
Optimization-Based Control

Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

Version v2.2d (22 Feb 2022)

© California Institute of Technology
All rights reserved.

This manuscript is for personal use only and may not be reproduced,
in whole or in part, without written consent from the author.

Chapter 7

Sensor Fusion

In this chapter we consider the problem of combining the data from di↵erent sensors
to obtain an estimate of a (common) dynamical system. Unlike the previous chap-
ters, we focus here on discrete-time processes, leaving the continuous-time case to
the exercises. We begin with a summary of the input/output properties of discrete-
time systems with stochastic inputs, then present the discrete-time Kalman filter,
and use that formalism to formulate and present solutions for the sensor fusion
problem. Some advanced methods of estimation and fusion are also summarized at
the end of the chapter that demonstrate how to move beyond the linear, Gaussian
process assumptions.

Prerequisites. The material in this chapter is designed to be reasonably self-
contained, so that it can be used without covering Sections 5.3–5.4 or Chapter 6
of this supplement. We assume rudimentary familiarity with discrete-time linear
systems, at the level of the brief descriptions in Chapters 3 and 7 of FBS2e, and
discrete-time random processes as described in Section 5.2 of these notes.

7.1 Discrete-Time Stochastic Systems

We begin with a concise overview of stochastic system in discrete time, echoing
our development of continuous-time random systems described in Chapter 5. We
consider systems of the form

X[k + 1] = AX[k] +Bu[k] + FV [k], Y [k] = CX[k] +W [k], (7.1)

where X 2 Rn represents the state, u 2 Rm represents the (deterministic) input,
V 2 Rq represents process disturbances, Y 2 Rp represents the system output and
V 2 Rp represents measurement noise.

As in the case of continuous-time systems, we are interested in the response
of the system to the random input V [k]. We will assume that V is a Gaussian
process with zero mean and correlation function rV (k, k+d) (or correlation matrix
RV (k, k+d) if V is vector valued). As in the continuous case, we say that a random
process is white noise if rV (k, k+d) = rV �(d) with �(d) = 1 if d = 0 and 0 otherwise.
(Note that in the discrete-time case, white noise has finite covariance.)

7-1

7-2 CHAPTER 7. SENSOR FUSION

To compute the response Y [k] of the system, we look at the properties of the
state vector X[k]. For simplicity, we take u = 0 (since the system is linear, we can
always add it back in by superposition). Note first that the state at time k+ d can
be written as

X[k + d] = AX[k + d� 1] + FV [x+ l � 1]

= A(AX[k + d� 2] + FV [x+ l � 2]) + FV [x+ l � 1]

= A
d
X[k] +

dX

j=1

A
j�1

FV [k + d� j].

The mean of the state at time k is given by

E(X[k]) = A
kE(E[0]) +

kX

j=1

A
j�1

FE(V [k � j]) = A
kE(X[0]).

To compute the covariance RX(k, k + d), we start by computing RX(k, k + 1):

RX(k, k + 1) = E(X[k]XT[k + 1])

= E((Ak
x[0] +A

k�1
Fw[0] + · · ·+ABw[k � 2] +B[k � 1])·

(Ak+1
x[0] +A

k
Bw[0] + · · ·+Bw[k])T)

Performing a similar calculation for RX(k, k + d), it can be shown that

RX(k, k + d) =
�
A

k
P [0](AT)k +A

k�1
FRV [0]F

T(AT)k�1 + . . .

+ FRV [k]F
T
�
(AT)d =: P [k](AT)d, (7.2)

where

P [k + 1] = AP [k]AT + FRV [k]F
T
. (7.3)

The matrix P [k] is the covariance of the state matrix and we see that its value
can be computed recursively starting with P [0] = E(X[0]XT[0]) and then applying
equation (7.3). Equations (7.2) and (7.3) are the equivalent of Proposition 5.2 for
continuous-time processes. If we additionally assume that V is stationary and focus
on the steady state response, we obtain the following.

Proposition 7.1 (Steady state response to white noise). For a discrete-time, time-
invariant, linear system driven by white noise, the correlation matrices for the state
and output converge in steady state to

RX(d) = RX(k, k + d) = PA
d
, RY (d) = CRX(d)CT

,

where P satisfies the algebraic equation

APA
T + FRV F

T = 0 P > 0. (7.4)

7.2. KALMAN FILTERS IN DISCRETE TIME (FBS2E) 7-3

7.2 Kalman Filters in Discrete Time (FBS2e)

We now consider the optimal estimator in discrete time. This material is presented
in FBS2e in slightly simplified (but consistent) form.

Consider a discrete time, linear system with input, having dynamics

X[k + 1] = AX[k] +Bu[k] + FV [k],

Y [k] = CX[k] +W [k],
(7.5)

where V [k] and W [k] are Gaussian, white noise processes satisfying

E(V [k]) = 0 E(W [k]) = 0

E(V [k]V T[j]) =

(
0 k 6= j

RV k = j
E(W [k]WT[j]) =

(
0 k 6= j

RW k = j

E(V [k]WT[j]) = 0.

(7.6)

We assume that the initial condition is also modeled as a Gaussian random variable
with

E(X[0]) = x0 E(X[0]XT[0]) = P [0]. (7.7)

We wish to find an estimate X̂[k] that gives the minimum mean square error
(MMSE) for E((X̂[k] �X[k])(X̂[k] �X[k])T) given the measurements {Y [l] : 0

l k}. We consider an observer of the form

X̂[k + 1] = AX̂[k] +Bu[k]� L[k](CX̂[k]� Y [k]). (7.8)

The following theorem summarizes the main result.

Theorem 7.2. Consider a random process X[k] with dynamics (7.5) and noise
processes and initial conditions described by equations (7.6) and (7.7). The observer
gain L that minimizes the mean square error is given by

L[k] = AP [k]CT(RW + CP [k]CT)�1
,

where
P [k + 1] = (A� LC)P [k](A� LC)T + FRV F

T + LRWL
T

P [0] = E(X[0]XT[0]).
(7.9)

Proof. We wish to minimize the mean square of the error, E((X̂[k]�X[k])(X̂[k]�
X[k])T). We will define this quantity as P [k] and then show that it satisfies the
recursion given in equation (7.9). Let E[k] = CX̂[k]�Y [k] be the residual between
the measured output and the estimated output. By definition,

P [k + 1] = E(E[k + 1]ET[k + 1])

= (A� LC)P [k](A� LC)T + FRV F
T + LRWL

T

= AP [k]AT
�AP [k]CT

L
T
� LCP [k]AT+

L(RW + CP [k]CT)LT + FRV F
T
.

7-4 CHAPTER 7. SENSOR FUSION

Letting R✏ = (RW + CP [k]CT), we have

P [k + 1] = AP [k]AT
�AP [k]CT

L
T
� LCP [k]AT + LR✏L

T + FRV F
T

= AP [k]AT +
�
L�AP [k]CT

R
�1
✏

�
R✏

�
L�AP [k]CT

R
�1
✏

�T

�AP [k]CT
R

�1
✏ CP [k]AT + FRV F

T
.

In order to minimize this expression, we choose L = AP [k]CT
R

�1
✏ and the theorem

is proven.

Note that the Kalman filter has the form of a recursive filter: given P [k] =
E(E[k]E[k]T) at time k, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X̂[k] and the covariance P [k], so we can see how
reliable the estimate is. It can also be shown that the Kalman filter extracts the
maximum possible information about output data. It can be shown that for the
Kalman filter the correlation matrix for the error is

RE [j, k] = R�jk.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

In the special case when the noise is stationary (RV , RW constant) and if P [k]
converges, then the observer gain is constant:

L = APC
T(RW + CPC

T),

where P satisfies

P = APA
T + FRV F

T
�APC

T
�
RW + CPC

T
��1

CPA
T
.

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is solved
by the dlqe command in MATLAB.

7.3 Predictor-Corrector Form

The Kalman filter can be written in a two step form by separating the correction
step (where we make use of new measurements of the output) and the prediction
step (where we compute the expected state and covariance at the next time instant).

We make use of the notation X̂[k|j] to represent the estimated state at time
instant k given the information up to time j (where typically j = k�1). Using this
notation, the filter can be solved using the following algorithm:

Step 0: Initialization.
k = 1

X̂[0|0] = E(X[0])

P [0|0] = E(X[0]XT[0])

7.4. SENSOR FUSION 7-5

Step 1: Prediction. Update the estimates and covariance matrix to account for all
data taken up to time k � 1:

X̂[k|k�1] = AX̂[k�1|k�1] +Bu[k � 1]

P [k|k�1] = AP [k�1|k�1]AT + FRV [k � 1]FT

Step 2: Correction. Correct the estimates and covariance matrix to account for the
data taken at time step k:

L[k] = P [k|k�1]CT(RW + CP [k|k�1]CT)�1
,

X̂[k|k] = X̂[k|k�1] + L[k](Y [k]� CX̂[k|k�1]),

P [k|k] = P [k|k�1]� L[k]CP [k|k�1].

Step 3: Iterate. Set k to k + 1 and repeat steps 1 and 2.

Note that the correction step reduces the covariance by an amount related to the
relative accuracy of the measurement, while the prediction step increases the co-
variance by an amount related to the process disturbance.

This form of the discrete-time Kalman filter is convenient because we can reason
about the estimate in the case when we do not obtain a measurement on every
iteration of the algorithm. In this case, we simply update the prediction step
(increasing the covariance) until we receive new sensor data, at which point we call
the correction step (decreasing the covariance).

The following lemma will be useful in the sequel:

Lemma 7.3. The optimal gain L[k] satisfies

L[k] = P [k|k]CT
R

�1
W

Proof. L[k] is defined as

L[k] = P [k|k�1]CT(RW + CP [k|k�1]CT)�1
.

Multiplying through by the inverse term on the right and expanding, we have

L[k](RW + CP [k|k�1]CT) = P [k|k�1]CT
,

L[k]RW + L[k]CP [k|k�1]CT = P [k|k�1]CT
,

and hence
L[k]RW = P [k|k�1]CT

� L[k]CP [k|k�1]CT
,

= (I � L[k]C)P [k|k�1]CT = P [k|k]CT
.

The desired results follows by multiplying on the right by R
�1
W .

7.4 Sensor Fusion

We now return to the main topic of the chapter: sensor fusion. Consider the
situation described in Figure 7.1, where we have an input/output dynamical system

7-6 CHAPTER 7. SENSOR FUSION

u
Estimator

Sensor 1

Sensor 2

Process

y1

y2

x̂

Figure 7.1: Sensor fusion. Multiple sensors report on data from a single process.
The estimator fusions this information from the sensors to obtain an estimate of
the state of the system. Depending on the use case, the input (dashed line) may
not be avaliable to the estimator.

with multiple sensors capable of taking measurements. The problem of sensor fusion
involves deciding how to best combine the measurements from the individual sensors
in order to accurately estimate the process state X. Since di↵erent sensors may
have di↵erent noise characteristics, evidently we should combine the sensors in a
way that places more weight on sensors with lower noise. In addition, in some
situations we may have di↵erent sensors available at di↵erent times, so that not all
information is available on each measurement update.

While sensor fusion can be used for estimation of the state of a system being
controlled, another common application is to sense the state of a system in the
environment. A di↵erence for this use case is that the input to the system in the
environment is often not available, requiring the estimator to use a model for the
system in which the input is modeled by a random process.

Sensor weighting

To gain more insight into how the sensor data are combined, we investigate the
functional form of L[k]. Suppose that each sensor takes a measurement of the form

Y
i = C

i
X +W

i
, i = 1, . . . , p,

where the superscript i corresponds to the specific sensor. Let W i be a zero mean,
white noise process with covariance �

2
i = RW i(0). It follows from Lemma 7.3 that

L[k] = P [k|k]CT
R

�1
W .

First note that if P [k|k] is small, indicating that our estimate of X is close to the
actual value (in the MMSE sense), then L[k] will be small due to the leading P [k|k]
term. Furthermore, the characteristics of the individual sensors are contained in
the di↵erent �2

i terms, which only appears in RW . Expanding the gain matrix, we
have

L[k] = P [k|k]CT
R

�1
W , R

�1
W =

2

64
1/�2

1
. . .

1/�2
p

3

75 .

We see from the form of R�1
W that each sensor is inversely weighted by its covariance.

Thus noisy sensors (�2
i � 1) will have a small weight and require averaging over

many iterations before their data can a↵ect the state estimate. Conversely, if �2
i ⌧

1, the data is “trusted” and is used with higher weight in each iteration.

7.4. SENSOR FUSION 7-7

Information filters

An alternative formulation of the Kalman filter is to make use of the inverse of
the covariance matrix, called the information matrix, to represent the error of the
estimate. It turns out that writing the state estimator in this form has several
advantages both conceptually and when implementing distributed computations.
This form of the Kalman filter is known as the information filter.

We begin by defining the information matrix I and the weighted state estimate
Ẑ:

I[k|k] = P
�1[k|k], Ẑ[k|k] = P

�1[k|k]X̂[k|k].

We also make use of the following quantities, which appear in the Kalman filter
equations:

⌦i[k|k] = (Ci)TR�1
W i [k|k]C

i
, i[k|k] = (Ci)TR�1

W i [k|k]C
i
X̂[k|k].

Using these quantities, we can rewrite the Kalman filter equations as a prediction
step

I[k|k�1] =
⇣
AI

�1[k�1|k�1]AT +RW

⌘�1
,

Ẑ[k|k�1] = I[k|k�1]AI
�1[k�1|k�1]Ẑ[k�1|k�1] +Bu[k�1]

and a correction step

I[k|k] = I[k|k�1] +
pX

i=1

⌦i[k|k],

Ẑ[k|k] = Ẑ[k|k�1] +
pX

i=1

 i[k|k].

Note that these last equations are in a particularly simple form, with the infor-
mation matrix being updated by each sensor’s ⌦i and similarly the state estimate
being updated by each sensor’s i.

The advantage of using the infomration filter version of the equation is that it
allows a simple addition operation for the correction step, corresponding to adding
the “information” obtained through the acquisition of new data. We also see the
clear relationship between the information content in each sensor channel and the
inverse covariance of that sensor, thorugh the definitions of ⌦i and i.

Another feature of the information filter formulation is that it allows some ef-
ficiencies when implementing distributed estimation across netwworks. In particu-
lar, the information carried in the individual sensors can be simply added together
through the updates of I[k|k�1]. This is helpful especially when the sensors have
variable sampling rate and the measurement packets arrive at di↵erent times. New
information is incorporated whenever it arrives and then a global update of I[k|k�1]
at a centralized node is used to integrate all sensor measurements (which can the
be rebroadcast out to the sensors). The information form also makes clear how
to handle missing data: if no data arrives for a given sensor then no information
is added and only the time update is applied, hence the measurement update is
skipped.

7-8 CHAPTER 7. SENSOR FUSION

Exercises

7.1 Consider the problem of estimating the position of an autonomous mobile vehi-
cle using a GPS receiver and an IMU (inertial measurement unit). The continuous
time dynamics of the vehicle are given by

x

l

�

✓
y ẋ = cos ✓ v

ẏ = sin ✓ v

✓̇ =
1

`
tan� v,

We assume that the vehicle is disturbance free, but that we have noisy measure-
ments from the GPS receiver and IMU and an initial condition error.

(a) Rewrite the equations of motion in discrete time, assuming that we update the
dynamics at a sample time of h = 0.005 sec and that we can take ẋ to be roughly
constant over that period. Run a simulation of your discrete time model from initial
condition (0, 0, 0) with constant input � = ⇡/8, v = 5 and compare your results
with the continuous time model.

(b) Suppose that we have a GPS measurement that is taken every 0.1 seconds and
an IMU measurement that is taken every 0.01 seconds. Write a MATLAB program
that that computes the discrete time Kalman filter for this system, using the same
disturbance, noise and initial conditions as Exercise 6.4.

7.2 Consider a continuous time dynamical system with multiple measurements,

Ẋ = AX +Bu+ FV, Y
i = C

i
x+W

i
, i = 1, . . . , q.

Assume that the measurement noises W i are indendendent for each sensor and have
zero mean and variance �

2
i . Show that the optimal estimator for X weights the

measurements by the inverse of their covariances.

7.3 Show that if we formulate the optimal estimate using an estimator of the form

X̂[k + 1] = AX̂[k] + L[k](Y [k + 1]� CAX̂[k])

that we recover the update law in the predictor-corrector form.

	1 Introduction
	1.1 System and Control Design
	1.2 The Control System ``Standard Model''
	1.3 Layered Control Systems
	1.4 The Python Control Systems Library

	2 Trajectory Generation and Tracking
	2.1 Two Degree of Freedom Design
	2.2 Trajectory Tracking and Gain Scheduling
	2.3 Trajectory Generation and Differential Flatness
	2.4 Python Implementation
	2.5 Other Methods for Generating Trajectories
	2.6 Further Reading

	3 Optimal Control
	3.1 Review: Optimization
	3.2 Optimal Control of Systems
	3.3 Examples
	3.4 Python Implementation
	3.5 Linear Quadratic Regulators
	3.6 Choosing LQR weights
	3.7 Advanced Topics
	3.8 Further Reading

	4 Receding Horizon Control
	4.1 Overview
	4.2 Receding Horizon Control with Terminal Cost
	4.3 Implementation in Python
	4.4 Receding Horizon Control Using Differential Flatness
	4.5 Choosing Cost Functions
	4.6 Implementation on the Caltech Ducted Fan
	4.7 Further Reading

	5 Stochastic Systems
	5.1 Brief Review of Random Variables
	5.2 Introduction to Random Processes
	5.3 Continuous-Time, Vector-Valued Random Processes
	5.4 Linear Stochastic Systems with Gaussian Noise
	5.5 Random Processes in the Frequency Domain
	5.6 Further Reading

	6 Kalman Filtering
	6.1 Linear Quadratic Estimators
	6.2 Extensions of the Kalman Filter
	6.3 LQG Control
	6.4 Application to a Thrust Vectored Aircraft
	6.5 Further Reading

	7 Sensor Fusion
	7.1 Discrete-Time Stochastic Systems
	7.2 Kalman Filters in Discrete Time (FBS2e)
	7.3 Predictor-Corrector Form
	7.4 Sensor Fusion

	Bibliography
	Index

