
sure that the region of the state space in which the system is able to operate
(called the operating envelope) satisfies the needs of the user or customer. For
an aircraft, for example, this might consist of specifications on the altitude,
speed, and maneuverability of the physical system.

The next layer is the feedback regulation layer (sometimes also called
the “inner loop”) in which we we use feedback control to track a reference
trajectory. This layer commonly represents the abstractions used in classical
control theory, where we have a reference input r that we wish to track while

1.3. LAYERED CONTROL SYSTEMS 1-9

at the same time attenuating disturbances d and avoiding amplification of
process or sensor noise n. The system and controller at this level might be
represented by transfer function P (s) and C(s) and our specification might
be on various input/output transfer functions such as the Gang of Four (see
FBS2e. Section 12.1):

S =
1

1 + PC

sensitivity
function

PS =
P

1 + PC

load (or input)
sensitivity
function

T =
PC

1 + PC

complementary
sensitivity
function

CS =
C

1 + PC

noise (or output)
sensitivity
function

A typical specification for design at this layer of abstraction might be a
weighted sensitivity function, such as

k|W1S|+ |W2T |k1 < 1.

The feedback regulation phase of design will also often compensate for the
e↵ects of unmodeled dynamics, traditionally done by the specification of
gain, phase and stability margins.

This layer also carries out some level of sensor processing to try to min-
imize the e↵ects of noise. In classical control design the sensor processing is
often integrated into the controller design process (for example by imposing
some amount of high frequency rollo↵), but many modern control systems
will use Kalman filtering to process signals and also perform sensor fusion.
Kalman filtering is described in more detail in Chapter 6.

Continuing up our abstraction hierarchy, the next layer of abstraction
is the trajectory generation layer (sometimes also called the “outer loop”).
In this layer we attempt to find trajectories for the system that satisfies a
commanded task, such as moving the system from one operating point to
another while satisfying constraints on the inputs and states. At this layer,
we assume that the e↵ects of noise, disturbances, and unmodeled dynamics
have been taken care of at lower levels but nonlinearities and constraints are
explicitly accounted for. Thus we might use a model of the form

dx

dt
= f(x, u), g(x, u) 0

where g : Rn
⇥ Rn

! Rk is a nonlinear function describing constraints on
inputs and states. Our control objective might be to optimize according to
a cost function of the form

J(x, u) =

Z
T

0

L(x, u) dt+ V
�
x(T)

�

where L(x, u) represents the integrated cost along the trajectory and V (x)
represents the terminal cost (e.g., it should be small near the final operating
point that we seek to reach). We will study this problem and its variants in

1-10 CHAPTER 1. INTRODUCTION

Chapters 2 and 3.
As in the case of the feedback regulation layer, the trajectory generation

layer also has a “observer” function, labeled as “state estimation” in Fig-
ure 1.6. The details of this observer depend on the application, but could
represent additional sensor processing that is required for trajectory gener-
ation or sensing of the environment for the purpose of satisfying specifica-
tions relative to that environment. The latter case is particularly common
in applications such as autonomous vehicles, where the state estimation of-
ten includes perception and prediction tasks that are used to identify other
agents in the environment, their type (e.g., pedestrian, bicycle, car, truck),
and their predicted trajectory. This information will be used by the tra-
jectory generation algorithm to avoid collisions or to maintain the proper
position relative to those other agents. The applications of Kalman filtering
and sensor fusion to problems at this layer are considered in Chapters 6
and 7.

The highest layer of abstraction in Figure 1.6 is the decision-making
layer (sometimes also called the “supervisory” layer). At this layer we often
reason over discrete events and logical relations. For example, we may care
about discrete modes of behavior, which could correspond to di↵erent phases
of operation (takeo↵, cruise, landing) or di↵erent environment assumptions
(highway driving, city streets, parking lot). This layer can also be used to
reason over discrete (as opposed to continuous) decisions that we must make
(stop, go, turn left, turn right). This final layer is not explicitly part of the
material covered in this book; a brief discussion of the design problem at
this layer can be found in FBS2e, Section 15.3.

In a full system design, the three control layers that we depict here may
in fact include additional layers within them, or be divided up slightly dif-
ferently. Similarly, the physical layer may consist of system that themselves
have internal control loops running, potentially at multiple layers of ab-
straction. And the system may be networked to other agents and informa-
tion systems that provide information and constraints on system operation.
Thus, our system is a combination of nested, layered, distributed systems,
all operating together.

Another important element of modern control systems is their distributed
and interconnected nature. Much of this is already presented in the layered
control structure described above, but there can also be “external” interac-
tions. On the left side of Figure 1.6 are a set of blocks that represent some
of the elements that can connected through networked information chan-
nels. These can include cloud resources (such as computing or databases),
operators (humans or automated), and interactions with other systems and
subsystems. The increased capability and capacity of networking and com-
munications is one of the drivers of complexity in modern control systems
and has created both new opportunities and new challenges.

Finally, we note the e↵ect of the environment, represented in Figure 1.6

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY (PYTHON-CONTROL) 1-11

as a block at the bottom of the diagram. This block represents many things,
including noise, disturbances, unmodeled dynamics of the process, and the
dynamics of other systems with which our system is interacting. It is the
uncertainty represented in this catchall block that is driving the need for
feedback control, and the impact of these di↵erent types of uncertainty ap-
pear in each level of our controller design.

1.4 The Python Control Systems Library (python-control)2

The Python Control Systems Library (python-control) is a Python pack-
age that implements basic operations for analysis and design of feedback
control systems. The package was created in 2009, shortly after the pub-
lication of Feedback Systems (FBS) by Åström and Murray [ÅM08]. The
initial goal of the project was to implement the operations needed to carry
out all the examples in FBS. A primary motivation for the creation of the
python-control library was the need for open-source control design software
built on the Python general-purpose programming language. The “scien-
tific stack” of NumPy, SciPy, and Matplotlib provide fast and e�cient array
operations, linear algebra and other numerical functions, and plotting capa-
bilities to Python users. Python-control has benefited from this foundation,
using, e.g., optimization routines from SciPy in its optimal control methods,
and Matplotlib for Bode diagrams.

The python-control package provides the functionality required to im-
plement all of the techniques described in this text. This section provides
a brief overview of the python-control package, with the intent of indicat-
ing the calling structure of the code and including a few simple examples.
More detailed examples are given in subsequent chapters, and more detailed
documentation is available at http://python-control.org.

Package Structure and Basic Functionality

The python-control package implements an inheritance hierarchy of dynam-
ical system objects. For the most part, when two systems are combined in
some way through a mathematical operation, one will be promoted to the
type that is the highest of the two. Arranged in order from most to least
general, they are:

• InputOutputSystem: Input/output system that may be nonlinear and
time-varying

– InterconnectedSystem: Interconnected I/O system consisting of
multiple subsystems

– NonlinearIOSystem: Nonlinear I/O system

2
The material in this section is drawn from [?].

http://python-control.org

1-12 CHAPTER 1. INTRODUCTION

Table 1.1: Sample functions available in the python-control package.

Frequency domain analysis:

sys(x) Evaluate frequency response of an LTI system at
complex frequenc(ies) x

sys.frequency_response() Evaluate frequency response of an LTI system at
real angular frequenc(ies) omega

stability_margins() Calculate stability margins and associated
crossover frequencies

phase_crossover_frequencies() Compute frequencies and gains at intersections
with the real axis in a Nyquist plot

bode_plot() Bode plot for a system
nyquist_plot() Nyquist plot for a system
gangof4_plot() Plot the “Gang of 4” transfer functions for a

system
nichols_plot() Nichols plot for a system

Time domain analysis:

forced_response() Simulated response of a linear system to a gen-
eral input

impulse_response() Compute the impulse response for a linear sys-
tem

initial_response() Initial condition response of a linear system
step_response() Compute the step response for a linear system
step_info() Compute step response characteristics
phase_plot() Phase plot for 2D dynamical systems

Other analysis functions and methods:

sys.dcgain() Return the zero-frequency (or DC) gain of an
LTI system

sys.pole() Compute poles of an LTI system
sys.zero() Compute zeros of an LTI system
sys.damp() Compute natural frequency and damping ratio

of LTI system poles
pzmap() Plot a pole/zero map for a linear system
root_locus() Root locus plot
sisotool() Sisotool style collection of plots inspired by

MATLAB

Synthesis tools:

acker() Pole placement using the Ackermann method
h2syn() H2 control synthesis for plant P
hinfsyn() H1 control synthesis for plant P
lqr() Linear quadratic regulator design
lqe() Linear quadratic estimator design (Kalman fil-

ter) for continuous-time systems
mixsyn() Mixed-sensitivity H-infinity synthesis
place() Place closed-loop poles

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY (PYTHON-CONTROL) 1-13

– LinearICSystem: Linear interconnected I/O systems

– LinearIOSystem: Linear I/O system

• LTI: Linear, time-invariant system

– FrequencyResponseData: Frequency response data systems

– StateSpace: State space systems

– TransferFunction: Transfer functions

Each can be either discrete-time, that is, x(k + 1) = f(x(k), u(k)); y(k) =
g(x(k), u(k)) or continuous time, that is, ẋ = f(x, u); y = g(x, u). A discrete-
time system is created by specifying a nonzero ‘timebase’ dt when the system
is constructed:

• dt = 0: continuous time system (default)

• dt > 0: discrete time system with sampling period dt

• dt = True: discrete time with unspecified sampling period

• dt = None: no timebase specified

Linear, time-invariant systems can be interconnected using mathematical
operations +, -, *, and /, as well as the domain-specific functions feedback,
parallel (+), and series (*). Some important functions for LTI systems
and their descriptions are given in Table 1.1. Other categories of tools
that are available include model simplification and reduction tools, ma-
trix computations (Lyapunov and Riccati equations), and a variety of sys-
tem creation, interconnection and conversion tools. A MATLAB compati-
bility layer is provided that has functions and calling conventions that are
equivalent to their MATLAB counterparts, e.g. tf, ss, step, impulse,

bode, margin, nyquist and so on. A complete list is available at http:

//python-control.org.

Linear Systems Example

To illustrate the use of the package, we present an example of the design of
an inner/outer loop control architecture for the planar vertical takeo↵ and
landing (PVTOL) example in FBS [ÅM08]. A slightly di↵erent version of
this example is available in the python-control GitHub repository.

We begin by initializing the Python environment with the packages that
we will use in the example:

pvtol-nested.py - inner/outer design for
vectored thrust aircraft
RMM, 5 Sep 2009 (updated 11 May 2021)
#
This file works through a control design and

http://python-control.org
http://python-control.org

1-14 CHAPTER 1. INTRODUCTION

analysis for the planar vertical takeoff and
landing (PVTOL) aircraft in Astrom and Murray.

import control as ct
import matplotlib.pyplot as plt
import numpy as np

We next define the system that we plan to control (see [ÅM08] for a more
complete description of these dynamics):

System parameters
m = 4 # mass of aircraft
J = 0.0475 # inertia around pitch axis
r = 0.25 # distance to center of force
g = 9.8 # gravitational constant
c = 0.05 # damping factor (estimated)

Transfer functions for dynamics
Pi = ct.tf([r], [J, 0, 0]) # inner loop (roll)
Po = ct.tf([1], [m, c, 0]) # outer loop (posn)

The control design is performed by using a lead compensator to control
the inner loop (roll axis):

Inner loop control design
#
Controller for the pitch dynamics: the goal is
to have a fast response so that we can use this
as a simplified process for the lateral dynamics

Design a simple lead controller for the system
k_i, a_i, b_i = 200, 2, 50
Ci = k_i * ct.tf([1, a_i], [1, b_i])
Li = Pi * Ci

We can now analyze the results by plotting the frequency response as
well as the Gang of 4:

Loop transfer function Bode plot, with margins
plt.figure(); ct.bode_plot(Li, margins=True)
plt.savefig(’pvtol-inner-ltf.pdf’)

Make sure inner loop specification is met
plt.figure(); ct.gangof4_plot(Pi, Ci)
plt.savefig(’pvtol-gangof4.pdf’)

Figures 1.7a and b show the outputs from these commands.
The outer loop (lateral position) is designed using a second lead compen-

sator, using the roll angle as the input:

Design lateral control system (lead compensator)
a_o, b_o, k_o = 0.3, 10, 2
Co = -k_o * ct.tf([1, a_o], [1, b_o])
Lo = -m * g * Po * Co

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY (PYTHON-CONTROL) 1-15

Compute real outer-loop loop transfer function
L = Co * Hi * Po

We can analyze the results using Bode plots, Nyquist plots and time
domain simulations:

Compute stability margins
gm, pm, wgc, wpc = ct.margin(L)

Check to make sure that the specification is met
plt.figure(); ct.gangof4_plot(-m * g * Po, Co)

Nyquist plot for complete design
plt.figure(); ct.nyquist_plot(L)
plt.savefig(’pvtol-nyquist.pdf’)

Step response
t, y = ct.step_response(T, np.linspace(0, 20))
plt.figure(); plt.plot(t, y)
plt.savefig(’pvtol-step.pdf’)

Figures 1.7c and d show the outputs from the nyquist plot and step response

commands (note that the step response command only computes the re-
sponse, unlike MATLAB).

Input/output systems

Python-control supports the notion of an input/output system in a manner
that is similar to the MATLAB “S-function” implementation. Input/output
systems can be combined using standard block diagram manipulation func-
tions (including overloaded operators), simulated to obtain input/output
and initial condition responses, and linearized about an operating point to
obtain a new linear system that is both an input/output and an LTI system.

An input/output system is defined as a dynamical system that has a
system state as well as inputs and outputs (either inputs or states can be
empty). The dynamics of the system can be in continuous or discrete time.
To simulate an input/output system, the input_output_response() func-
tion is used:

t, y = input_output_response(io_sys, T, U, X0, params)

Here, the variable T is an array of times and the variable U is the corre-
sponding inputs at those times. The output will be evaluated at those times,
though the NumPy interp function can be used to interpolate inputs at a
finer timescale, if desired.

An input/output system can be linearized around an equilibrium point
to obtain a state space linear system. The find_eqpt() function can be used
to obtain an equilibrium point and the linearize() function to linearize
about that equilibrium point:

xeq, ueq = find_eqpt(io_sys, X0, U0)
ss_sys = linearize(io_sys, xeq, ueq)

1-16 CHAPTER 1. INTRODUCTION

10−1 100 101 102 103

10−2

100

102
0
ag
ni
tu
Ge

10−1 100 101 102 103

)requenFy (raG/seF)

−180

−135

3h
as
e
(G
eg
)

GP inf (at nan raG/s), 3P 62.71 Geg (at 19.69 raG/s)

(a) Inner loop, with margins

10−3

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

10−1 100 101 102 103

)requenFy (rad/seF)

10−2

10−1

100

101

102

10−1 100 101 102 103

)requenFy (rad/seF)

10−3

10−2

10−1

100

(b) Gang of 4 for inner loop

−60 −40 −20 0 20 40 60
Real axis

−60

−40

−20

0

20

40

60

Im
ag

in
ar

y
ax

is

(c) Nyquist plot for full system

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Step response for full system

Figure 1.7: Sample outputs for PVTOL example.

The resulting ss sys object is a LinearIOSystem object, which is both an
I/O system and an LTI system, allowing it to be used for further operations
available to either class.

Input/output systems can be created from state space LTI systems by
using the LinearIOSystem class:

io_sys = LinearIOSystem(ss_sys)

Nonlinear input/output systems can be created using the NonlinearIOSystem
class, which requires the definition of an update function (for the right-hand
side of the di↵erential or di↵erence equation) and output function (computes
the outputs from the state):

io_sys = NonlinearIOSystem(
updfcn, outfcn, inputs=M, outputs=P, states=N)

More complex input/output systems can be constructed by using the
interconnect() function, which allows a collection of input/output sub-
systems to be combined with internal connections between the subsystems
and a set of overall system inputs and outputs that link to the subsystems:

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY (PYTHON-CONTROL) 1-17

steering = ct.interconnect(
[plant, controller], name=’system’,
connections=[[’controller.e’, ’-plant.y’]],
inplist=[’controller.e’], inputs=’r’,
outlist=[’plant.y’], outputs=’y’)

In addition to explicit interconnections, signals can also be interconnected
automatically using signal names by simply omitting the connections pa-
rameter.

Interconnected systems can also be created using block diagram manipula-
tions such as the series(), parallel(), and feedback() functions. The
InputOutputSystem class also supports various algebraic operations such as
* (series interconnection) and + (parallel interconnection).

Exercises

1.1 (Basics of python-control) Consider a control system with

P (s) =
b

(s+ a)2
, C(s) =

kps+ ki

s
,

and set a = b = 1 and kp = 1, ki = 0.1. Using the Python Control Systems
Library (python-control), do the following:

(a) Plot the step response of the closed loop system and compute the rise
time, settling time, and steady state error.

(b) Plot the frequency response of the open loop system (Bode plot) and
compute the gain margin, phase margins, and bandwidth of the system.

(c) Plot the Nyquist plot of the system and compute the stability margin
(smallest distance to the �1 point).

1.2 (I/O systems using python-control) Consider a simple mechanism for
positioning a mechanical arm and the associated head and the associated
equations.

k

Disk

Motor

⌧m

✓

J ✓̈ = �b✓̇ � kr sin ✓ + ⌧m

⌧̇m = �a(⌧m � u)

1-18 CHAPTER 1. INTRODUCTION

The system consists of a spring loaded arm that is driven by a small motor.
The motor applies a force against the spring and pulls the head across the
platter. The input to the system is the desired motor torque, u. In the
diagram above, the force exerted by the spring is a nonlinear function of
the head position due to the way it is attached. The system parameters are
given by

k = 1, J = 100, b = 10, r = 1, l = 2, ✏ = 0.01.

Starting with the template Jupyter notebook posted on the course web-
site, create a Jupyter notebook that documents the following operations:

(a) Compute the linearization of the dynamics about the equilibrium point
corresponding to ✓e = 15�.

(b) Plot the step response of the linearized, open-loop system and compute
the rise time and settling time.

(c) Design a state feedback controller for the system that stabilizes the
system about ✓e = 45� and sets the closed loop eigenvalues to �1,2 = �1 ±
p
3i. Plot the step response for the closed loop system and compute the rise

time, settling time, and steady state error.

(d) Compute the transfer function Hyu for the open system around the
equilibrium point and sketch the frequency response of the open loop system.

(e) Design a frequency domain compensator that provides tracking with
less than 10% error up to 1 rad/sec and has a phase margin of at least
45�. Demonstrate that your controller meets these requirements by showing
Bode, Nyquist, and step response plots, and compute the rise time, settling
time, and steady state error for the system using your controller design.

(f) Create simulations of the full nonlinear system with the linear controllers
designed in parts (c) and (e) and plot the response of the system from an
initial position of 0 mm at t = 0, to 0.4 mm at t = 30 ms, to 1.2 mm at
t = 90 ms, to 0.8 mm at t = 120 ms.

	Chapter 1. Introduction
	1.1 System and Control Design
	1.2 The Control System ``Standard Model''
	1.3 Layered Control Systems
	1.4 The Python Control Systems Library (python-control)

	Chapter 2. Trajectory Generation and Tracking
	2.1 Two Degree of Freedom Design
	2.2 Trajectory Tracking and Gain Scheduling
	2.3 Trajectory Generation and Differential Flatness
	2.4 Other Methods for Generating Trajectories
	2.5 Further Reading

	Chapter 3. Optimal Control
	3.1 Review: Optimization
	3.2 Optimal Control of Systems
	3.3 Examples
	3.4 Linear Quadratic Regulators
	3.5 Choosing LQR weights
	3.6 Advanced Topics
	3.7 Further Reading

	Chapter 4. Receding Horizon Control
	4.1 Optimization-Based Control
	4.2 Receding Horizon Control with CLF Terminal Cost
	4.3 Receding Horizon Control Using Differential Flatness
	4.4 Implementation on the Caltech Ducted Fan
	4.5 Further Reading

	Chapter 5. Stochastic Systems
	5.1 Brief Review of Random Variables
	5.2 Introduction to Random Processes
	5.3 Continuous-Time, Vector-Valued Random Processes
	5.4 Linear Stochastic Systems with Gaussian Noise
	5.5 Random Processes in the Frequency Domain
	5.6 Further Reading

	Chapter 6. Kalman Filtering
	6.1 Linear Quadratic Estimators
	6.2 Extensions of the Kalman Filter
	6.3 LQG Control
	6.4 Application to a Thrust Vectored Aircraft
	6.5 Further Reading

	Chapter 7. Sensor Fusion
	7.1 Discrete-Time Stochastic Systems
	7.2 Kalman Filters in Discrete Time (FBS2e)
	7.3 Predictor-Corrector Form
	7.4 Sensor Fusion
	7.5 Information Filters
	7.6 Additional topics
	7.7 Further Reading

	Bibliography
	Index
	Index

