
Optimization-Based Control

Richard M. Murray

Control and Dynamical Systems

California Institute of Technology

With contributions from:

Karl Åström, William Dunbar, Ryan Franz, John Hauser,

Ali Jadbabaie, Mark Milam, Nicolas Petit, and ChatGPT

Version v2.3j (26 Feb 2023)

© California Institute of Technology

All rights reserved.

This manuscript is for personal use only and may not be reproduced,

in whole or in part, without written consent from the author.

Chapter 7

Sensor Fusion

In this chapter we consider the problem of combining the data from di↵erent sensors
to obtain an estimate of a (common) dynamical system. Unlike the previous chap-
ters, we focus here on discrete-time processes, leaving the continuous-time case to
the exercises. We begin with a summary of the input/output properties of discrete-
time systems with stochastic inputs, then present the discrete-time Kalman filter,
and use that formalism to formulate and present solutions for the sensor fusion
problem. Some advanced methods of estimation and fusion are also summarized at
the end of the chapter that demonstrate how to move beyond the linear, Gaussian
process assumptions.

Prerequisites. The material in this chapter is designed to be reasonably self-
contained, so that it can be used without covering Sections 5.3–5.4 or Chapter 6
of this supplement. We assume rudimentary familiarity with discrete-time linear
systems, at the level of the brief descriptions in Chapters 3 and 7 of FBS2e, and
discrete-time random processes as described in Section 5.2 of these notes.

7.1 Discrete-Time Stochastic Systems

We begin with a concise overview of stochastic system in discrete time, echoing
our development of continuous-time random systems described in Chapter 5. We
consider systems of the form

X[k + 1] = AX[k] +Bu[k] + FV [k], Y [k] = CX[k] +W [k], (7.1)

where X 2 Rn represents the state, u 2 Rm represents the (deterministic) input,
V 2 Rq represents process disturbances, Y 2 Rp represents the system output and
V 2 Rp represents measurement noise.

As in the case of continuous-time systems, we are interested in the response
of the system to the random input V [k]. We will assume that V is a Gaussian
process with zero mean and correlation function rV (k, k+d) (or correlation matrix
RV (k, k+d) if V is vector valued). As in the continuous case, we say that a random
process is white noise if rV (k, k+d) = rV �(d) with �(d) = 1 if d = 0 and 0 otherwise.
(Note that in the discrete-time case, white noise has finite covariance.)

7-1

7-2 CHAPTER 7. SENSOR FUSION

To compute the response Y [k] of the system, we look at the properties of the
state vector X[k]. For simplicity, we take u = 0 (since the system is linear, we can
always add it back in by superposition). Note first that the state at time k+ d can
be written as

X[k + d] = AX[k + d� 1] + FV [x+ l � 1]

= A(AX[k + d� 2] + FV [x+ l � 2]) + FV [x+ l � 1]

= A
d
X[k] +

dX

j=1

A
j�1

FV [k + d� j].

The mean of the state at time k is given by

E(X[k]) = A
kE(E[0]) +

kX

j=1

A
j�1

FE(V [k � j]) = A
kE(X[0]).

To compute the covariance RX(k, k + d), we start by computing RX(k, k + 1):

RX(k, k + 1) = E(X[k]XT[k + 1])

= E((Ak
x[0] +A

k�1
Fw[0] + · · ·+AFw[k � 2] + F [k � 1])·

(Ak+1
x[0] +A

k
Fw[0] + · · ·+ Fw[k])T)

Performing a similar calculation for RX(k, k + d), it can be shown that

RX(k, k + d) =
�
A

k
P [0](AT)k +A

k�1
FRV [0]F

T(AT)k�1 + . . .

+ FRV [k]F
T
�
(AT)d =: P [k](AT)d, (7.2)

where

P [k + 1] = AP [k]AT + FRV [k]F
T
. (7.3)

The matrix P [k] is the covariance of the state matrix and we see that its value
can be computed recursively starting with P [0] = E(X[0]XT[0]) and then applying
equation (7.3). Equations (7.2) and (7.3) are the equivalent of Proposition 5.2 for
continuous-time processes. If we additionally assume that V is stationary and focus
on the steady state response, we obtain the following.

Proposition 7.1 (Steady state response to white noise). For a discrete-time, time-
invariant, linear system driven by white noise, the correlation matrices for the state
and output converge in steady state to

RX(d) = RX(k, k + d) = PA
d
, RY (d) = CRX(d)CT

,

where P satisfies the algebraic equation

APA
T + FRV F

T = 0, P > 0. (7.4)

7.2. KALMAN FILTERS IN DISCRETE TIME (FBS2E) 7-3

7.2 Kalman Filters in Discrete Time (FBS2e)

We now consider the optimal estimator in discrete time. This material is presented
in FBS2e in slightly simplified (but consistent) form.

Consider a discrete time, linear system with input, having dynamics

X[k + 1] = AX[k] +Bu[k] + FV [k],

Y [k] = CX[k] +W [k],
(7.5)

where V [k] and W [k] are Gaussian, white noise processes satisfying

E(V [k]) = 0 E(W [k]) = 0

E(V [k]V T[j]) =

(
0 k 6= j

RV k = j
E(W [k]WT[j]) =

(
0 k 6= j

RW k = j

E(V [k]WT[j]) = 0.

(7.6)

We assume that the initial condition is also modeled as a Gaussian random variable
with

E(X[0]) = x0 E(X[0]XT[0]) = P [0]. (7.7)

We wish to find an estimate X̂[k] that gives the minimum mean square error
(MMSE) for E((X̂[k] �X[k])(X̂[k] �X[k])T) given the measurements {Y [l] : 0

l k}. We consider an observer of the form

X̂[k + 1] = AX̂[k] +Bu[k]� L[k](CX̂[k]� Y [k]). (7.8)

The following theorem summarizes the main result.

Theorem 7.2. Consider a random process X[k] with dynamics (7.5) and noise
processes and initial conditions described by equations (7.6) and (7.7). The observer
gain L that minimizes the mean square error is given by

L[k] = AP [k]CT(RW + CP [k]CT)�1
,

where
P [k + 1] = AP [k]AT + FRV F

T
�AP [k]CT

R
�1
✏ CP [k]AT

P [0] = E(X[0]XT[0]).
(7.9)

Proof. We wish to minimize the mean square of the error, E((X̂[k]�X[k])(X̂[k]�
X[k])T). We will define this quantity as P [k] and then show that it satisfies the
recursion given in equation (7.9). Let E[k] = CX̂[k]�Y [k] be the residual between
the measured output and the estimated output. By definition,

P [k + 1] = E(E[k + 1]ET[k + 1])

= (A� LC)P [k](A� LC)T + FRV F
T + LRWL

T

= AP [k]AT
�AP [k]CT

L
T
� LCP [k]AT+

L(RW + CP [k]CT)LT + FRV F
T
.

7-4 CHAPTER 7. SENSOR FUSION

Letting R✏ = (RW + CP [k]CT), we have

P [k + 1] = AP [k]AT
�AP [k]CT

L
T
� LCP [k]AT + LR✏L

T + FRV F
T

= AP [k]AT +
�
L�AP [k]CT

R
�1
✏

�
R✏

�
L�AP [k]CT

R
�1
✏

�T

�AP [k]CT
R

�1
✏ CP [k]AT + FRV F

T
.

In order to minimize this expression, we choose L = AP [k]CT
R

�1
✏ and the theorem

is proven.

Note that the Kalman filter has the form of a recursive filter: given P [k] =
E(E[k]E[k]T) at time k, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X̂[k] and the covariance P [k], so we can see how
reliable the estimate is. It can also be shown that the Kalman filter extracts the
maximum possible information about output data: the correlation matrix for the
estimation error of the filter is

RE [j, k] = R�jk.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

In the special case when the noise is stationary (RV , RW constant) and if P [k]
converges, then the observer gain is constant:

L = APC
T(RW + CPC

T)�1
,

where P satisfies

P = APA
T + FRV F

T
�APC

T
�
RW + CPC

T
��1

CPA
T
.

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is solved
by the dlqe command in MATLAB and python-control.

7.3 Predictor-Corrector Form

The Kalman filter can be written in a two-step form by separating the correction
step (where we make use of new measurements of the output) and the prediction
step (where we compute the expected state and covariance at the next time instant).

We make use of the notation X̂[k|j] to represent the estimated state at time
instant k given the information up to time j (where typically j = k�1). Using this
notation, the filter can be solved using the following algorithm:

Step 0: Initialization.
k = 1,

X̂[0|0] = E(X[0]),

P [0|0] = E(X[0]XT[0]).

7.3. PREDICTOR-CORRECTOR FORM 7-5

Step 1: Prediction. Update the estimates and covariance matrix to account for all
data taken up to time k � 1:

X̂[k|k�1] = AX̂[k�1|k�1] +Bu[k � 1],

P [k|k�1] = AP [k�1|k�1]AT + FRV [k � 1]FT
.

Step 2: Correction. Correct the estimates and covariance matrix to account for the
data taken at time step k:

L̃[k] = P [k|k�1]CT(RW + CP [k|k�1]CT)�1
,

X̂[k|k] = X̂[k|k�1]� L̃[k](CX̂[k|k�1]� Y [k]),

P [k|k] = P [k|k�1]� L̃[k]CP [k|k�1].

(We use L̃[k] to distinguish the optimal gain in this form from that given in Theo-
rem 7.2, as discussed briefly at the end of this section.)

Step 3: Iterate. Set k to k + 1 and repeat steps 1 and 2.

Note that the correction step reduces the covariance by an amount related to the
relative accuracy of the measurement, while the prediction step increases the co-
variance by an amount related to the process disturbance.

This form of the discrete-time Kalman filter is convenient because we can reason
about the estimate in the case when we do not obtain a measurement on every
iteration of the algorithm. In this case, we simply update the prediction step
(increasing the covariance) until we receive new sensor data, at which point we call
the correction step (decreasing the covariance).

The following lemma will be useful in the sequel:

Lemma 7.3. The optimal gain L̃[k] satisfies

L̃[k] = P [k|k]CT
R

�1
W .

Proof. L̃[k] is defined as

L̃[k] = P [k|k�1]CT(RW + CP [k|k�1]CT)�1
.

Multiplying through by the inverse term on the right and expanding, we have

L̃[k](RW + CP [k|k�1]CT) = P [k|k�1]CT
,

L̃[k]RW + L̃[k]CP [k|k�1]CT = P [k|k�1]CT
,

and hence
L̃[k]RW = P [k|k�1]CT

� L̃[k]CP [k|k�1]CT
,

= (I � L̃[k]C)P [k|k�1]CT = P [k|k]CT
.

The desired results follows by multiplying on the right by R
�1
W .

It can be shown that the predictor-corrector form matches the form in Theo-
rem 7.2 if we define x̂[k] = x̂[k|k � 1], P [k] = P [k|k � 1] and L̃[k] = AL[k].

7-6 CHAPTER 7. SENSOR FUSION

u
Estimator

Sensor 1

Sensor 2

Process

y1

y2

x̂

Figure 7.1: Sensor fusion. Multiple sensors report on data from a single process.
The estimator fusions this information from the sensors to obtain an estimate of
the state of the system. Depending on the use case, the input (dashed line) may
not be available to the estimator.

7.4 Sensor Fusion

We now return to the main topic of the chapter: sensor fusion. Consider the
situation described in Figure 7.1, where we have an input/output dynamical system
with multiple sensors capable of taking measurements. The problem of sensor fusion
involves deciding how to best combine the measurements from the individual sensors
in order to accurately estimate the process state X. Since di↵erent sensors may
have di↵erent noise characteristics, evidently we should combine the sensors in a
way that places more weight on sensors with lower noise. In addition, in some
situations we may have di↵erent sensors available at di↵erent times, so that not all
information is available on each measurement update.

While sensor fusion can be used for estimation of the state of a system being
controlled, another common application is to sense the state of a system in the
environment. A di↵erence for this use case is that the input to the system in the
environment is often not available, requiring the estimator to use a model for the
system in which the input is modeled by a random process.

Sensor weighting

To gain more insight into how the sensor data are combined, we investigate the
functional form of L[k]. Suppose that each sensor takes a measurement of the form

Y
i = C

i
X +W

i
, i = 1, . . . , p,

where the superscript i corresponds to the specific sensor. Let W i be a zero mean,
white noise process with covariance �

2
i = RW i(0). It follows from Lemma 7.3 that

L[k] = P [k|k]CT
R

�1
W .

First note that if P [k|k] is small, indicating that our estimate of X is close to the
actual value (in the MMSE sense), then L[k] will be small due to the leading P [k|k]
term. Furthermore, the characteristics of the individual sensors are contained in
the di↵erent �2

i terms, which only appears in RW . Expanding the gain matrix, we
have

L[k] = P [k|k]CT
R

�1
W , R

�1
W =

2

64
1/�2

1
. . .

1/�2
p

3

75 .

7.5. IMPLEMENTATION IN PYTHON 7-7

We see from the form of R�1
W that each sensor is inversely weighted by its covariance.

Thus noisy sensors (�2
i � 1) will have a small weight and require averaging over

many iterations before their data can a↵ect the state estimate. Conversely, if �2
i ⌧

1, the data is “trusted” and is used with higher weight in each iteration.

Information filters

An alternative formulation of the Kalman filter is to make use of the inverse of
the covariance matrix, called the information matrix, to represent the error of the
estimate. It turns out that writing the state estimator in this form has several
advantages both conceptually and when implementing distributed computations.
This form of the Kalman filter is known as the information filter.

We begin by defining the information matrix I and the weighted state estimate
Ẑ:

I[k|j] = P
�1[k|j], Ẑ[k|j] = P

�1[k|j]X̂[k|j].

In this form, it can be shown that the correction step of the Kalman filter for the
multi-sensor case can be written as

I[k|k] = I[k|k�1] +
pX

i=1

(Ci)TR�1
W i [k|k]C

i
,

Ẑ[k|k] = Ẑ[k|k�1] +
pX

i=1

(Ci)TR�1
W i [k|k]Y

i
.

The advantage of using the information filter version of the equation is that it
allows a simple addition operation for the correction step, corresponding to adding
the “information” obtained through the acquisition of new data. We also see the
clear relationship between the information content in each sensor channel and the
inverse covariance of that sensor.

Another feature of the information filter formulation is that it allows some e�-
ciencies when implementing distributed estimation across networks. In particular,
the information carried in the individual sensors can be simply added together
through the updates of I[k|k�1]. This is helpful especially when the sensors have
variable sampling rate and the measurement packets arrive at di↵erent times. New
information is incorporated whenever it arrives and then a global update of I[k|k�1]
at a centralized node is used to integrate all sensor measurements (which can the
be rebroadcast out to the sensors). The information form also makes clear how
to handle missing data: if no data arrives for a given sensor then no information
is added and only the time update is applied, hence the measurement update is
skipped.

7.5 Implementation in Python

Steady state gains for a discrete time Kalman filter can be computed using the dlqe

command:

L, P, E = ct.dlqe(A, F, C, Qv, Qw, C=C_sensors),

7-8 CHAPTER 7. SENSOR FUSION

where A, F, and C are the (discrete-time) system matrices and Qv and Qw are the
disturbance and noise covariance matrices.

The create_estimator_iosystem function can be used to implement a discrete-
time Kalman filter in the form given in Theorem 7.2. This function creates an
input/output system that implements a discrete-time state estimator of the form

x̂[k + 1] = Ax[k] +Bu[k]� L(Cx̂[k]� y[k]),

P [k + 1] = APA
T + FQNF

T
�APC

T
R

�1
✏ CPA,

L = APC
T
R

�1
✏ , R✏ = RN + CPC

T
.

To create the estimator system, using the command

estim = ct.create_estimator_iosystem(sys, Qv, Qw)

where sys is the process dynamics and Qv and Qw are the covariance of the dis-
turbance noise and sensor noise. The function returns the estimator estim as I/O
system with a parameter correct that can be used to turn o↵ the correction term
in the estimation (for forward predictions).

Sensor fusion can be implemented by passing create_estimator_iosystem a sys-
tem with full state output and then using the C keyword to define the measured
values to be used by the estimator:

estim = ct.create_estimator_iosystem(sys, Qv, Qw, C=C_sensors)

The matrix C_sensors can have as many rows as there are sensors, with the matrix
Qw describing the noise covariance (and cross-correlation, if diagonal entries are
non-zero).

As described in Section 6.4, the create_statefbk_iosystem function can be used
to create an I/O system that includes an estimator and state feedback to form a
dynamic compensator.

7.6 Additional Topics

Unscented Kalman filter1

Consider a nonlinear system

Ẋ = f(X,u, V), X 2 Rn
, u 2 Rm

,

Y = h(X) +W, Y 2 Rp
,

(7.10)

where V and W are Gaussian white noise processes with covariance matrices RV

and RW . We saw in Chapter 6 how to extend the Kalman filter to this case by
using the local linearization of the dynamics. In some cases this approximation
is not a very good one, especially if there are strong nonlinearities in the update
function f or output function h.

ChatGPT prompt: Explain how an unscented Kalman filter works, in the form
of a textbook.

1
This section was written by ChatGPT on 20 Feb 2023 and (lightly) edited by Richard Murray.

7.6. ADDITIONAL TOPICS 7-9

Response: The unscented Kalman filter (UKF) is a variant of the Kalman filter
that can be used for nonlinear systems. In this [subsection], I’ll assume that you’re
already familiar with the Kalman filter and its notation.

The basic idea behind the UKF is to approximate the probability distribution of
the state variables using a set of sample points, called sigma points. These sample
points are carefully chosen to capture the mean and covariance of the distribution,
and are propagated through the nonlinear system to obtain a predicted distribution
for the next time step.

At each time step, the UKF goes through two main steps: the prediction step
and the update step.

Prediction step. In the prediction step, the UKF generates a set of sigma points
from the current estimate of the state distribution. These sigma points are chosen
to capture the mean and covariance of the distribution. The number of sigma points
required is typically twice the number of state variables plus one.

Once the sigma points are generated, they are propagated through the nonlinear
system dynamics to obtain a predicted mean and covariance for the next time step.
This is done by passing each sigma point through the nonlinear function, and then
computing the mean and covariance of the resulting set of points.

The predicted mean and covariance are then used to generate a predicted dis-
tribution for the state variables at the next time step.

Update step. In the update step, the UKF uses new measurements of the system
to correct the predicted distribution generated in the prediction step.

First, a set of sigma points is generated from the predicted distribution, in
the same way as in the prediction step. These sigma points are then propagated
through the measurement function to obtain the predicted measurement values
corresponding to each sigma point.

The predicted measurement mean and covariance are then computed from the
resulting set of predicted measurement values. This predicted measurement dis-
tribution is compared to the actual measured values, and the di↵erence is used to
correct the predicted state distribution.

Finally, the corrected state distribution is used as the new estimate for the state
variables at the current time step.

In summary, the UKF approximates the distribution of the state variables using
a set of carefully chosen sample points, and propagates these points through the
nonlinear system dynamics and measurement function to generate predicted distri-
butions. The predicted distributions are then updated with new measurements to
obtain a corrected estimate of the state variables at each time step.

ChatGPT prompt: Show me the equations for an unscented Kalman filter.

1. Initialization: initialize state estimate and covariance matrix:

• x̂0 : initial state estimate

• P0 : initial covariance matrix

2. Prediction step:

• Generate sigma points:

7-10 CHAPTER 7. SENSOR FUSION

– X0 = x̂k,

– Xi = x̂k +
⇣p

(n+ �)Pk

⌘

i
, i = 1, ..., n,

– Xi = x̂k �

⇣p
(n+ �)Pk

⌘
, i = n+ 1, ..., 2n.

• Propagate sigma points through nonlinear function f(x):

– Yi = f(Xi), i = 0, 1, ..., 2n.

• Compute predicted state mean and covariance:

– x̂k|k�1 =
P2n

i=0 w
m
i Yi,

– Pk|k�1 =
P2n

i=0 w
c
i (Yi � x̂k|k�1)(Yi � x̂k|k�1)

T +Qk,

where n is the dimensionality of the state, � is a scaling parameter, Pk is
the covariance matrix of the state at time k, wm

i and w
c
i are weight coef-

ficients that depend on n and �, and Qk is the process noise covariance
matrix.

3. Update step:

• Generate sigma points from predicted state distribution:

– X0 = x̂k|k�1,

– Xi = x̂k|k�1 +
�p

(n+ �)Pk|k�1

�
i
, i = 1, ..., n,

– Xi = x̂k|k � 1�
�p

(n+ �)Pk|k�1

�
i�n

, i = n+ 1, ..., 2n.

• Propagate sigma points through measurement function h(x):

– Zi = h(Xi), i = 0, 1, ..., 2n.

• Compute predicted measurement mean and covariance:

– ẑk|k�1 =
P2n

i=0 w
m
i Zi,

– Sk =
P2n

i=0 w
c
i (Zi � ẑk|k � 1)(Zi � ẑk|k � 1)T +Rk,

where Rk is the measurement noise covariance matrix.

• Compute cross-covariance matrix:

– Px,z,k =
P2n

i=0 w
c
i (Xi � x̂k|k � 1)(Zi � ẑk|k � 1)T .

• Compute Kalman gain:

– Kk = Px,z,kS
�1
k .

Compute updated state estimate and covariance:

– x̂k = x̂k|k � 1 +Kk(zk � ẑk|k�1),
– Pk = Pk|k�1 �KkSkK

T
k .

where zk is the measurement at time k, ẑk|k�1 is the predicted measure-
ment, Kk is the Kalman gain, Px,z,k is the cross-covariance matrix, and
Pk is the updated covariance matrix.

The weight coe�cients are defined as follows:

• w
m
0 = �

n+� ,

• w
c
0 = �

n+� + (1� ↵
2 + �),

• w
m
i = w

c
i =

1
2(n+�) , i = 1, ..., 2n,

where ↵, �, and are tuning parameters that determine the spread of the
sigma points. Typically, ↵ = 0.9, � = 2, and = 3� n are used in practice.

7.6. ADDITIONAL TOPICS 7-11

Ensemble Kalman filtering2

ChatGPT prompt: Write a section for a textbook on the ensemble Kalman filter,
with equations.

Introduction. The ensemble Kalman filter (EnKF) is a popular data assimilation
algorithm that is widely used in numerical weather prediction, oceanography, and
other fields. It is a variant of the Kalman filter that replaces the Gaussian assump-
tions about the prior and posterior probability distributions with a set of Monte
Carlo samples, or “ensemble members”. The EnKF is particularly useful in high-
dimensional problems where the computational cost of a full Kalman filter update
becomes prohibitive.

Algorithm. The EnKF algorithm proceeds as follows:

1. Initialization: Generate an initial ensemble ofN state vectors xi
0, i = 1, . . . , N ,

with mean x̂0 and covariance matrix P0.

2. Forecast step: Perturb each ensemble member using a random draw from a
distribution with mean zero and covariance matrix Qk, the process noise:

• x
i
k = f(xi

k�1) + ✏
i
k

Evaluate the forecast ensemble mean and covariance:

• x̂k|k�1 = 1
N

PN
i=1 x

i
k

• Pk|k�1 = 1
N�1

PN
i=1(x

i
k � x̂k|k�1)(x

i
k � x̂k|k�1)

T +Qk

3. Analysis step: Obtain a set of M observations yk and the associated obser-
vation operator h.

• Perturb each ensemble member using a random draw from a distribution
with mean zero and covariance matrix Rk, the observation error:

– y
i
k = h(xi

k) + �
i
k

Evaluate the forecast ensemble mean and covariance:

– ŷk|k�1 = 1
M

PM
i=1 y

i
k

– Sk = 1
M�1

PM
i=1(y

i
k � ŷk|k�1)(y

i
k � ŷk|k�1)

T +Rk

• Compute the cross-covariance matrix between the forecast state and the
observations:

– Pk|k�1 = 1
N�1

PN
i=1(x

i
k � x̂k|k�1)(y

i
k � ŷk|k�1)

T

• Compute the Kalman gain:

– Kk(yk � ŷk|k�1)

• Update the state ensemble using the Kalman gain:

– x
i
k = x

i
k|k�1 +Kk(yk � h(xi

k|k�1))

• Evaluate the updated ensemble mean and covariance:

– x̂k = 1
N

PN
i=1 x

i
k

2
This section was written by ChatGPT on 20 Feb 2023 and (lightly) edited by Richard Murray.

7-12 CHAPTER 7. SENSOR FUSION

– Pk = 1
N�1

PN
i=1(x

i
k � x̂k)(xi

k � x̂k)T

where ✏
i
k and �

i
k are random vectors drawn from the process and obser-

vation noise distributions, respectively.

The EnKF algorithm also requires specification of the process noise covariance
matrix Qk and the observation error covariance matrix Rk. These matrices can be
estimated using statistical methods or by tuning them through trial and error.

One advantage of the EnKF over the traditional Kalman filter is that it is
easily parallelizable. The forecast step and analysis step can be performed inde-
pendently for each ensemble member, allowing the algorithm to take advantage of
distributed computing architectures. However, the EnKF can su↵er from sampling
errors, particularly in the presence of nonlinearities or non-Gaussian distributions.
Various modifications to the basic EnKF algorithm have been proposed to address
these issues, such as the Local ensemble transform Kalman filter (LETKF) and the
ensemble square root filter (ESRF).

Moving horizon estimation

The various extensions and variations of the Kalman filter equations all assume that
the system disturbances and measurement noise can be modeled by Gaussian pro-
cesses, in which the (potentially time-varying) mean and covariance of the signals
are su�cient to model the underlying sources of uncertainty. In many cases, this
is not a good assumption, for example when there are bounded, non-symmetric, or
multi-modal sources of disturbances and noise.

Consider a nonlinear system with discrete time dynamics of the form

X[k + 1] = f(X[k], u[k], V [k]), Y [k] = h(X[k]) +W [k], (7.11)

where X[k] 2 Rn, u[k] 2 Rm, and Y [k] 2 Rp, and V [k] 2 Rq and W [k] 2 Rp

represent random processes that are not necessarily Gaussian white noise processes.
The estimation problem that we wish to solve is to find the estimate x̂[·] that
matches the measured outputs y[·] with “likely” disturbances and noise.

For a fixed horizon of length N , this problem can be formulated as an optimiza-
tion problem where we define the likelihood of a given estimate (and the resulting
noise and disturbances predicted by the model) as a cost function. Suppose we
model the likelihood using a conditional probability density function p

�
x[0], . . . , x[N] |

y[0], . . . , y[N�1]
�
. Then we can pose the state estimation problem as

x̂[0], . . . , x̂[N] = arg max
x̂[0],...,x̂[N]

p
�
x̂[0], . . . , x̂[N] | y[0], . . . , y[N�1]

�
(7.12)

subject to the constraints given by equation (7.11). The result of this optimization
gives us the estimated state for the previousN steps in time, including the “current”
time x[N]. The basic idea is thus to compute the state estimate that is most
consistent with our model and penalize the noise and disturbances according to
how likely the are (based on a some sort of stochastic system model for each).

Given a solution to this fixed horizon, optimal estimation problem, we can
create an estimator for the state over all times by applying repeatedly applying the
optimization problem (7.12) over a moving horizon. At each time k, we take the

7.6. ADDITIONAL TOPICS 7-13

measurements for the last N time steps along with the previously estimated state at
the start of the horizon, x[k �N] and reapply the optimization in equation (7.12).
This approach is known as a moving horizon estimator (MHE).

The formulation for the moving horizon estimation problem is very general
and various situations can be captured using the conditional probability function
p(x[0], . . . , x[N] | y[0], . . . , y[N�1]. We start by noting that if the disturbances are
independent of the underlying states of the system, we can write the conditional
probability as

p
�
x[0], . . . , x[N] | y[0], . . . , y[N�1]

�
=

pX[0](x[0])
N�1Y

k=0

pV

�
y[k]� h(x[k])

�
p
�
x[k + 1] | x[k]

�
.

This expression can be further simplified by taking the log of the expression and
maximizing the function

log pX[0](x[0]) +
N�1X

k=0

log pW
�
y[k]� h(x[k])

�
+ log pV (v[k]). (7.13)

The first term represents the likelihood of the initial state, the second term captures
the likelihood of the noise signal, and the final term captures the likelihood of the
disturbances.

If we return to the case where V and W are modeled as Gaussian processes,
then it can be shown that maximizing equation (7.13) is equivalent to solving the
optimization problem given by

min
x[0],{v[0],...,v[N�1]}

kx[0]� x̄[0]k+
N�1X

k=0

ky[k]� h(xk)k
2
RW

+ kv[k]k2RV
. (7.14)

Note that here we only compute the estimated initial state x̂[0], but we can now
reconstruct the entire history of estimated states using the system dynamics:

x̂[k + 1] = F (x̂[k], u[k], v[k]), k = 0, . . . , N � 1,

and we can implement the estimator in receding horizon fashion by repeatedly
solving the optimization of a window of length N backwards in time.

One of the simpler cases where the receding horizon formulation is useful is
when we have a priori knowledge that our disturbances are bounded. In this case,
we simply add a constraint in the optimization in equation (7.14), for example
requiring that v[k] 2 [vmin, vmax].

This functionality is implemented in python-control using the solve_oep() and
create_mhe_iosystem() functions. An example demonstrating the implementation
is available via the course website.

Exercises

7.1. Consider the problem of estimating the position of an autonomous mobile vehi-
cle using a GPS receiver and an IMU (inertial measurement unit). The continuous
time dynamics of the vehicle are given by

7-14 CHAPTER 7. SENSOR FUSION

x

l

�

✓
y ẋ = cos ✓ v

ẏ = sin ✓ v

✓̇ =
1

`
tan � v,

We assume that the vehicle is disturbance free, but that we have noisy measure-
ments from the GPS receiver and IMU and an initial condition error.

(a) Rewrite the equations of motion in discrete time, assuming that we update the
dynamics at a sample time of h = 0.005 sec and that we can take ẋ to be roughly
constant over that period. Run a simulation of your discrete time model from initial
condition (0, 0, 0) with constant input � = ⇡/8, v = 5 and compare your results
with the continuous time model.

(b) Suppose that we have a GPS measurement that is taken every 0.1 seconds and
an IMU measurement that is taken every 0.01 seconds. Write a MATLAB program
that that computes the discrete time Kalman filter for this system, using the same
disturbance, noise and initial conditions as Exercise 6.5.

7.2. Consider the problem of estimating the position of a car operating on a road
whose dynamics are modeled as described in Example 2.3. We assume that the car
is executing a lane change manuever and we wish to estimate its position using a
set of available sensors:

• A stereo camera pair, which relatively poor longitudinal (x) accuracy but
good lateral position (y) accuracy. We model the covaraiance of the sensor
noise as Rlat = diag(1, 0.1).

• An automotive grade radar, which has good longitudinal position (x) accuracy
but poor lateral (y) accuracy, with Rlon = diag(0.1, 1).

• We assume the radar can also measure the longitudinal velocity (ẋ) as an
optional measurement, with Rvel = 1.

In this problem we assume that the detailed model of the system is not known and
also that the inputs to the vehicle (throttle and steering) are not known. We use a
variety of system models to explore how these di↵erent measurements can be fused
to obtain estimates and predictions of the vehicle position.

(a) Consider a model of the vehicle consisting of a particle in 2D, with the velocity
of particle in the x and y direction taken as the input:

ẋ = u1, ẏ = u2

A discrete-time version of the system dynamics is given by

x[k + 1] = x[k] + u1[k] ⇤ Ts, y[k + 1] = y[k] + u2[k] ⇤ Ts,

7.6. ADDITIONAL TOPICS 7-15

where Ts = 0.1 s is the sampling time between sensor measurements.

Construct an estimator for the system using a combination of the stereo pair and
the radar (position only). Estimate the state and covariance of the system during
the lane change manuever from Example 2.3 and predict the state for the next 4
seconds.

(b) Assume now that we now add (noisy) measurement of the velocity from the
radar as an approximation of the input u1. Update your Kalman filter to utilize
this measurement (with no filtering), and replot the estimate and prediction for the
system.

(c) To provide a better prediction, we can increase the complexity of our model
so that it includes the velocity of the vehicle as a state, allowing us to model the
acceleration as the input. In continuous time, this model is given by

ẍ = u1, ẏ = u2

(note that we are still modeling the lateral position using a single integrator).

Convert this model to discrete time and construct an estimator for the system using
a combination of the stereo pair and the radar (position and velocity). Estimate
the state and covariance of the system during the lane change manuever and predict
the state for the next 4 seconds.

Note: in this problem you have quite a bit of freedom in how you model the dis-
turbances, which should model the unknown inputs to the vehicle being observed.
Make sure to provide some level of justification for how you chose these distur-
bances.

7.3. Consider a continuous time dynamical system with multiple measurements,

Ẋ = AX +Bu+ FV, Y
i = C

i
x+W

i
, i = 1, . . . , q.

Assume that the measurement noises W i are independent for each sensor and have
zero mean and variance �

2
i . Show that the optimal estimator for X weights the

measurements by the inverse of their covariances.

7.4. The form of the optimal feedback for a discrete time Kalman filter di↵eres
slightly depending on whether we use the form in Theorem 7.2 or the predictor-
corrector form in Section 7.3.

(a) Show that the predictor-corrector form of the optimal estimator for a linear
process driven by white noise matches the form in Theorem 7.2 if we define x̂[k] =
x̂[k|k � 1], P [k] = P [k|k = 1] and L̃[k] = AL[k].

(b) Alternatively, show that if we formulate the optimal estimate using an estimator
of the form

X̂[k + 1] = AX̂[k] + L[k](Y [k + 1]� CAX̂[k])

that we recover the update law in the predictor-corrector form.

7.5. The unscented Kalman filter (UKF) equations created by ChatGPT are con-
vincing, but they are incorrect. Find and fix the errors.

7-16 CHAPTER 7. SENSOR FUSION

	1 Introduction
	1.1 System and Control Design
	1.2 The Control System ``Standard Model''
	1.3 Layered Control Systems
	1.4 The Python Control Systems Library

	2 Trajectory Generation and Tracking
	2.1 Two Degree of Freedom Design
	2.2 Trajectory Tracking and Gain Scheduling
	2.3 Trajectory Generation and Differential Flatness
	2.4 Implementation in Python
	2.5 Other Methods for Generating Trajectories
	2.6 Further Reading

	3 Optimal Control
	3.1 Review: Optimization
	3.2 Optimal Control of Systems
	3.3 Examples
	3.4 Implementation in Python
	3.5 Linear Quadratic Regulators
	3.6 Choosing LQR weights
	3.7 Advanced Topics
	3.8 Further Reading

	4 Receding Horizon Control
	4.1 Overview
	4.2 Receding Horizon Control with Terminal Cost
	4.3 Implementation in Python
	4.4 Receding Horizon Control Using Differential Flatness
	4.5 Choosing Cost Functions
	4.6 Implementation on the Caltech Ducted Fan
	4.7 Further Reading

	5 Stochastic Systems
	5.1 Brief Review of Random Variables
	5.2 Introduction to Random Processes
	5.3 Continuous-Time, Vector-Valued Random Processes
	5.4 Linear Stochastic Systems with Gaussian Noise
	5.5 Random Processes in the Frequency Domain
	5.6 Implementation in Python
	5.7 Further Reading

	6 Kalman Filtering
	6.1 Linear Quadratic Estimators
	6.2 Extensions of the Kalman Filter
	6.3 LQG Control
	6.4 Implementation in Python
	6.5 Application to a Thrust Vectored Aircraft
	6.6 Further Reading

	7 Sensor Fusion
	7.1 Discrete-Time Stochastic Systems
	7.2 Kalman Filters in Discrete Time (FBS2e)
	7.3 Predictor-Corrector Form
	7.4 Sensor Fusion
	7.5 Implementation in Python
	7.6 Additional Topics

	Bibliography
	Index

