
Optimization-Based Control

Richard M. Murray
Control and Dynamical Systems

California Institute of Technology

With contributions from:
Karl Åström, William Dunbar, Ryan Franz, John Hauser,
Ali Jadbabaie, Mark Milam, Nicolas Petit, and ChatGPT

Version v2.3h (12 March 2023)

© California Institute of Technology
All rights reserved.

This manuscript is for personal use only and may not be reproduced,
in whole or in part, without written consent from the author.

ii

Preface

These notes serve as a supplement to Feedback Systems by Åström and Mur-
ray [ÅM21] and expand on some of the topics introduced there. They are mo-
tivated by the increasing role of online optimization in feedback systems. This is a
change from the traditional use of optimization in control theory for offline design
of control laws and state estimators. Fueled by Moore’s law and improvements in
real-time algorithms, it is now possible to perform estimation and control design
algorithms online, allowing the system to better account for nonlinearities and to
adapt to changes in the underlying dynamics of the controlled process. This changes
the way that we think about estimation and control since it allows much greater
flexibility in the design process and more modularity and flexibility in the overall
system.

Our goal in this supplement is to introduce the essential formalisms and tools
required to design optimization-based controllers. Key topics include real-time
trajectory generation using differential flatness, the maximum principle, receding
horizon optimal control, stochastic processes, Kalman filtering, moving horizon
estimation, and (distributed) sensor fusion. While these topics might normally
constitute separate textbooks, in this set of notes we attempt to present them
in a compact way that allows them to be used in engineering design. We also
briefly survey additional advanced topics through the text, with pointers to further
information for interested readers.

The various mathematical techniques that are described have been implemented
in the Python Control Systems Library (python-control), which is available online at
http://python-control.org. Most chapters have a section describing the relevant
python-control module that implements the topics of the chapter, and exercises are
included to allow students to explore various concepts using python-control to carry
out numerical calculations. Files associated with these exercises can be downloaded
from the relevant portion of the Feedback Systems website:

https://fbswiki.org/OBC

This supplement has been used in a second quarter controls course at Caltech,
taken by a mixture of advanced undergraduates and beginning graduate students
with interest in a variety of application areas. The first half of the 10 week course
focuses on trajectory generation and optimal control, ending with receding horizon
control. In the second half of the course, we introduce stochastic processes and
derive the Kalman filter and its various extensions, including the information filter
and sensor fusion. The prerequisites for the course are based on the material cov-
ered in Feedback Systems, including basic knowledge in Lyapunov stability theory

iii

http://python-control.org
https://fbswiki.org/OBC

iv

and observers. If needed, these topics can be inserted at the appropriate point in
covering the material in this supplement, though they can generally be omitted for
a class focused primarily on applications of the concepts.

The notation and conventions in the book follow those used in the main text.
Because the notes may not be used in their entirety or in the order presented here,
we have attempted to write each chapter as a standalone extension of topics that
are briefly introduced in Feedback Systems. To this end, each chapter starts with a
short description of the prerequisites for the chapter and citations to the relevant
literature. Advanced sections, marked by the “dangerous bend” symbol shown in�

the margin, contain material that requires a slightly more technical background, of
the sort that would be expected of graduate students in engineering. Additional
information is available on the Feedback Systems website:

https://fbswiki.org

https://fbswiki.org

Contents

1 Introduction 1-1
1.1 System and Control Design . 1-1
1.2 The Control System “Standard Model” 1-5
1.3 Layered Control Systems . 1-7
1.4 The Python Control Systems Library 1-10

2 Trajectory Generation and Tracking 2-1
2.1 Two Degree of Freedom Design . 2-1
2.2 Trajectory Tracking and Gain Scheduling 2-3
2.3 Trajectory Generation and Differential Flatness 2-7
2.4 Implementation in Python . 2-16
2.5 Other Methods for Generating Trajectories 2-18
2.6 Further Reading . 2-20

3 Optimal Control 3-1
3.1 Review: Optimization . 3-1
3.2 Optimal Control of Systems . 3-4
3.3 Examples . 3-8
3.4 Implementation in Python . 3-10
3.5 Linear Quadratic Regulators . 3-11
3.6 Choosing LQR weights . 3-15
3.7 Advanced Topics . 3-16
3.8 Further Reading . 3-20

4 Receding Horizon Control 4-1
4.1 Overview . 4-1
4.2 Receding Horizon Control with Terminal Cost 4-4
4.3 Implementation in Python . 4-13
4.4 Receding Horizon Control Using Differential Flatness 4-15
4.5 Choosing Cost Functions . 4-16
4.6 Implementation on the Caltech Ducted Fan 4-20
4.7 Further Reading . 4-27

5 Stochastic Systems 5-1
5.1 Brief Review of Random Variables 5-1
5.2 Introduction to Random Processes 5-8

v

vi CONTENTS

5.3 Continuous-Time, Vector-Valued Random Processes 5-11
5.4 Linear Stochastic Systems with Gaussian Noise 5-14
5.5 Random Processes in the Frequency Domain 5-17
5.6 Implementation in Python . 5-19
5.7 Further Reading . 5-21

6 Kalman Filtering 6-1
6.1 Linear Quadratic Estimators . 6-1
6.2 Extensions of the Kalman Filter . 6-4
6.3 LQG Control . 6-6
6.4 Implementation in Python . 6-7
6.5 Application to a Thrust Vectored Aircraft 6-8
6.6 Further Reading . 6-9

7 Sensor Fusion 7-1
7.1 Discrete-Time Stochastic Systems . 7-1
7.2 Kalman Filters in Discrete Time (FBS2e) 7-3
7.3 Predictor-Corrector Form . 7-4
7.4 Sensor Fusion . 7-6
7.5 Implementation in Python . 7-7
7.6 Additional Topics . 7-8

Bibliography B-1

Index I-1

Chapter 1

Introduction

This chapter provides an introduction to the optimization-based framework that
is used in throughout this supplement and also introduces the Python Control
Systems Library (python-control), which implements all the functionality required
for material presented in this supplement.

Prerequisites. Readers should be familiar with standard concepts in control the-
ory, including input/output modeling, feedback interconnections, and the role of
feedback in allowing the design of (closed loop) dynamics and providing robustness
to uncertainty. We utilize state sapce representations using ordinary differential
equations, though detailed knowledge of differential equations is not required.

1.1 System and Control Design1

System design starts by developing an understanding of the system and its environ-
ment. It includes analysis of static and dynamic properties of the physical system
and its sensors and actuators, bounds for safe operation, and characterization of
the nature of the disturbances and the users of the system. There are a wide range
of problems. Sometimes the process is given a priori and the task is to design a
controller for a given process. In other cases the process and the controller are
designed jointly. Co-design has many advantages because performance can be opti-
mized. Sometimes it is an enabler, as was illustrated by the Wright Flyer, which was
discussed in FBS2e Section 1.5. We quote from the 43rd Wilbur Wright Memorial
Lecture by Charles Stark Draper [Dra55]:

The Wright Brothers rejected the principle that aircraft should be made
inherently so stable that the human pilot would only have to steer the
vehicle, playing no part in stabilization. Instead they deliberately made
their airplane with negative stability and depended on the human pilot
to operate the movable surface controls so that the flying system—pilot
and machine—would be stable. This resulted in increased maneuver-
ability and controllability.

1The material in this section is drawn from FBS2e, Chapter 15 (online version).

1-1

1-2 CHAPTER 1. INTRODUCTION

(a) Design Flow (b) Costs

Figure 1.1: Engineering design process. A typical design cycle is shown in (a) and
(b) illustrates the costs of correcting faults or making design changes at different
stages in the design process.

In design of modern control systems, the engineering workflow is broken down
into phases to manage the complexity of overall system. Early phases of the design
create a basic architecture for the system, with interaction between subsystems
that provide the main functionality of the system. For an aircraft, those subsys-
tems might be the airframe (fuselage and wings), propulsion system (engines), the
hydraulic system, the electric power system, the flight control system, and other
critical components. For a cell phone, the subsystems might be the chassis, the
display (including touch interface), the communications subsystem (5G, wifi), the
audio system (speakers and microphone), the power system (batteries and charg-
ing), among others. In each case, a high level architecture is required that describes
what the subsystems are responsible for and how they will interact. Each subsystem
is itself comprised of a variety of components, which also have their own specifica-
tions and interfaces. The engineering workflow typically operates by carrying out
a succession of refinements of the design from one level of abstraction down to the
next, and then assembly the components of the design from the components to the
subsystems to the overall system, with validation and testing at each stage.

Figure 1.1a shows a typical design process for a modern engineering system.
Design is broken into phases such as research and development (R&D), conceptu-
alization, development, manufacturing, and life-cycle support. One of the features
of engineering complex systems is that it can be very costly to make corrections
late in the product development cycle, since a substantial amount of engineering
effort has already been carried out and may need to be redone. These costs are
illustrated in Figure 1.1b. Notice the significant value in correcting faults early.
Design of complex systems is a major effort where many people and groups are
involved.

A variety to methods have been developed for efficient design. The so-called
design V, shown in Figure 1.2a, dates back to NASA’s Apollo program [SC92]
and is a common design pattern for both hardware and software. The left leg of
the V illustrates the design process starting with requirements and ending with
system, module, and component designs. The right leg of the V represents the
implementation, starting with the components and ending with the finished process
and its validation. There are many substeps in the design, they include functional
requirements, architecture generation and exploration, analysis, and optimization.
Notice that validation is made only on the finished product.

The cost of faults or changes increase dramatically if they are discovered late in

1.1. SYSTEM AND CONTROL DESIGN 1-3

(a) Classical Design V (b) Design V for Model Based Design

Figure 1.2: Design methodologies for complex systems. (a) The traditional design
V. The left side of the V represents the decomposition of requirements and creation
of system specifications. The right side represents the activities in implementation,
including validation (building the right thing) and verification (building it right).
Notice that validation and verification are performed late in the design process
when all hardware is available. (b) A model-based design process where virtual
validation is be made at many stages in the design process, shortening the feedback
for validation.

the development process or even worse when systems are in operation, as illustrated
in Figure 1.1b. Model-based systems engineering can reduce the costs because
models allow partial validation using models as virtual hardware at many steps
in the development process, as illustrated in Figure 1.2b. When hardware and
subsystems are built they can replace the corresponding models using hardware-in-
the-loop simulations.

To perform verification efficiently it is necessary that requirements are expressed
mathematically and checked automatically using models of the system and its envi-
ronment, along with a variety of tools for analysis. Regression analysis can be used
to ensure that changes in one part of a system do not create unexpected errors in
other parts of the system. Efficient regression analysis requires robust system-level
models and good scripting software that allows analyses to be performed auto-
matically over many operating conditions with little to no human intervention.
System-level models are also useful for root cause analysis by allowing errors to be
reproduced, which is helpful to ensure that the real cause has been found.

There are strong interactions between the models and the analysis tools that
are used; therefore, the models must satisfy the requirements of the algorithms
for analysis and design. For example, when using Newton’s method for solution
of nonlinear equations and optimization, the models must be continuous and have
continuous first (and sometimes second) derivatives. This property, which is called
smoothness, is essential for algorithms to work well. Lack of smoothness can be due
to many factors: if-then-else statements, an actuator that saturates, or by careless
modeling of fluid systems with reversing flows. Having tools that check if a given
system model has functions with continuous first and second derivatives is valuable.

An alternative to the use of the traditional design V is the agile development model,
which has been driven by software developers for products with short time to mar-

1-4 CHAPTER 1. INTRODUCTION

Output

Clock

operator input

D/A Computer A/D Filter

external disturbancesnoise

Σ Actuators System

Controller

noise

Σ

Process

Sensors

Figure 1.3: Schematic diagram of a control system with sensors, actuators, com-
munications, computer, and interfaces.

ket, where requirements change and close interaction with customers is required.
The method is characterized by the Agile Manifesto [BBvB+01], which values in-
dividuals and interactions over processes and tools; working software over com-
prehensive documentation; customer collaboration over contract negotiation; and
responding to change over following a plan. When choosing a design methodology
it is also important to keep in mind that products involving hardware are more
difficult to change than software.

Control system design is a subpart of system design that includes many ac-
tivities, starting with requirements and system modeling and ending with imple-
mentation, testing, commissioning, operation, and upgrading. In between are the
important steps of detailed modeling, architecture selection, analysis, design, and
simulation. The V-model used in an iterative fashion is well suited to control de-
sign, particular if it is supported by a tool chain that admits a combination of
modeling, control design, and simulation. Testing is done iteratively at every step
of the design using models of different granularity as virtual systems. Hardware in
the loop simulations are also used when they are available.

Today most control systems are implemented using computer control. Imple-
mentation then involves selection of hardware for signal conversion, communication,
and computing. A block diagram of a system with computer control is shown in
Figure 1.3. The overall system consists of sensors, actuators, analog-to-digital and
digital-to-analog converters, and computing elements. The filter before the A/D
converter is necessary to ensure that high-frequency disturbances do not appear as
low-frequency disturbances after sampling because of aliasing. The operations of
the system are synchronized by a clock.

Real-time operating systems that coordinate sensing, actuation, and computing
have to be selected, and algorithms that implement the control laws must be gener-
ated. The sampling period and the anti-alias filter must be chosen carefully. Since
a computer can only do basic arithmetic, the control algorithms have to be repre-

1.2. THE CONTROL SYSTEM “STANDARD MODEL” 1-5

sented as difference equations. They can be obtained by approximating differential
equations, as was illustrated in FBS2e Section 8.5, but there are also design meth-
ods that automatically give controllers in the form of difference equations. Code
can be generated automatically. It must also be ensured that computational delays
and synchronization of algorithms do not create problems.

When the design is implemented and tested the system must be commissioned.
This step may involve adjustment of controller parameters, and automatic tuning
(discussed in FBS2e, Section 11.3) can be very beneficial at this stage. During
operation it is important to monitor the behavior of the system to ensure that
specifications are still satisfied. It may be necessary to upgrade the system when
it has been operating. Specifications may also be modified due to operational
experiences.

1.2 The Control System “Standard Model”

Feedback control appears across an enormous variety of applications and in various
forms. Despite the wide range of applications and implementations, there is a
common design pattern for most modern feedback control systems, as illustrated
in Figure 1.4. The starting point for the control system is the process that we wish
to control, which we model as an input/output system. The inputs to the process
consist of both those inputs that the controller specifies as well as inputs that may
come from external disturbances and uncertainties in the model. The outputs from
the process, possibly corrupted by noise, are processed by an “observer”, whose
function is to estimate the state of the underlying process from the measured (and
sometimes noisy) signals. Finally, the controller is responsible for taking some level
of description of the task to be accomplished and generating those inputs that will
cause the process to carry out the desired operation.

While this general diagram is likely familiar to anyone with experience in clas-
sical control theory (e.g., PID control of a linear dynamical system represented by
its transfer function), it is perhaps useful to point out that this basic pattern is
present in many systems that use different representations of the dynamics and
uncertainty. For example, the process that we are controlling may be an infrastruc-
ture management system in which there are requests for resources that must be
managed and balanced. Uber is one example of such a “control system”, with the
process consisting of the dynamics of individually driven Uber vehicles that can be
dispatched based on observations of riders requesting transport. The models used

Figure 1.4: Control system standard model.

1-6 CHAPTER 1. INTRODUCTION

Figure 1.5: Nested control systems.

for this type of process are likely to be based on stochastic queuing system models,
but the basic pattern is still there. Other examples of control systems that match
this pattern range from aircraft, to the supply chain, to your cell phone.

Another common feature of control systems is that the process itself may be
a control system, so that we have a nested set of controllers, as illustrated in
Figure 1.5. Note that in this view the inputs and outputs of the overall system
are themselves coming from other modules. We have also expanded the view of
the controller to include its three key functions: comparing the current and desired
state of the process, computing the possible actions that can be taken to bring
these closer, and then “actuating” the process being controlled via some appropriate
command. This type of nested system could emerge, for example, if Uber vehicles
were autonomous vehicles, where there is a control system in place for each car
(which is itself a nested set of control systems, as we shall discuss in the next
section).

Based on these observations, we define key elements of the “standard model” of
a control system as follows:

Process. The process represents that system that we wish to control. The inputs
to the system include controller and environmental inputs, and the outputs to the
system are the measurable variables.

Task Description. The task description is an input to the controller that describes
the “task” to be performed. Depending on the type of system that is being con-
trolled, the task description could be anything from a simple signal that should be
tracked to a description of a complex task with cost functions and constraints.

Observer. The observer takes the outputs of the process and performs calculations
to estimate the underlying state of the process and/or the environment. In some
cases the observer may also make predictions about the future state of the system
or the environment.

Controller. The controller is responsible for determining what inputs should be
applied to the system in order to carry out the desired task. It takes as inputs the
description of the task as well as the output of the observer (often the estimated
state and/or the state of the environment).

Disturbances. Disturbances represent exogenous inputs to the process dynamics
that are not dependent on the dynamics of system or the controller. In Figure 1.4
the disturbances are modeled as being added to the inputs, but more general dis-
turbances are also possible.

1.3. LAYERED CONTROL SYSTEMS 1-7

Figure 1.6: Layered control systems. The system consists of four layers: the
physical layer (lowest), the feedback regulation layer (green), the trajectory gener-
ation layer (red), and the decision-making layer (blue). Networking and commu-
nications allows information to be transferred between the layers as well as with
outside resources (left). The entire system interacts with the external environment,
represented at the bottom of the figure.

Noise. Noise represents exogenous inputs to the observer that corrupt the measure-
ments of the system outputs. In Figure 1.4 the noise is modeled as being added to
the inputs, but more general noise signals are also possible.

Uncertainty. This block represents uncertainty in the dynamics of the process
or “reactive” uncertainty in the environment in which the process operates. We
represent the environment as a feedback interconnection with the process to reflect
the fact that the unmodeled dynamics and or environmental dynamics may depend
on the state of the system.

Other Modules. Control systems are often connected with other modules of the
overall system, in either a distributed, nested, or layered fashion. The type of in-
terconnection can be through the controllers of the other modules, through physical
interconnections, or both.

1.3 Layered Control Systems

A related view of a modern control system is as a “layered” control system in which
we reason about the system at different layers of abstraction, as shown in Figure 1.6.
To a large extent this is just a different view of the “nested” representation of a
control system in Figure 1.5, but here we are more explicit about the different
representations of the system. In this figure, the control system is described by
four layers of abstraction, separated by horizontal lines.

1-8 CHAPTER 1. INTRODUCTION

The lowest layer is the physical layer, representing the physical process being
controlled as well as the sensors and actuators. This layer is often described in
terms of input/output dynamics that model how the system evolves over time. The
simplest (and one of the most common) representations is an ordinary differential
equation model of the form

dx

dt
= f(x, u, d), y = h(x, n),

where x ∈ Rn represents the state of the system, u ∈ Rm represents the inputs
that can be commanded by the controller, d ∈ D represents disturbance signals
that come from the external environment, y ∈ Rp represents the measured outputs
o the system, and n ∈ N represents process or sensor noise. The design of the
physical system will normally attempt to make sure that the region of the state
space in which the system is able to operate (called the operating envelope) satisfies
the needs of the user or customer. For an aircraft, for example, this might consist
of specifications on the altitude, speed, and maneuverability of the physical system.

The next layer is the feedback regulation layer (sometimes also called the “inner
loop”) in which we use feedback control to track a reference trajectory. This layer
commonly represents the abstractions used in classical control theory, where we
have a reference input r that we wish to track while at the same time attenuating
disturbances d and avoiding amplification of process or sensor noise n. The system
and controller at this level might be represented by transfer functions P (s) and C(s)
and our specification might be on various input/output transfer functions such as
the Gang of Four (see FBS2e, Section 12.1):

S =
1

1 + PC
sensitivity
function

PS =
P

1 + PC

load (or input)
sensitivity
function

T =
PC

1 + PC

complementary
sensitivity
function

CS =
C

1 + PC

noise (or output)
sensitivity
function

A typical specification for design at this layer of abstraction might be a weighted
sensitivity function, such as

‖|W1S|+ |W2T |‖∞ < 1.

The feedback regulation phase of design will also often compensate for the effects
of unmodeled dynamics, traditionally done by the specification of gain, phase, and
stability margins.

This layer also carries out some level of sensor processing to try to minimize the
effects of noise. In classical control design the sensor processing is often integrated
into the controller design process (for example by imposing some amount of high
frequency rolloff), but many modern control systems will use Kalman filtering to
process signals and also perform sensor fusion. Kalman filtering is described in
more detail in Chapter 6.

Continuing up our abstraction hierarchy, the next layer of abstraction is the
trajectory generation layer (sometimes also called the “outer loop”). In this layer
we attempt to find trajectories for the system that satisfy a commanded task,

1.3. LAYERED CONTROL SYSTEMS 1-9

such as moving the system from one operating point to another while satisfying
constraints on the inputs and states. At this layer, we assume that the effects of
noise, disturbances, and unmodeled dynamics have been taken care of at lower levels
but nonlinearities and constraints are explicitly accounted for. Thus we might use
a model of the form

dx

dt
= f(x, u), g(x, u) ≤ 0,

where g : Rn × Rn → Rk is a nonlinear function describing constraints on inputs
and states. Our control objective might be to optimize according to a cost function
of the form

J(x, u) =

∫ T

0

L(x, u) dt+ V
(
x(T)

)
,

where L(x, u) represents the integrated cost along the trajectory and V (x) repre-
sents the terminal cost (e.g., it should be small near the final operating point that
we seek to reach). We will study this problem and its variants in Chapters 2 and 3.

As in the case of the feedback regulation layer, the trajectory generation layer
also has a “observer” function, labeled as “state estimation” in Figure 1.6. The
details of this observer depend on the application, but could represent additional
sensor processing that is required for trajectory generation or sensing of the envi-
ronment for the purpose of satisfying specifications relative to that environment.
The latter case is particularly common in applications such as autonomous vehi-
cles, where the state estimation often includes perception and prediction tasks that
are used to identify other agents in the environment, their type (e.g., pedestrian,
bicycle, car, truck), and their predicted trajectory. This information will be used
by the trajectory generation algorithm to avoid collisions or to maintain the proper
position relative to those other agents. The applications of Kalman filtering and
sensor fusion to problems at this layer are considered in Chapters 6 and 7.

The highest layer of abstraction in Figure 1.6 is the decision-making layer (some-
times also called the “supervisory” layer). At this layer we often reason over discrete
events and logical relations. For example, we may care about discrete modes of be-
havior, which could correspond to different phases of operation (takeoff, cruise,
landing) or different environment assumptions (highway driving, city streets, park-
ing lot). This layer can also be used to reason over discrete (as opposed to contin-
uous) decisions that we must make (stop, go, turn left, turn right). This final layer
is not explicitly part of the material covered in this book; a brief discussion of the
design problem at this layer can be found in FBS2e, Section 15.3.

In a full system design, the three control layers that we depict here may in
fact include additional layers within them, or be divided up slightly differently.
Similarly, the physical layer may consist of system that themselves have internal
control loops running, potentially at multiple layers of abstraction. And the system
may be networked to other agents and information systems that provide information
and constraints on system operation. Thus, our system is a combination of nested,
layered, distributed systems, all operating together.

Another important element of modern control systems is their distributed and
interconnected nature. Much of this is already presented in the layered control
structure described above, but there can also be “external” interactions. On the
left side of Figure 1.6 are a set of blocks that represent some of the elements that

1-10 CHAPTER 1. INTRODUCTION

can connected through networked information channels. These can include cloud
resources (such as computing or databases), operators (humans or automated),
and interactions with other systems and subsystems. The increased capability and
capacity of networking and communications is one of the drivers of complexity in
modern control systems and has created both new opportunities and new challenges.

Finally, we note the effect of the environment, represented in Figure 1.6 as a
block at the bottom of the diagram. This block represents many things, including
noise, disturbances, unmodeled dynamics of the process, and the dynamics of other
systems with which our system is interacting. It is the uncertainty represented in
this catchall block that is driving the need for feedback control, and the impact of
these different types of uncertainty appears in each level of our controller design.

1.4 The Python Control Systems Library2

The Python Control Systems Library (python-control) is a Python package that
implements basic operations for analysis and design of feedback control systems.
The package was created in 2009, shortly after the publication of the first edition
of Feedback Systems. The initial goal of the project was to implement the oper-
ations needed to carry out all the examples in the book. A primary motivation
for the creation of the python-control library was the need for open-source control
design software built on the Python general-purpose programming language. The
“scientific stack” of NumPy, SciPy, and Matplotlib provide fast and efficient array
operations, linear algebra and other numerical functions, and plotting capabilities
to Python users. Python-control has benefited from this foundation, using, e.g.,
optimization routines from SciPy in its optimal control methods, and Matplotlib
for Bode diagrams.

The python-control package provides the functionality required to implement
all of the techniques described in this supplement. This section provides a brief
overview of the python-control package, with the intent of indicating the calling
structure of the code and including a few simple examples. More detailed examples
are given in subsequent chapters, and more detailed documentation is available at
http://python-control.org.

Package Structure and Basic Functionality

The python-control package implements an inheritance hierarchy of dynamical sys-
tem objects. For the most part, when two systems are combined in some way
through a mathematical operation, one will be promoted to the type that is the
highest of the two. Arranged in order from most to least general, they are:

• InputOutputSystem: Input/output system that may be nonlinear and time-
varying

– InterconnectedSystem: Interconnected I/O system consisting of mul-
tiple subsystems

– NonlinearIOSystem: Nonlinear I/O system

2The material in this section is drawn from [FGM+21].

http://python-control.org

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY 1-11

– LinearICSystem: Linear interconnected I/O systems

– LinearIOSystem: Linear I/O system

• LTI: Linear, time-invariant system

– FrequencyResponseData: Frequency response data systems

– StateSpace: State space systems

– TransferFunction: Transfer functions

Each system type can be either discrete-time, that is, x(k + 1) = f(x(k), u(k));
y(k) = g(x(k), u(k)) or continuous time, that is, ẋ = f(x, u); y = g(x, u). A
discrete-time system is created by specifying a nonzero ‘timebase’ dt when the
system is constructed:

• dt = 0: continuous time system (default)

• dt > 0: discrete time system with sampling period dt

• dt = True: discrete time with unspecified sampling period

• dt = None: no timebase specified

Linear, time-invariant systems can be interconnected using mathematical opera-
tions +, -, *, and /, as well as the domain-specific functions feedback, parallel
(+), and series (*). Some important functions for LTI systems and their descrip-
tions are given in Table 1.1. Other categories of tools that are available include
model simplification and reduction tools, matrix computations (Lyapunov and Ric-
cati equations), and a variety of system creation, interconnection and conversion
tools. A MATLAB compatibility layer is provided that has functions and call-
ing conventions that are equivalent to their MATLAB counterparts, e.g. tf, ss,

step, impulse, bode, margin, nyquist and so on. A complete list is available
at http://python-control.org.

http://python-control.org

1-12 CHAPTER 1. INTRODUCTION

Table 1.1: Sample functions available in the python-control package.

Frequency domain analysis:

sys(s) Evaluate frequency response of an LTI system at
complex frequenc(ies) s

sys.frequency_response() Evaluate frequency response of an LTI system at
real angular frequenc(ies) omega

stability_margins() Calculate stability margins and associated
crossover frequencies

bode_plot() Bode plot for a system
nyquist_plot() Nyquist plot for a system
gangof4_plot() Plot the “Gang of 4” transfer functions for a

system
nichols_plot() Nichols plot for a system

Time domain analysis:

forced_response() Simulated response of a linear system to a gen-
eral input

impulse_response() Compute the impulse response for a linear sys-
tem

initial_response() Initial condition response of a linear system
step_response() Compute the step response for a linear system
step_info() Compute step response characteristics
phase_plot() Phase plot for 2D dynamical systems

Other analysis functions and methods:

sys.dcgain() Return the zero-frequency (or DC) gain of an
LTI system

sys.pole() Compute poles of an LTI system
sys.zero() Compute zeros of an LTI system
sys.damp() Compute natural frequency and damping ratio

of LTI system poles
pzmap() Plot a pole/zero map for a linear system
root_locus() Root locus plot
sisotool() Sisotool style collection of plots inspired by

MATLAB

Synthesis tools:

acker() Pole placement using the Ackermann method
h2syn() H2 control synthesis for plant P
hinfsyn() H∞ control synthesis for plant P
lqr() Linear quadratic regulator design
lqe() Linear quadratic estimator design (Kalman fil-

ter) for continuous-time systems
mixsyn() Mixed-sensitivity H-infinity synthesis
place() Place closed-loop poles

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY 1-13

Linear Systems Example

To illustrate the use of the package, we present an example of the design of an
inner/outer loop control architecture for the planar vertical takeoff and landing
(PVTOL) example in FBS2e, Example 12.9. A slightly different version of this
example is available in the python-control GitHub repository.

We begin by initializing the Python environment with the packages that we will
use in the example:

pvtol-nested.py - inner/outer design for vectored thrust aircraft

RMM, 5 Sep 2009 (updated 11 May 2021)

#

This file works through a control design and

analysis for the planar vertical takeoff and

landing (PVTOL) aircraft in Astrom and Murray.

import control as ct

import matplotlib.pyplot as plt

import numpy as np

We next define the system that we plan to control:

System parameters

m = 4 # mass of aircraft

J = 0.0475 # inertia around pitch axis

r = 0.25 # distance to center of force

g = 9.8 # gravitational constant

c = 0.05 # damping factor (estimated)

Transfer functions for dynamics

Pi = ct.tf([r], [J, 0, 0]) # inner loop (roll)

Po = ct.tf([1], [m, c, 0]) # outer loop (posn)

The control design is performed by using a lead compensator to control the inner
loop (roll axis):

Inner loop control design

#

Controller for the pitch dynamics: the goal is

to have a fast response so that we can use this

as a simplified process for the lateral dynamics

Design a simple lead controller for the system

k_i, a_i, b_i = 200, 2, 50

Ci = k_i * ct.tf([1, a_i], [1, b_i])

Li = Pi * Ci

We can now analyze the results by plotting the frequency response as well as the
Gang of 4:

Loop transfer function Bode plot, with margins

plt.figure(); ct.bode_plot(Li, margins=True)

plt.savefig(’pvtol-inner-ltf.pdf’)

Make sure inner loop specification is met

1-14 CHAPTER 1. INTRODUCTION

plt.figure(); ct.gangof4_plot(Pi, Ci)

plt.savefig(’pvtol-gangof4.pdf’)

Figures 1.7a and b show the outputs from these commands.
The outer loop (lateral position) is designed using a second lead compensator,

using the roll angle as the input:

Design lateral control system (lead compensator)

a_o, b_o, k_o = 0.3, 10, 2

Co = -k_o * ct.tf([1, a_o], [1, b_o])

Lo = -m * g * Po * Co

Compute real outer-loop loop transfer function

L = Co * Hi * Po

We can analyze the results using Bode plots, Nyquist plots and time domain sim-
ulations:

Compute stability margins

gm, pm, wgc, wpc = ct.margin(L)

Check to make sure that the specification is met

plt.figure(); ct.gangof4_plot(-m * g * Po, Co)

Nyquist plot for complete design

plt.figure(); ct.nyquist_plot(L)

plt.savefig(’pvtol-nyquist.pdf’)

Step response

t, y = ct.step_response(T, np.linspace(0, 20))

plt.figure(); plt.plot(t, y)

plt.savefig(’pvtol-step.pdf’)

Figures 1.7c and d show the outputs from the nyquist_plot and step_response

commands (note that the step_response command only computes the response,
unlike MATLAB, which also plots the response).

Input/output systems

Python-control supports the notion of an input/output system in a manner that
is similar to the MATLAB “S-function” implementation. Input/output systems
can be combined using standard block diagram manipulation functions (including
overloaded operators), simulated to obtain input/output and initial condition re-
sponses, and linearized about an operating point to obtain a new linear system that
is both an input/output and an LTI system.

An input/output system is defined as a dynamical system that has a system
state as well as inputs and outputs (either inputs or states can be empty). The
dynamics of the system can be in continuous or discrete time. To simulate an
input/output system, the input_output_response() function is used:

t, y = input_output_response(io_sys, T, U, X0, params)

Here, the variable T is an array of times and the variable U is the corresponding
inputs at those times. The output will be evaluated at those times, though this

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY 1-15

10−1 100 101 102 103

10−2

100

102

M
ag

ni
tu

de

10−1 100 101 102 103

Frequency (rad/sec)

−180

−135

Ph
as

e
(d

eg
)

Gm = inf (at nan rad/s), Pm = 62.71 deg (at 19.69 rad/s)

(a) Inner loop, with margins

10−3

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

10−1 100 101 102 103

Frequency (rad/sec)

10−2

10−1

100

101

102

10−1 100 101 102 103

Frequency (rad/sec)

10−3

10−2

10−1

100

(b) Gang of 4 for inner loop

−60 −40 −20 0 20 40 60
Real axis

−60

−40

−20

0

20

40

60

Im
ag

in
ar

y
ax

is

(c) Nyquist plot for full system

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Step response for full system

Figure 1.7: Sample outputs for PVTOL example.

can be overridden using the t_eval keyword, or the NumPy interp function can be
used to interpolate inputs at a finer timescale, if desired.

An input/output system can be linearized around an equilibrium point to obtain
a state space linear system. The find_eqpt() function can be used to obtain an
equilibrium point and the linearize() function to linearize about that equilibrium
point:

xeq, ueq = find_eqpt(io_sys, X0, U0)

ss_sys = linearize(io_sys, xeq, ueq)

The resulting ss_sys object is a LinearIOSystem object, which is both an I/O system
and an LTI system, allowing it to be used for further operations available to either
class.

Nonlinear input/output systems can be created using the NonlinearIOSystem
class, which requires the definition of an update function (for the right-hand side of
the differential or difference equation) and output function (computes the outputs
from the state):

io_sys = NonlinearIOSystem(

updfcn, outfcn, inputs=m, outputs=p, states=n)

1-16 CHAPTER 1. INTRODUCTION

More complex input/output systems can be constructed by making use of the
interconnect() function, which allows a collection of input/output subsystems to
be combined with internal connections between the subsystems and a set of overall
system inputs and outputs that link to the subsystems:

summation = ct.summing_junction([’u1’, ’-u2’], ’y’, name=’summation’)

clsys = ct.interconnect(

[plant, controller, summation], name=’system’,

connections=[

[’summation.u2’, ’plant.y’],

[’controller.e’, ’summation.y’],

[’plant.u’, ’controller.u’],

],

inplist=[’summation.u1’], inputs=’r’,

outlist=[’plant.y’], outputs=’y’)

In addition to explicit interconnections, signals can also be interconnected automat-
ically using shared signal names by simply omitting the connections parameter.

Interconnected systems can also be created using block diagram manipulations such
as the series(), parallel(), and feedback() functions. The InputOutputSystem class
also supports various algebraic operations such as * (series interconnection) and +

(parallel interconnection).

Exercises

1.1 (Basics of python-control). Consider a second order linear system with dynam-
ics given by the following state space dynamics and transfer function:

d

dt

[
x1

x2

]
=

[
0 1
−k −b

] [
x1

x2

]
+

[
0
1

]
u,

y =
[
1 0

] [x1

x2

]
,

P (s) =
1

s2 + bs+ k
.

In this problem you will design a controller for this system in either the time or
frequency domain (depending on which you are most comfortable with).

(a) Design either a state space or frequency domain controller for the system that
can be used to track a reference signal r (corresponding to a desired state xd =
(r, 0)). Write down the closed loop dynamics for the system and give conditions on
the parameters of your controller such that the closed loop system is stable and the
steady state error (e = y − r) for a step input of magnitude 1 is no more than γ.
(The conditions for the gains in your controller should be in terms of inequalities
involving the system parameters b and k and performance parameter γ.)

(b) Suppose now that we take k = 1 and b = 0.1. Pick specific parameters for your
controller such that the steady state error is no more than 10% (γ = 0.1) and the
settling time is more more than 5 seconds. Plot the step response for the sytem
and compute the rise time, settling time, overshoot, and steady state error for your
design in response to a step change in the input r. (You can do the computations
either analytically or computationally.)

1.4. THE PYTHON CONTROL SYSTEMS LIBRARY 1-17

(c) Using the same parameters for the system and your controller, compute the
steady state ratio of the output magnitude to the reference magnitude and the
phase offset between the output and the reference for a reference signal r = sin(2t).
(You can do these computations either analyitically or computationally.)

If you carry out the computations for parts 0b and/or 0c numerically, include
the MATLAB or Python code used to generate your results, as well as any plots
generated by your code and used to determine your answers.

1.2 (Frequency domain analysis using python-control). Consider a control system
with

P (s) =
b

(s+ a)2
, C(s) =

kps+ ki

s
,

and set a = b = 1 and kp = 1, ki = 0.1. Using the Python Control Systems Library
(python-control), do the following:

(a) Plot the step response of the closed loop system and compute the rise time,
settling time, and steady state error.

(b) Plot the frequency response of the open loop system (Bode plot) and compute
the gain margin, phase margins, and bandwidth of the system.

(c) Plot the Nyquist plot of the system and compute the stability margin (smallest
distance to the −1 point).

1.3 (I/O systems using python-control). Consider a simple mechanism for position-
ing a mechanical arm and the associated equations of motion:

k

Disk

Motor

τm

θ

Jθ̈ = −bθ̇ − kr sin θ + τm

The system consists of a spring-loaded arm that is driven by a motor. The motor
applies a force against the spring and pulls the tip across a rotating platter. The
input to the system is the motor torque τm. In the diagram above, the force
exerted by the spring is a nonlinear function of the head position due to the way
it is attached. The output of the system sensors is the offset of the end of the arm
from the center of the platter, with a small offset depending on the angular rate:

y = lθ + εθ̇

1-18 CHAPTER 1. INTRODUCTION

Take the system parameters to be

k = 1, J = 100, b = 10, r = 1, l = 2, ε = 0.01.

Starting with the template Jupyter notebook posted on the FBS2e website,
create a Jupyter notebook that documents the following operations:

(a) Compute the linearization of the dynamics about the equilibrium point corre-
sponding to θe = 15◦.

(b) Plot the step response of the linearized, open-loop system and compute the rise
time and settling time for the output y.

(c) Plot the frequency response of the linearized, open-loop system and compute
the bandwidth of the system.

(d) Assuming that the full system state is available, design a state feedback con-
troller for the system that allows the system to track a desired position yd and sets
the closed loop eigenvalues to λ1,2 = −10 ± 10i. Plot the step response for the
closed loop system and compute the rise time, settling time, and steady state error
for the output y.

(e) Plot the frequency response (Bode plot) of the closed loop system. Use the
frequency response to compute the steady state error for a step input and the
bandwidth of the system (frequency at which the magnitude of the output is less
than 1/

√
2 from its reference value).

Hint: if you are not familiar with frequecy responses of linear time invariant systems,
see Section 6.3 (Input/Output Response) of FBS2e.

(f) Design a frequency domain compensator that provides tracking with less than
10% error up to 1 rad/sec and has a phase margin of at least 45◦. Demonstrate
that your controller meets these requirements by showing Bode, Nyquist, and step
response plots, and compute the rise time, settling time, and steady state error for
the system using your controller design.

(g) Create simulations of the full nonlinear system with the linear controllers de-
signed in parts 0d and 0f and plot the response of the system from an initial position
of 0 m at t = 0, to 1 m at t = 0.5, to 3 m at t = 1, to 2 m at t = 1.5.

Chapter 2

Trajectory Generation and
Tracking

This chapter expands on Section 8.5 of FBS2e, which introduces the use of feed-
forward compensation in control system design. We begin with a review of the two
degree of freedom design approach and then focus on the problem of generating
feasible trajectories for a (nonlinear) control system. We make use of the concept
of differential flatness as a tool for generating feasible trajectories.

Prerequisites. Readers should be familiar with modeling of input/output control
systems using differential equations, linearization of a system around an equilib-
rium point, and state space control of linear systems, including reachability and
eigenvalue assignment. Although this material supplements concepts introduced in
the context of output feedback and state estimation, no knowledge of observers is
required.

2.1 Two Degree of Freedom Design

A large class of control problems consists of planning and following a trajectory
in the presence of noise and uncertainty. Examples include autonomous vehicles
maneuvering in city streets, mobile robots performing tasks on factory floors (or
other planets), manufacturing systems that regulate the flow of parts and materials
through a plant or factory, and supply chain management systems that balance
orders and inventories across an enterprise. All of these systems are highly nonlinear
and demand accurate performance.

To control such systems, we make use of the notion of two degree of freedom
controller design. This is a standard technique in linear control theory that sepa-
rates a controller into a feedforward compensator and a feedback compensator. The
feedforward compensator generates the nominal input required to track a given ref-
erence trajectory. The feedback compensator corrects for errors between the desired
and actual trajectories. This is shown schematically in Figure 2.1.

In a nonlinear setting, two degree of freedom controller design decouples the
trajectory generation and asymptotic tracking problems. Given a desired output

2-1

2-2 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

Generation

∆

ud

xd

ref

ufb

Process

P
outputnoise

Feedback

Compensation

Trajectory

Figure 2.1: Two degree of freedom controller design for a process P with uncer-
tainty ∆. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block ∆, representing unmodeled dynamics, as well as distur-
bances and noise. The dashed line represents the use of the current system state
for real-time trajectory generation (described in more detail in Chapter 4).

trajectory, we first construct a state space trajectory xd and a nominal input ud

that satisfy the equations of motion. The error system can then be written as a
time-varying control system in terms of the error, e = x−xd. Under the assumption
that that tracking error remains small, we can linearize this time-varying system
about e = 0 and stabilize the e = 0 state. (Note: in FBS2e the notation uff is used
for the desired [feedforward] input. We use ud here to match the desired state xd.)

More formally, we assume that our process dynamics can be described by a
nonlinear differential equation of the form

ẋ = f(x, u), x ∈ Rn, u ∈ Rm,
y = h(x, u), y ∈ Rp,

(2.1)

where x is the system state, u is a vector of inputs, and f is a smooth function
describing the dynamics of the process. The smooth function h describes the output
y that we wish to control. We are particularly interested in the class of control
problems in which we wish to track a time-varying reference trajectory r(t), called
the trajectory tracking problem. In particular, we wish to find a control law u =
α(x, r(·)) such that

lim
t→∞

(
y(t)− r(t)

)
= 0.

We use the notation r(·) to indicate that the control law can depend not only on
the reference signal r(t) but also derivatives of the reference signal.

A feasible trajectory for the system (2.1) is a pair (xd(t), ud(t)) that satisfies the
differential equation and generates the desired trajectory:

ẋd(t) = f
(
xd(t), ud(t)

)
, r(t) = h

(
xd(t), ud(t)

)
.

2.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 2-3

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with xd representing the desired state for the (nominal) system
and ud representing the desired input or the feedforward control. If we can find
a feasible trajectory for the system, we can search for controllers of the form u =
α(x, xd, ud) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function. We can again use the
two degree of freedom paradigm with an optimal control computation for generating
the feasible trajectory. This subject is examined in more detail in Chapter 3. In
addition, we can take the extra step of updating the generated trajectory based
on the current state of the system. This additional feedback path is denoted by a
dashed line in Figure 2.1 and allows the use of so-called receding horizon control
techniques: a (optimal) feasible trajectory is computed from the current position
to the desired position over a finite time T horizon, used for a short period of time
δ < T , and then recomputed based on the new system state. Receding horizon
control is described in more detail in Chapter 4.

A key advantage of optimization-based approaches is that they allow the poten-
tial for customization of the controller based on changes in mission, condition and
environment. Because the controller is solving the optimization problem online,
updates can be made to the cost function, to change the desired operation of the
system; to the model, to reflect changes in parameter values or damage to sensors
and actuators; and to the constraints, to reflect new regions of the state space that
must be avoided due to external influences. Thus, many of the challenges of de-
signing controllers that are robust to a large set of possible uncertainties become
embedded in the online optimization.

2.2 Trajectory Tracking and Gain Scheduling

We begin by considering the problem of tracking a feasible trajectory. Assume
that a trajectory generator is able to generate a trajectory (xd, ud) that satisfies
the dynamics (2.1) and satisfies r(t) = h(xd(t), ud(t)). To design the controller,
we construct the error system. Let e = x − xd and v = u − ud and compute the
dynamics for the error:

ė = ẋ− ẋd = f(x, u)− f(xd, ud)

= f(e+ xd, v + ud)− f(xd, ud) =: F (e, v, xd(t), ud(t)).

The function F represents the dynamics of the error, with control input v and
external inputs xd and ud. In general, this system is time-varying through the
desired state and input.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around e = 0:

de

dt
≈ A(t)e+B(t)v, A(t) =

∂F

∂e

∣∣∣∣
(xd(t),ud(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),ud(t)

.

2-4 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

It is often the case that A(t) and B(t) depend only on xd, in which case it is
convenient to write A(t) = A(xd) and B(t) = B(xd).

We start by reviewing the case where A(t) and B(t) are constant, in which case
our error dynamics become

ė = Ae+Bv.

This occurs, for example, if the original nonlinear system is linear. We can then
search for a control system of the form

v = −Ke.

We can now apply the results of Chapter 7 of FBS2e and solve the problem by find-
ing a gain matrix K that gives the desired closed loop dynamics (e.g., by eigenvalue
assignment). It can be shown that this formulation is equivalent to a two degree
of freedom design where xd and ud are chosen to give the desired reference output
(Exercise 2.1).

Returning to the full nonlinear system, assume now that xd and ud are either
constant or slowly varying (with respect to the performance criterion). This allows
us to consider just the (constant) linearized system given by (A(xd), B(xd)). If
we design a state feedback controller K(xd) for each xd, then we can regulate the
system using the feedback

v = −K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u = ud −K(xd)(x− xd).

Note that the controller u = α(x, xd, ud) depends on (xd, ud), which themselves
depend on the desired reference trajectory. This form of controller is called a gain
scheduled linear controller with feedforward input ud.

More generally, the term gain scheduling is used to describe any controller that
depends on a set of measured parameters in the system. So, for example, we might
write

u = ud −K(x, µ) · (x− xd),

where K(x, µ) depends on the current system state (or some portion of it) and an
external parameter µ. The dependence on the current state x (as opposed to the
desired state xd) allows us to modify the closed loop dynamics differently depending
on our location in the state space. This is particularly useful when the dynamics of
the process vary depending on some subset of the states (such as the altitude for
an aircraft or the internal temperature for a chemical reaction). The dependence
on µ can be used to capture the dependence on the reference trajectory, or they
can reflect changes in the environment or performance specifications that are not
modeled in the state of the controller.

Example 2.1 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it follows a
given trajectory on the ground, as shown in Figure 2.2a. We use the model derived
in FBS2e, Example 3.11, choosing the reference point to be the center of the rear
wheels. This gives dynamics of the form

ẋ = cos θ v, ẏ = sin θ v, θ̇ =
v

l
tan δ, (2.2)

2.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 2-5

x

θ

δ

y

(a)

0 2 4
Time [s]

0

5

10

x
ve

l [
m

/s
],

y
po

s [
m

]

v
y

(b)

Figure 2.2: Vehicle steering using gain scheduling.

where (x, y, θ) is the position and orientation of the vehicle, v is the velocity and δ
is the steering angle, both considered to be inputs, and l is the wheelbase.

A simple feasible trajectory for the system is to follow a straight line in the x
direction at lateral position yr and fixed velocity vr. This corresponds to a desired
state xd = (vrt, yr, 0) and nominal input ud = (vr, 0). Note that (xd, ud) is not an
equilibrium point for the system, but it does satisfy the equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂f

∂x

∣∣∣∣
(xd,ud)

=

0 0 − sin θ v
0 0 cos θ v
0 0 0

∣∣∣∣∣∣
(xd,ud)

=

0 0 0
0 0 vr

0 0 0

 ,
Bd =

∂f

∂u

∣∣∣∣
(xd,ud)

=

1 0
0 0
0 vr/l

 .
We form the error dynamics by setting e = x− xd and w = u− ud:

ėx = w1, ėy = eθ, ėθ =
vr

l
w2.

We see that the first state is decoupled from the second two states and hence we
can design a controller by treating these two subsystems separately. Suppose that
we wish to place the closed loop eigenvalues of the longitudinal dynamics (ex) at
−λ1 and place the closed loop eigenvalues of the lateral dynamics (ey, eθ) at the
roots of the polynomial equation s2 + a1s+ a2 = 0.

This can accomplished by setting

w1 = −λ1ex

w2 = − l

vr
(
a2

vr
ey + a1eθ).

Note that the gains depend on the velocity vr (or equivalently on the nominal input
ud), giving us a gain scheduled controller.

2-6 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

K2
K

x1

x2

K1

xd,1

xd,2

Figure 2.3: Gain scheduling. A general gain scheduling design involves finding a
gain K at each desired operating point. This can be thought of as a gain surface,
as shown on the left (for the case of a scalar gain). An approximation to this gain
can be obtained by computing the gains at a fixed number of operating points
and then interpolated between those gains. This gives an approximation of the
continuous gain surface, as shown on the right.

In the original inputs and state coordinates, the controller has the form

[
v
δ

]
=

[
vr

0

]
︸︷︷︸
ud

−

λ1 0 0

0
a2l

v2
r

a1l

vr


︸ ︷︷ ︸

K(xd,ud)

x− vrt
y − yr

θ


︸ ︷︷ ︸

e

.

The form of the controller shows that at low speeds the gains in the steering angle
will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to control
the lateral position of a car. Note that the gains go to infinity when the vehicle is
stopped (vr = 0), corresponding to the fact that the system is not reachable at this
point.

Figure 2.2b shows the response of the controller to a step change in lateral
position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop poles to the same values. ∇

One limitation of gain scheduling as we have described it is that a separate set of
gains must be designed for each operating condition xd. In practice, gain scheduled
controllers are often implemented by designing controllers at a fixed number of op-
erating points and then interpolating the gains between these points, as illustrated
in Figure 2.3. Suppose that we have a set of operating points xd,j , j = 1, . . . , N .
Then we can write our controller as

u = ud −K(x)e K(x) =

N∑
j=1

ρj(x)Kj ,

2.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 2-7

input constraints → curvature constraints

Figure 2.4: Simple model for an automobile. We wish to find a trajectory from an
initial state to a final state that satisfies the dynamics of the system and constraints
on the curvature (imposed by the limited travel of the front wheels).

where Kj is a set of gains designed around the operating point xd,j and ρj(x) is
a weighting factor. For example, we might choose the weights ρj(x) such that we
take the gains corresponding to the nearest two operating points and weight them
according to the Euclidean distance of the current state from that operating point;
if the distance is small then we use a weight very near to 1 and if the distance is
far then we use a weight very near to 0.

While the intuition behind gain scheduled controllers is fairly clear, some cau-
tion in required in using them. In particular, a gain scheduled controller is not
guaranteed to be stable even if K(x, µ) locally stabilizes the system around a given
equilibrium point. Gain scheduling can be proven to work in the case when the
gain varies sufficiently slowly (Exercise 2.4).

2.3 Trajectory Generation and Differential Flat-
ness

We now return to the problem of generating a trajectory for a nonlinear system.
Consider first the case of finding a trajectory xd(t) that steers the system from an
initial condition x0 to a final condition xf. We seek a feasible solution (xd(t), ud(t))
that satisfies the dynamics of the process:

ẋd = f(xd, ud), xd(0) = x0, xd(T) = xf. (2.3)

Formally, this problem corresponds to a two-point boundary value problem and can
be quite difficult to solve in general.

In addition, we may wish to satisfy additional constraints on the dynamics.
These can include input saturation constraints |u(t)| < M , state constraints g(x) ≤
0, and tracking constraints h(x) = r(t), each of which gives an algebraic constraint
on the states or inputs at each instant in time. We can also attempt to optimize a
function by choosing (xd(t), ud(t)) to minimize∫ T

0

L(x, u)dt+ V (x(T), u(T)).

As an example of the type of problem we would like to study, consider the
problem of steering a car from an initial condition to a final condition, as shown
in Figure 2.4. To solve this problem, we must find a solution to the differential
equations (2.2) that satisfies the endpoint conditions. Given the nonlinear nature

2-8 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

of the dynamics, it seems unlikely that one could find explicit solutions that satisfy
the dynamics except in very special cases (such as driving in a straight line).

A closer inspection of this system shows that it is possible to understand the
trajectories of the system by exploiting the particular structure of the dynamics.
Suppose that we are given a trajectory for the rear wheels of the system, xd(t) and
yd(t). From equation (2.2), we see that we can use this solution to solve for the
angle of the car by writing

ẏ

ẋ
=

sin θ

cos θ
=⇒ θd = tan−1(ẏd/ẋd).

Furthermore, given θ we can solve for the velocity using the equation

ẋ = v cos θ =⇒ vd = ẋd/ cos θd,

assuming cos θd 6= 0 (if it is, use v = ẏ/ sin θ). And given θ, we can solve for δ using
the relationship

θ̇ =
v

l
tan δ =⇒ δd = tan−1(

lθ̇d

vd
).

Hence all of the state variables and the inputs can be determined by the trajectory
of the rear wheels and its derivatives. This property of a system is known as
differential flatness.

Definition 2.1 (Differential flatness). A nonlinear system (2.1) is differentially flat
if there exists a function α such that

z = α(x, u, u̇ . . . , u(p)),

and we can write the solutions of the nonlinear system as functions of z and a finite
number of derivatives:

x = β(z, ż, . . . , z(q)),

u = γ(z, ż, . . . , z(q)).
(2.4)

The collection of variables z̄ = (z, ż, . . . , z(q)) is called the flat flag.

For a differentially flat system, all of the feasible trajectories for the system
can be written as functions of a flat output z(·) and its derivatives. The number
of flat outputs is always equal to the number of system inputs. The kinematic
car is differentially flat with the position of the rear wheels as the flat output.
Differentially flat systems were originally studied by Fliess et al. [FLMR92].

Differentially flat systems are useful in situations where explicit trajectory gen-
eration is required. Since the behavior of a flat system is determined by the flat
outputs, we can plan trajectories in output space, and then map these to appropri-
ate inputs. Suppose we wish to generate a feasible trajectory for the the nonlinear
system

ẋ = f(x, u), x(0) = x0, x(T) = xf.

If the system is differentially flat then

x(0) = β
(
z(0), ż(0), . . . , z(q)(0)

)
= x0,

x(T) = γ
(
z(T), ż(T), . . . , z(q)(T)

)
= xf,

(2.5)

2.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 2-9

and we see that the initial and final condition in the full state space depend on just
the output z and its derivatives at the initial and final times. Thus any trajectory
for z that satisfies these boundary conditions will be a feasible trajectory for the
system, using equation (2.4) to determine the full state space and input trajectories.

In particular, given initial and final conditions on z and its derivatives that
satisfy equation (2.5), any curve z(·) satisfying those conditions will correspond to
a feasible trajectory of the system. We can parameterize the flat output trajectory
using a set of smooth basis functions ψi(t):

z(t) =

N∑
i=1

aiψi(t), ai ∈ R.

We seek a set of coefficients ai, i = 1, . . . , N such that z(t) satisfies the boundary
conditions (2.5). The derivatives of the flat output can be computed in terms of
the derivatives of the basis functions:

ż(t) =

N∑
i=1

aiψ̇i(t)

...

ż(q)(t) =

N∑
i=1

aiψ
(q)
i (t).

We can thus write the conditions on the flat outputs and their derivatives as

ψ1(0) ψ2(0) . . . ψN (0)

ψ̇1(0) ψ̇2(0) . . . ψ̇N (0)
...

...
...

ψ
(q)
1 (0) ψ

(q)
2 (0) . . . ψ

(q)
N (0)

ψ1(T) ψ2(T) . . . ψN (T)

ψ̇1(T) ψ̇2(T) . . . ψ̇N (T)
...

...
...

ψ
(q)
1 (T) ψ

(q)
2 (T) . . . ψ

(q)
N (T)



a1

...
aN

 =



z(0)
ż(0)

...
z(q)(0)

z(T)
ż(T)

...
z(q)(T)


(2.6)

This equation is a linear equation of the form Ma = z̄. Assuming that M has a
sufficient number of columns and that it is full column rank, we can solve for a
(possibly non-unique) a that solves the trajectory generation problem.

Example 2.2 Nonholonomic integrator
A simple nonlinear system called a nonholonomic integrator [Bro81] is given by the
differential equations

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1.

This system is differentially flat with flat output z = (x1, x3). The relationship
between the flat variables and the states is given by

x1 = z1, x2 = ẋ3/ẋ1 = ż2/ż1, x3 = z2. (2.7)

2-10 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

Using simple polynomials as our basis functions,

ψ1,1(t) = 1, ψ1,2(t) = t, ψ1,3(t) = t2, ψ1,4(t) = t3,

ψ2,1(t) = 1 ψ2,2(t) = t, ψ2,3(t) = t2, ψ2,4(t) = t3,

the equations for the feasible (flat) trajectory become

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 T T 2 T 3 0 0 0 0
0 1 2T 3T 2 0 0 0 0
0 0 0 0 1 T T 2 T 3

0 0 0 0 0 1 2T 3T 2





a11

a12

a13

a14

a21

a22

a23

a24


=



x1,0

1
x3,0

x2,0

x1,f

1
x3,f

x2,f


.

This is a set of 8 linear equations in 8 variables. It can be shown that the matrix
M is full rank when T 6= 0 and the system can be solved numerically. ∇

Note that no ODEs need to be integrated in order to compute the feasible tra-
jectories for a differentially flat system (unlike optimal control methods that we
will consider in the next chapter, which involve parameterizing the input and then
solving the ODEs). This is the defining feature of differentially flat systems. The
practical implication is that nominal trajectories and inputs that satisfy the equa-
tions of motion for a differentially flat system can be computed in a computationally
efficient way (solving a set of algebraic equations). Since the flat output functions
do not have to obey a set of differential equations, the only constraints that must
be satisfied are the initial and final conditions on the endpoints, their tangents, and
higher order derivatives. Any other constraints on the system, such as bounds on
the inputs, can be transformed into the flat output space and (typically) become
limits on the curvature or higher order derivative properties of the curve.

In the example above we had exactly the same number of basis functions as
the total number of initial and final conditions, but it is also possible to choose a
larger number of basis functions and use the remaining degrees of freedom for other
purposes. For example, if there is a performance index for the system, this index
can be transformed and becomes a functional depending on the flat outputs and
their derivatives up to some order. By approximating the performance index we can
achieve paths for the system that are suboptimal but still feasible. This approach
is often much more appealing than the traditional method of approximating the
system (for example by its linearization) and then using the exact performance
index, which yields optimal paths but for the wrong system.

Example 2.3 Vehicle steering
Consider the vehicle steering example described at the start of this section and
illustrated in Figure 2.4. The system consists of 3 states and 2 inputs and so we
could potentially find solutions for the point-to-point trajectory generation problem
using only 3 basis function in each of the two inputs. Suppose instead that we use
a larger number of basis functions in each of the two inputs, allowing additional
degrees of freedom.

2.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 2-11

0 5 10 15 20 25 30 35 40
x [m]

−2.5
0.0
2.5

y
[m

]

0.0 2.5
Time t [sec]

−2

0

2

y
[m

]

0.0 2.5
Time t [sec]

0.0

0.1

th
et

a
[ra

d]

0.0 2.5
Time t [sec]

9

10

11

v
[m

/s
]

0.0 2.5
Time t [sec]

−0.025
0.000
0.025

δ
[ra

d]

(a) Least squares solution

0 5 10 15 20 25 30 35 40
x [m]

−2.5
0.0
2.5

y
[m

]

0.0 2.5
Time t [sec]

0.0

2.5

y
[m

]

0.0 2.5
Time t [sec]

0.00
0.25

th
et

a
[ra

d]

0 2 4
Time t [sec]

9

10

11
v

[m
/s

]

0.0 2.5
Time t [sec]

0.00

0.25

δ
[ra

d]
(b) Penalize lateral error, input cost

Figure 2.5: Trajectory generation for vehicle steering example.

One possible solution for the now underdetermined linear set of equations that
we obtain in equation (2.6) is to use the least squares solution of the linear equation
Ma = z̄, which provides the smallest possible a (coefficient vector) that satisfies
the equation. The results of applying this to the problem of changing lanes using
a polynomial basis, are shown in Figure 2.5a.

Suppose instead that we wish to change lanes faster, but also take into account
the size of the inputs that are required. For example, we could seek to minimize
the cost function

J(x, u) =

∫ T

0

(
(y(τ)− yf)

2 + (v(τ)− vf)
2 + 10δ2(τ)

)
dτ,

where y is the lateral position of the vehicle, v is the vehicle velocity, δ is the
steering wheel angle, and the subscript ‘f’ represents the final value. Using the free
coefficients so as to minimize this cost, we obtain the results shown in Figure 2.5b.
We see that the resulting trajectory transitions between the lanes more quickly,
thought at the expense of larger inputs. ∇

In light of the techniques that are available for differentially flat systems, the
characterization of flat systems becomes particularly important. General condi-
tions for flatness are complicated to apply [Lév10], but many important classes

2-12 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

(a) Kinematic car (b) Ducted fan

(c) N trailers

(d) Towed cable

Figure 2.6: Examples of flat systems.

of nonlinear systems, including feedback linearizable systems, can be shown to be
differentially flat. One large class of flat systems are those in “pure feedback form”:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...

ẋn = fn(x1, . . . , xn, u).

(2.8)

Under certain regularity conditions these systems are differentially flat with output
y = x1. These systems have been used for so-called “integrator backstepping”
approaches to nonlinear control by Kokotovic et al. [KKM91]. Figure 2.6 shows
some additional systems that are differentially flat.

Example 2.4 Vectored thrust aircraft
Consider the dynamics of a planar, vectored thrust flight control system as shown
in Figure 2.7. This system consists of a rigid body with body fixed forces and is
a simplified model for a vertical take-off and landing aircraft (see Example 3.12
in FBS2e). Let (x, y, θ) denote the position and orientation of the center of mass
of the aircraft. We assume that the forces acting on the vehicle consist of a force
F1 perpendicular to the axis of the vehicle acting at a distance r from the center
of mass and a force F2 parallel to the axis of the vehicle. Let m be the mass of
the vehicle, J the moment of inertia, and g the gravitational constant. We ignore
aerodynamic forces for the purpose of this example.

2.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 2-13

y

θ

F1

F2

r

x

Figure 2.7: Vectored thrust aircraft (from FBS2e). The net thrust on the aircraft
can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

The dynamics for the system are

mẍ = F1 cos θ − F2 sin θ − cẋ,
mÿ = F1 sin θ + F2 cos θ −mg − cẏ,
Jθ̈ = rF1.

(2.9)

Martin et al. [MDP94] showed that when c = 0 this system is differentially flat and
that one set of flat outputs is given by

z1 = x− (J/mr) sin θ,

z2 = y + (J/mr) cos θ.
(2.10)

Using the system dynamics, it can be shown that

z̈1 cos θ + (z̈2 + g) sin θ = 0, (2.11)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of π and
away from the singularity z̈1 = z̈2 + g = 0. The remaining states and the forces
F1(t) and F2(t) can then be obtained from the dynamic equations, all in terms of
z1, z2, and their higher order derivatives. ∇

Additional remarks on differential flatness
�

Determining whether a system is differentially flat is a challenging problem. Nec-
essary and sufficient conditions have been developed by Lévine [Lév10], but the
conditions are not constructive in nature. We briefly summarize here some known
conditions under which a system is differentially flat as well as some additional
concepts related to flatness.

Flatness of linear systems and feedback linearizable systems. All single-input reach-
able linear systems are differentially flat, which can be shown by putting the system
into reachable canonical form (FBS2e, equation (7.6)) and choosing the last state

2-14 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

as the flat output. Multi-input, reachable linear systems are often differentially
flat, though the construction of the flat outputs can be more complicated. Simi-
larly, systems that are feedback linearizable (see FBS2e, Figure 6.15) are commonly
differentially flat, as are systems in pure feedback form (2.8) (under appropriate reg-
ularity conditions). More details on some of the conditions under which feedback
linearizable systems are differentially flat can be found in [vNRM98].

For mechanical systems, where the equations of motion satisfy Lagrange’s equa-
tions and the state variables consist of configuration variables and their velocities
(or momenta), it is often the case that the flat outputs are functions only of the
configuration variables. In many cases, these flat outputs also have some geometric
interpretation. For example, for the vectored thrust aircraft in Example 2.4 the
flat output is a point on the axis of the aircraft whose position is based on the
physical parameters of the system, as seen in equation (2.10). For the N -trailer
system the flat output is the center of rear wheels of the final trailer (Exercise 2.8),
and for the towed cable system in Figure 2.6d the bottom of the cable is the flat
output [Mur96]. Other examples of configuration flat systems, and some geometric
conditions characterizing configuration flatness, can be found in [RM98].

Structure of the flat flag. In Definition 2.1, the flat flag was defined as having the
form z̄ = (z, ż, . . . , z(q)), which implies that in the multi-input case the number of
derivatives for each flat variable is the same. This need not be the case and it may
be that a different number derivatives are required for different flat outputs, so

that the flat flag has the structure z̄i = (zi, żi, . . . , z
(qi)
i), where i is the flat output

and qi is the number of derivatives for that output (which may not be the same
for all i). The number of derivatives required in each flat output provide insights
into the structure of the underlying system, with the dynamics of the system being
equivalent to a set of chains of integrators of different lengths.

Related to this, in some instances, it can be the case that when finding the
mapping from states and inputs of the system to the flat flag, derivatives of the
inputs can appear. While this is allowable in the context of flatness (with appro-
priate extensions of the definition), in practice it often turns out that one can take
the inputs as constants when computing the flat flag. This is allowable in many
situations because the only time we use the mapping from the states and inputs
to the flat flag is when determining the endpoints for a point-to-point trajectory
generation problem. In that setting, constraining the derivative of the input to be
zero at the start and end of the trajectory is often acceptable.

Partially flat systems and defect. For systems that are not differentially flat, it is
sometimes possible to find a set of outputs for which a portion of the states can be
determined from the flat outputs and their derivatives, but some set of states must
still satisfy a set of differential equations. For example, we may be able to write
the states of the system in the form

x = β(z, ż, . . . , z(q)),

u = γ(z, ż, . . . , z(q)),

Φ(z, ż, . . . , z(n−r)),

where z ∈ Rp, p ≥ m represents a set of outputs that parameterize the trajectory
and Φ represents a set of remaining differential constraints on the output. The

2.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 2-15

minimum number of possible remaining differential constraints is called the defect
of the system. Even though such a system is not differentially flat, the problem
of trajectory generation may still be considerably simplified since the number of
differential equation constraints may be small. In some cases, it even can turn out
that even if a system is differentially flat the computations required to find the
states based on the flat outputs may be sufficiently complicated that it is beneficial
to use a set of outputs that only partially determine the system states.

A more complete description of the concept of defect for nonlinear systems is
provided in [FLMR95]. (The concept of defect is also related to the notion of the
relative degree and zero dynamics in the feedback linearization literature.)

Flatness versus feedback linearization.1 Feedback linearizable systems, in which
a system is rendered linear through a (nonlinear) change of state variables and
transformation of the input, are a fairly common class of systems. One case that
comes up relatively frequently, and is hence worth special mention, is the set of
mechanical systems of the form

M(q)q̈ + C(q, q̇) = B(q)u.

Here q ∈ Rn is the configuration of the mechanical system, M(q) ∈ Rn×n is the
configuration-dependent inertia matrix, C(q, q̇) ∈ Rn represents the Coriolis forces
and additional nonlinear forces (such as stiffness and friction), and B(q) ∈ Rn×p
is the input matrix. If p = n, then we have the same number of inputs and
configuration variables, and if we further have that B(q) is an invertible matrix for
all configurations q, then we can choose

u = B−1(q)
(
M(q)v + C(q, q̇)

)
. (2.12)

The resulting dynamics become

M(q)q̈ = M(q)v =⇒ q̈ = v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (2.12) to obtain the actual input that will be applied to the system.

A natural question in considering feedback linearizable systems is whether one
should simply feedback linearize the system or whether it is better to instead gener-
ate feasible trajectories for the (differentially flat) nonlinear system and then make
use of linear controllers to stabilize the system to that trajectory. In many cases
it can be advantageous to generate a trajectory for the system (using differentially
flatness), where one can take into account constraints on the inputs and the costs
associated with state errors and input magnitudes in the original coordinates of the
model. A downside of this approach is that the gains of the system must now be
modified depending on the operating point (e.g., using gain scheduling), whereas
for a system that has been feedback linearized a single linear controller (in the
transformed coordinates) can be used.

1The material in this section is drawn from FBS2e, Section 6.4.

2-16 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

2.4 Implementation in Python2

The Python Control Systems Library (python-control) contains modules that help
support trajectory generation using differential flatness and gain-scheduling con-
troller designs.

The control.flatsys package contains a set of classes and functions that can be
used to compute trajectories for differentially flat systems. It allows both “simple”
trajectory generation (no constraints, no cost function) as well as constrained, op-
timal trajectory generation (with the same basic structure as the optimal control
problems described in the next chapter). The primary advantage of solving trajec-
tory generation problems using differentially flat structure, when it applies, is that
the all operations are algebraic in nature, with no need to integrate the differential
equations describing the dynamics of the system. This can substantially speed up
the computation of trajectories.

A differentially flat system is defined by creating an object using the FlatSystem

class, which has member functions for mapping the system state and input into
and out of flat coordinates. The point_to_point() function can be used to cre-
ate a trajectory between two endpoints, written in terms of a set of basis func-
tions defined using the BasisFamily class. The resulting trajectory is returned as a
SystemTrajectory object and can be evaluated using the eval() member function.

To create a trajectory for a differentially flat system, a FlatSystem object must
be created. This is done by specifying the forward and reverse mappings between
the system state/input and the differentially flat outputs and their derivatives (“flat
flag”).

The forward() method computes the flat flag z̄ = (z, ż, . . . , z(q) given a state
and input:

zflag = sys.forward(x, u)

The reverse() method computes the state and input given the flat flag:

x, u = sys.reverse(zflag)

The flag z̄ is implemented as a list of flat outputs zi and their derivatives up to
order qi:

zflag[i][j] = z
(j)
i

The number of flat outputs must match the number of system inputs.
For a linear system, a flat system representation can be generated using the

LinearFlatSystem class:

sys = ct.flatsys.LinearFlatSystem(linsys)

For more general systems, the FlatSystem object must be created manually:

sys = ct.flatsys.FlatSystem(forward, reverse, inputs=m, states=n)

In addition to the flat system description, a set of basis functions ψi(t) must be
chosen. The FlatBasis class is used to represent the basis functions. A polynomial
basis function of the form 1, t, t2, . . . can be computed using the PolyBasis class,
which is initialized by passing the desired order of the polynomial basis set:

2The material in this section is drawn from [FGM+21].

2.4. IMPLEMENTATION IN PYTHON 2-17

0 5 10 15 20 25 30 35 40
x [m]

−2.5
0.0
2.5

y
[m

]

0.0 2.5
Time t [sec]

−2
0
2

y
[m

]

0.0 2.5
Time t [sec]

0.0

0.2

th
et

a
[ra

d]

0 2 4
Time t [sec]

9

10

11

v
[m

/s
]

0.0 2.5
Time t [sec]

0.0

0.1

δ
[ra

d]

Figure 2.8: Trajectory generation using differential flatness.

polybasis = ct.flatsys.PolyFamily(N)

Once the system and basis function have been defined, the point_to_point() func-
tion can be used to compute a trajectory between initial and final states and inputs:

traj = ct.flatsys.point_to_point(

sys, Tf, x0, u0, xf, uf, basis=polybasis)

The returned object has class SystemTrajectory and can be used to compute
the state and input trajectory between the initial and final condition:

xd, ud = traj.eval(timepts)

where timepts is a list of times on which the trajectory should be evaluated (e.g.,
timepts = np.linspace(0, Tf, M)).

The point_to_point() function also allows the specification of a cost function
and/or constraints, in the same format as solve_ocp(). An example is shown in
Figure 2.8, where we have further modified the problem from Example 2.3 by adding
constraints on the inputs.

The python-control package also has functions to help simplify the implemen-
tation of state feedback-based controllers. The create_statefbk_iosystem function
can be used to create an I/O system using state feedback, including simple forms
of gain scheduling.

A basic state feedback controller of the form

u = ud −K(x− xd)

can be created with the python-control command

ctrl, clsys = ct.create_statefbk_iosystem(sys, K)

where sys is the process dynamics and K is the state feedback gain. The function
returns the controller ctrl and the closed loop systems clsys, both as I/O systems.
The input to the controller is the vector of desired states xd, desired inputs ud, and
system states x.

Gain scheduling on the desired state, desired input, or system state can be
implemented by setting the gain to a 2-tuple consisting of a list of gains and a
list of points at which the gains were computed, as well as a description of the
scheduling variables::

ctrl, clsys = ct.create_statefbk_iosystem(

sys, ([g1, ..., gN], [p1, ..., pN]), gainsched_indices=[s1, ..., sq])

2-18 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

Figure 2.9: Examples of motion primitives for a planar vehicle. Example of 9
planar motion primitives from initial state x0 for an acceleration-controlled system
(left) and a jerk-controlled system (right). The black arrow indicates corresponding
control input. The red boundary shows the feasible region for the end states (red
squares), which is induced by the control limit umax. Figure and caption courtesy
Liu et al. [LAMK17] (CC-BY).

The list of indices can either be integers indicating the offset into the controller
input vector (xd, ud, x) or a list of strings matching the names of the input signals.
The controller implemented in this case has the form

u = ud −K(µ)(x− xd)

where µ represents the scheduling variables. See the python-control documentation
and steering-gainsched.py (in the documentation examples) for more information
on the implementation of a gain scheduled controllers.

2.5 Other Methods for Generating Trajectories

In this section we briefly survey some other methods of generating trajectories for
nonlinear systems, building on the basic ideas already presented.

Motion primitives and graph search. Rather than solve for an entire trajectory
xd that satisfies the equations of motion and a trajectory goal (e.g., moving from
point to point), another common approach to trajectory generation is to create
small segments of trajectories that can be concatenated into a longer trajectory.
Each segment is called a motion primitive.

An example of two sets of motion primitives is shown in Figure 2.9. In the
left figure the primitives are generated by using constant acceleration trajectories
and in the right figure the primitives are generated by using trajectories that are
constant in the third derivative.

Motion primitives can often be combined with other methods for path planning,
such as graph search. For example, a grid of target states can be established where
points in the grid are connected by motion primitives. This approach creates a
graph structure, with each vertex representing a position in the state space and
each edge representing a path segment. The problem of trajectory generation then
becomes one of graph search: for example, we seek to find a path between two
points in the (discretized) state space that minimizes a cost function (represented

2.5. OTHER METHODS FOR GENERATING TRAJECTORIES 2-19

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N
Figure 2.10: Graph-based planning. (a) Road network definition file (RNDF),
used for high level route planning. (b) Graph of feasible trajectories at an inter-
section.

Figure 2.11: Rapidly exploring random tree (RRT) path planning. Random
exploration of a 2D search space by randomly sampling points and connecting
them to the graph until a feasible path between start and goal is found. Figure
and caption courtesy Correll et al. [CHHR22] (CC-BY-ND-NC).

as weights on the nodes and/or edges in the graph). Figure 2.10 illustrates one
such approach, used in an autonomous vehicle setting [BdTH+07].

Rapidly-exploring random tree (RRT). While graph-based search methods can be
very fast, they can become difficult to implement in high dimensional state spaces,
since the number of points in the grid scales exponentially in the dimension of the
state space. An alternative to “filling” the state space with grid points is to sample
feasible trajectories from the primitive set and then “explore” the state space by
constructing a tree consisting of concatenated segments.

A popular algorithm for this type of sample-based planning is rapidly-exploring
random tree (RRT) search, as illustrated in Figure 2.11. The idea in RRT search
is that we start from the initial point in the trajectory and construct a tree of
possible trajectories by constantly adding new segments to existing points on the
tree. When we add a segment that gets close to the desired final point, we can use
the path back to the root to establish a feasible trajectory for the system.

2-20 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

2.6 Further Reading

The two degree of freedom controller structure introduced in this chapter is de-
scribed in a bit more detail in FBS2e, Chapter 8 (in the context of output feedback
control) and a description of some of the origins of this structure are provided in the
“Further Reading” section of Chapter 8. Gain scheduling is a classical technique
that is often omitted from introductory control texts, but a good description can
be found in the survey article by Rugh [Rug90] and the work of Shamma [Sha90].
Differential flatness was originally developed by Fliess, Levine, Martin and Rou-
chon [FLMR92]. See [Mur97] for a description of the role of flatness in control
of mechanical systems and [vNM98, MFHM05] for more information on flatness
applied to flight control systems.

Exercises

2.1 (Feasible trajectory for constant reference). Consider a linear input/output
system of the form

ẋ = Ax+Bu, y = Cx (2.13)

in which we wish to track a constant reference r. A feasible (steady state) trajectory
for the system is given by solving the equation[

0
r

]
=

[
A B
C 0

] [
xd
ud

]
for xd and ud.

(a) Show that these equations always have a solution as long as the linear sys-
tem (2.13) is reachable.

(b) In Section 7.2 of FBS2e we showed that the reference tracking problem could be
solved using a control law of the form u = −Kx+krr. Show that this is equivalent
to a two degree of freedom control design using xd and ud and give a formula for
kr in terms of xd and ud. Show that this formula matches that given in FBS2e.

2.2. A simplified model of the steering control problem is described in FBS2e,
Example 6.13. The lateral dynamics can be approximated by the (normalized)
linearized dynamics

ẋ =

[
0 1
0 0

]
x+

[
γ
1

]
u, y = x1,

where x = (y, θ) ∈ R2 is the state of the system, γ is a parameter that depends on
the forward speed of the vehicle, and y is the lateral position of the vehicle.

Suppose that we wish to track a piecewise constant reference trajectory that
consists of moving left and right by 1 meter:

xd =

[
square(2πt/20)

0

]
, ud = 0,

2.6. FURTHER READING 2-21

where square is the square wave function in scipy.signal. Suppose further that
the speed of the vehicle varies such that the parameter γ satisfies the formula

γ(t) = 2 + 2 sin(2πt/50).

(a) Show that the desired trajectory given by xd and ud satisfy the dynamics of
the system at all points in time except the switching points of the square wave
function.

(b) Suppose that we fix γ = 2. Use eigenvalue placement to design a state space
controller u = ud − K(x − xd) where the gain matrix K is chosen such that the
eigenvalues of the closed loop poles are at the roots of s2+2ζω0s+ω2

0 , where ζ = 0.7
and ω0 = 1. Apply the controller to the time-varying system where γ(t) is allowed
to vary and plot the output of the system compared to the desired output.

(c) Find gain matrices K1, K2, and K3 corresponding to γ = 0, 2, 4 and design
a gain-scheduled controller that uses linear interpolation to compute the gain for
values of γ between these values. Compare the performance of the gain scheduled
controller to your controller from part (b).

2.3. Consider the nonholonomic integrator in Example 2.2:

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1.

Using Bezier curves as the basis functions for the flat outputs, find a trajectory
between x0 = (0, 0, 0), u0 = (1, 0) and xf = (10, 0, 5), uf = (1, 1) over a time
interval T = 2. Plot the states and inputs for your trajectory.

2.4 (Stability of gain scheduled controllers for slowly varying systems). Consider a
nonlinear control system with gain scheduled feedback

ė = f(e, v) v = k(µ)e,

where µ(t) ∈ R is an externally specified parameter (e.g., the desired trajectory)
and k(µ) is chosen such that the linearization of the closed loop system around the
origin is stable for each fixed µ.

Show that if |µ̇| is sufficiently small then the equilibrium point is locally asymp-
totically stable for the full nonlinear, time-varying system. (Hint: find a Lyapunov
function of the form V = xTP (µ)x based on the linearization of the system dynam-
ics for fixed µ and then show this is a Lyapunov function for the full system.)

2.5 (Flatness of systems in reachable canonical form). Consider a single input sys-
tem in reachable canonical form [FBS2e, Section 7.1]:

dx

dt
=


−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

x+


1
0
0
...
0

u,
y =

[
b1 b2 b3 . . . bn

]
x+ du.

(2.14)

2-22 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

Suppose that we wish to find an input u that moves the system from x0 to xf .
This system is differentially flat with flat output given by z = xn and hence we can
parameterize the solutions by a curve of the form

xn(t) =

N∑
k=0

αkt
k, (2.15)

where N is a sufficiently large integer.

(a) Compute the state space trajectory x(t) and input u(t) corresponding to equa-
tion (2.15) and satisfying the differential equation (2.14). Your answer should be
an equation similar to equation (2.7) for each state xi and the input u.

(b) Find an explicit input that steers a double integrator system between any two
equilibrium points x0 ∈ R2 and xf ∈ R2.

(c) Show that all reachable systems are differentially flat and give a formula for
finding the flat output in terms of the dynamics matrix A and control matrix B.

2.6. Show that the servomechanism example from Exercise 1.3 is differentially flat
and compute the forward and reverse mappings between the system states and
inputs and the flat flag.

2.7. Consider the lateral control problem for an autonomous ground vehicle as
described in Example 2.1 and Section 2.3. Using the fact that the system is dif-
ferentially flat, find an explicit trajectory that solves the following parallel parking
maneuver:

x0 = (0, 4)

xf = (0, 0)

xi = (6, 2)

Your solution should consist of two segments: a curve from x0 to xi with v > 0
and a curve from xi to xf with v < 0. For the trajectory that you determine, plot
the trajectory in the plane (x versus y) and also the inputs v and δ as a function
of time.

2.8. Consider first the problem of controlling a truck with trailer, as shown in the
figure below:

2.6. FURTHER READING 2-23

ẋ = cos θ u1

ẏ = sin θ u1

φ̇ = u2

θ̇ =
1

l
tanφu1

θ̇1 =
1

d
cos(θ − θ1) sin(θ − θ1)u1,

The dynamics are given above, where (x, y, θ) is the position and orientation of the
truck, φ is the angle of the steering wheels, θ1 is the angle of the trailer, and l and
d are the length of the truck and trailer. We want to generate a trajectory for the
truck to move it from a given initial position to the loading dock. We ignore the
role of obstacles and concentrate on generation of feasible trajectories.

(a) Show that the system is differentially flat using the center of the rear wheels of
the trailer as the flat output.

(b) Generate a trajectory for the system that steers the vehicle from an initial
condition with the truck and trailer perpendicular to the loading dock into the
loading dock.

(c) Write a simulation of the system stabilizes the desired trajectory and demon-
strate your two-degree of freedom control system maneuvering from several different
initial conditions into the parking space, with either disturbances or modeling errors
included in the simulation.

2-24 CHAPTER 2. TRAJECTORY GENERATION AND TRACKING

Chapter 3

Optimal Control

This chapter expands on Chapter 7 of FBS2e, which introduces the concepts of
reachability and state feedback. We also expand on topics in Section 8.5 of FBS2e
in the area of feedforward compensation. Beginning with a review of optimization,
we introduce the notion of Lagrange multipliers and provide a summary of the
Pontryagin’s maximum principle. Using these tools we derive the linear quadratic
regulator for linear systems and describe its usage.

Prerequisites. Readers should be familiar with modeling of input/output control
systems using differential equations, linearization of a system around an equilib-
rium point, and state space control of linear systems, including reachability and
eigenvalue assignment. Some familiarity with optimization of nonlinear functions
is also assumed.

3.1 Review: Optimization

Optimization refers to the problem of choosing a set of parameters that maximize
or minimize a given function. In control systems, we are often faced with having to
choose a set of parameters for a control law so that the some performance condition
is satisfied. In this chapter we will seek to optimize a given specification, choosing
the parameters that maximize the performance (or minimize the cost). In this
section we review the conditions for optimization of a static function, and then
extend this to optimization of trajectories and control laws in the remainder of
the chapter. More information on basic techniques in optimization can be found
in [Lue97] or the introductory chapter of [LS95].

Consider first the problem of finding the minimum of a smooth function F : Rn →
R. That is, we wish to find a point x∗ ∈ Rn such that F (x∗) ≤ F (x) for all x ∈ Rn.
A necessary condition for x∗ to be a minimum is that the gradient of the function
be zero at x∗:

∂F

∂x
(x∗) = 0.

The function F (x) is often called a cost function and x∗ is the optimal value for x.
Figure 3.1 gives a graphical interpretation of the necessary condition for a minimum.
Note that these are not sufficient conditions; the points x1, x2, and x∗ in the figure

3-1

3-2 CHAPTER 3. OPTIMAL CONTROL

dx

x∗

x1

x2

x

F (x)

∂F
∂x
dx

Figure 3.1: Optimization of functions. The minimum of a function occurs at a
point where the gradient is zero.

x1

x∗
F (x)

G(x) = 0

x2

(a) Constrained optimization

x2

G(x) = 0

∂G
∂x x3

x1

(b) Constraint normal vectors

Figure 3.2: Optimization with constraints. (a) We seek a point x∗ that minimizes
F (x) while lying on the surface G(x) = 0 (a line in the x1x2 plane). (b) We can
parameterize the constrained directions by computing the gradient of the constraint
G. Note that x ∈ R2 in (a), with the third dimension showing F (x), while x ∈ R3

in (b).

all satisfy the necessary condition but only one is the (global) minimum.
The situation is more complicated if constraints are present. Let Gi : Rn →

R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0 representing the
constraints. Suppose that we wish to find x∗ ∈ Rn such that Gi(x

∗) = 0 and
F (x∗) ≤ F (x) for all x ∈ {x ∈ Rn : Gi(x) = 0, i = 1, . . . , k}. This situation can be
visualized as constraining the point to a surface (defined by the constraints) and
searching for the minimum of the cost function along this surface, as illustrated in
Figure 3.2a.

A necessary condition for being at a minimum is that there are no directions
tangent to the constraints that also decrease the cost. Given a constraint function
G(x) = (G1(x), . . . , Gk(x)), x ∈ Rn we can represent the constraint as a n − k
dimensional surface in Rn, as shown in Figure 3.2b. The tangent directions to the
surface can be computed by considering small perturbations of the constraint that
remain on the surface:

Gi(x+ δx) ≈ Gi(x) +
∂Gi
∂x

(x)δx = 0. =⇒ ∂Gi
∂x

(x)δx = 0,

where δx ∈ Rn is a vanishingly small perturbation. It follows that the normal

3.1. REVIEW: OPTIMIZATION 3-3

directions to the surface are spanned by ∂Gi/∂x, since these are precisely the
vectors that annihilate an admissible tangent vector δx.

Using this characterization of the tangent and normal vectors to the constraint, a
necessary condition for optimization is that the gradient of F is spanned by vectors
that are normal to the constraints, so that the only directions that increase the
cost violate the constraints. We thus require that there exist scalars λi, i = 1, . . . , k
such that

∂F

∂x
(x∗) +

k∑
i=1

λi
∂Gi
∂x

(x∗) = 0.

If we let G =
[
G1 G2 . . . Gk

]T
, then we can write this condition as

∂F

∂x
+ λT

∂G

∂x
= 0 (3.1)

the term ∂F/∂x is the usual (gradient) optimality condition while the term ∂G/∂x
is used to “cancel” the gradient in the directions normal to the constraint.

An alternative condition can be derived by modifying the cost function to incor-
porate the constraints. Defining F̃ = F +

∑
λiGi, the necessary condition becomes

∂F̃

∂x
(x∗) = 0.

The scalars λi are called Lagrange multipliers. Minimizing F̃ is equivalent to the
optimization given by

min
x

(
F (x) + λTG(x)

)
. (3.2)

The variables λ can be regarded as free variables, which implies that we need to
choose x such that G(x) = 0 in order to insure the cost is minimized. Otherwise,
we could choose λ to generate a large cost.

Example 3.1 Two free variables with a constraint
Consider the cost function given by

F (x) = F0 + (x1 − a)2 + (x2 − b)2,

which has an unconstrained minimum at x = (a, b). Suppose that we add a con-
straint G(x) = 0 given by

G(x) = x1 − x2.

With this constraint, we seek to optimize F subject to x1 = x2. Although in this
case we could do this by simple substitution, we instead carry out the more general
procedure using Lagrange multipliers.

The augmented cost function is given by

F̃ (x) = F0 + (x1 − a)2 + (x2 − b)2 + λ(x1 − x2),

where λ is the Lagrange multiplier for the constraint. Taking the derivative of F̃ ,
we have

∂F̃

∂x
=
[
2x1 − 2a+ λ 2x2 − 2b− λ

]
.

3-4 CHAPTER 3. OPTIMAL CONTROL

Setting each of these equations equal to zero, we have that at the minimum

x∗1 = a− λ/2, x∗2 = b+ λ/2.

The remaining equation that we need is the constraint, which requires that x∗1 = x∗2.
Using these three equations, we see that λ∗ = a− b and we have

x∗1 =
a+ b

2
, x∗2 =

a+ b

2
.

To verify the geometric view described above, note that the gradients of F and
G are given by

∂F

∂x
=
[
2x1 − 2a 2x2 − 2b

]
,

∂G

∂x
=
[
1 −1

]
.

At the optimal value of the (constrained) optimization, we have

∂F

∂x
=
[
b− a a− b

]
,

∂G

∂x
=
[
1 −1

]
.

Although the derivative of F is not zero, it is pointed in a direction that is normal
to the constraint, and hence we cannot decrease the cost while staying on the
constraint surface. ∇

We have focused on finding the minimum of a function. We can switch back
and forth between maximum and minimum by simply negating the cost function:

max
x

F (x) = min
x

(
−F (x)

)
We see that the conditions that we have derived are independent of the sign of F
since they only depend on the gradient begin zero in approximate directions. Thus
finding x∗ that satisfies the conditions corresponds to finding an extremum for the
function.

Very good software is available for numerically solving optimization problems
of this sort. The NPSOL, SNOPT, and IPOPT libraries are available in FOR-
TRAN and C. In Python, the scipy.optimize module of SciPy can be used to solve
constrained optimization problems.

3.2 Optimal Control of Systems

We now return to the problem of finding a feasible trajectory for a system that
satisfies some performance condition. The basic idea is to try to optimize a given
cost function over all trajectories of a system that satisfy the possible dynamics
of the system. The input to the system is used to “parameterize” the possible
trajectories of the system.

More concretely, we consider the optimal control problem:

min
u(·)

∫ T

0

L(x, u) dt+ V
(
x(T)

)

3.2. OPTIMAL CONTROL OF SYSTEMS 3-5

subject to the constraint

ẋ = f(x, u), x ∈ Rn, u ∈ Ω ⊂ Rm.

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (x(t), u(t)) that minimizes the cost function

J(x, u) =

∫ T

0

L(x, u) dt+ V
(
x(T)

)
.

More formally, this problem is equivalent to the “standard” problem of minimizing a
cost function J(x, u) where (x, u) ∈ L2[0, T] (the set of square integrable functions)
and g(z) = ẋ(t) − f(x(t), u(t)) = 0 models the dynamics. The term L(x, u) is
referred to as the integral cost and V (x(T)) is the final (or terminal) cost.

There are many variations and special cases of the optimal control problem. We
mention a few here:

Infinite horizon optimal control. If we let T = ∞ and set V = 0, then we seek to
optimize a cost function over all time. This is called the infinite horizon optimal
control problem, versus the finite horizon problem with T < ∞. Note that if an
infinite horizon problem has a solution with finite cost, then the integral cost term
L(x, u) must approach zero as t→∞.

Linear quadratic (LQ) optimal control. If the dynamical system is linear and the
cost function is quadratic, we obtain the linear quadratic optimal control problem:

ẋ = Ax+Bu, J =

∫ T

0

(
xTQx+ uTRu

)
dt+ xT(T)P1x(T).

In this formulation, Q ≥ 0 penalizes state error, R > 0 penalizes the input and
P1 > 0 penalizes terminal state. This problem can be modified to track a desired
trajectory (xd, ud) by rewriting the cost function in terms of (x−xd) and (u−ud).
Terminal constraints. It is often convenient to ask that the final value of the
trajectory, denoted xf, be specified. We can do this by requiring that x(T) = xf or
by using a more general form of constraint:

ψi(x(T)) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining ψi(x(T)) =
xi(T)−xi,f . For a control problem with a full set of terminal constraints, V (x(T))
can be omitted (since its value is fixed).

Time optimal control. If we constrain the terminal condition to x(T) = xf, let the
terminal time T be free (so that we can optimize over it) and choose L(x, u) = 1,
we can find the time-optimal trajectory between an initial and final condition. This
problem is usually only well-posed if we additionally constrain the inputs u to be
bounded.

A very general set of conditions is available for the optimal control problem that
captures most of these special cases in a unifying framework. Consider a nonlinear
system

ẋ = f(x, u), x = Rn,
x(0) given, u ∈ Ω ⊂ Rm,

3-6 CHAPTER 3. OPTIMAL CONTROL

where f(x, u) = (f1(x, u), . . . fn(x, u)) : Rn × Rm → Rn. We wish to minimize a
cost function J with terminal constraints:

J =

∫ T

0

L(x, u) dt+ V (x(T)), ψ(x(T)) = 0.

The function ψ : Rn → Rq gives a set of q terminal constraints. Analogous to the
case of optimizing a function subject to constraints, we construct the Hamiltonian:

H = L+ λTf = L+

n∑
i=1

λifi.

The variables λ are functions of time and are often referred to as the costate vari-
ables. A set of necessary conditions for a solution to be optimal was derived by
Pontryagin [PBGM62].

Theorem 3.1 (Maximum Principle). If (x∗, u∗) is optimal, then there exists λ∗(t) ∈
Rn and ν∗ ∈ Rq such that

ẋ∗i =
∂H

∂λi
(x∗, λ∗), x(0) given, ψ(x(T)) = 0,

−λ̇∗i =
∂H

∂xi
(x∗, λ∗), λ∗i (T) =

∂V

∂xi

(
x∗(T)

)
+

q∑
j=1

ν∗j
∂ψj
∂xi

(
x∗(T)

)
,

and
H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u, λ∗(t)) for all u ∈ Ω.

The form of the optimal solution is given by the solution of a differential equa-
tion with boundary conditions. If u = arg minH(x, u, λ) exists, we can use this to
choose the control law u and solve for the resulting feasible trajectory that mini-
mizes the cost. The boundary conditions are given by the n initial states x(0), the
q terminal constraints on the state ψ(x(T)) = 0, and the n− q final values for the
Lagrange multipliers

λT(T) =
∂V

∂x
(x(T)) + νT

∂ψ

∂x
(x(T)) .

In this last equation, ν is a free variable and so there are n equations in n+ q free
variables, leaving n − q constraints on λ(T). In total, we thus have 2n boundary
values.

The maximum principle is a very general (and elegant) theorem. It allows the
dynamics to be nonlinear and the input to be constrained to lie in a set Ω, allowing
the possibility of bounded inputs. If Ω = Rm (unconstrained input) and H is
differentiable, then a necessary condition for the optimal input is

∂H

∂ui
= 0, i = 1, . . . ,m.

We note that even though we are minimizing the cost, this is still usually called
the maximum principle (an artifact of history).

3.2. OPTIMAL CONTROL OF SYSTEMS 3-7

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95], omitting
some of the details required for a fully rigorous proof. We use the method of
Lagrange multipliers, augmenting our cost function by the dynamical constraints
and the terminal constraints:

J̃(x(·), u(·), λ(·), ν) = J(x, u) +

∫ T

0

λT(t)
(
f(x, u)− ẋ(t)

)
dt+ νTψ(x(T))

=

∫ T

0

(
L(x, u) + λT(t)

(
f(x, u)− ẋ(t)

)
dt

+ V (x(T)) + νTψ(x(T)).

Note that λ is a function of time, with each λ(t) corresponding to the instantaneous
constraint imposed by the dynamics. The integral over the interval [0, T] plays the
role of the sum of the finite constraints in the regular optimization.

Making use of the definition of the Hamiltonian, the augmented cost becomes

J̃(x(·), u(·), λ(·), ν) =

∫ T

0

(
H(x, u)− λT(t)ẋ

)
dt+ V (x(T)) + νTψ(x(T)).

We can now “linearize” the cost function around the optimal solution x(t) = x∗(t)+
δx(t), u(t) = u∗(t) + δu(t), λ(t) = λ∗(t) + δλ(t) and ν = ν∗+ δν. Taking T as fixed
for simplicity (see [LS95] for the more general case), the incremental cost can be
written as

δJ̃ = J̃(x∗ + δx, u∗ + δu, λ∗ + δλ, ν∗ + δν)− J̃(x∗, u∗, λ∗, ν∗)

≈
∫ T

0

(
∂H

∂x
δx+

∂H

∂u
δu− λTδẋ+

(∂H
∂λ
− ẋT

)
δλ

)
dt

+
∂V

∂x
δx(T) + νT

∂ψ

∂x
δx(T) + δνTψ

(
x(T), u(T)

)
,

where we have omitted the time argument inside the integral and all derivatives
are evaluated along the optimal solution.

We can eliminate the dependence on δẋ using integration by parts:

−
∫ T

0

λTδẋ dt = −λT(T)δx(T) + λT(0)δx(0) +

∫ T

0

λ̇Tδx dt.

Since we are requiring x(0) = x0, the δx(0) term vanishes and substituting this into
δJ̃ yields

δJ̃ ≈
∫ T

0

[(∂H
∂x

+ λ̇T
)
δx+

∂H

∂u
δu+

(∂H
∂λ
− ẋT

)
δλ

]
dt

+
(∂V
∂x

+ νT
∂ψ

∂x
− λT(T)

)
δx(T) + δνTψ

(
x(T), u(T)

)
.

To be optimal, we require δJ̃ = 0 for all δx, δu, δλ and δν, and we obtain the
(local) conditions in the theorem.

3-8 CHAPTER 3. OPTIMAL CONTROL

3.3 Examples

To illustrate the use of the maximum principle, we consider a number of analytical
examples. Additional examples are given in the exercises.

Example 3.2 Scalar linear system
Consider the optimal control problem for the system

ẋ = ax+ bu, (3.3)

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is given,
and a, b ∈ R are positive constants. We wish to find a trajectory (x(t), u(t)) that
minimizes the cost function

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf),

where the terminal time tf is given and c > 0 is a constant. This cost function
balances the final value of the state with the input required to get to that state.

To solve the problem, we define the various elements used in the maximum
principle. Our integral and terminal costs are given by

L = 1
2u

2(t), V = 1
2cx

2(tf).

We write the Hamiltonian of this system and derive the following expressions for
the costate λ:

H = L+ λf = 1
2u

2 + λ(ax+ bu),

λ̇ = −∂H
∂x

= −aλ, λ(tf) =
∂V

∂x
= cx(tf).

This is a final value problem for a linear differential equation in λ and the solution
can be shown to be

λ(t) = cx(tf)e
a(tf−t).

The optimal control is given by

∂H

∂u
= u+ bλ = 0 ⇒ u∗(t) = −bλ(t) = −bcx(tf)e

a(tf−t).

Substituting this control into the dynamics given by equation (3.3) yields a first-
order ODE in x:

ẋ = ax− b2cx(tf)e
a(tf−t).

This can be solved explicitly as

x∗(t) = x(t0)ea(t−t0) +
b2c

2a
x∗(tf)

[
ea(tf−t) − ea(t+tf−2t0)

]
.

Setting t = tf and solving for x(tf) gives

x∗(tf) =
2a ea(tf−t0)x(t0)

2a− b2c
(
1− e2a(tf−t0)

) ,

3.3. EXAMPLES 3-9

and finally we can write

u∗(t) = − 2abc ea(2tf−t0−t)x(t0)

2a− b2c
(
1− e2a(tf−t0)

) , (3.4)

x∗(t) = x(t0)ea(t−t0) +
b2c ea(tf−t0)x(t0)

2a− b2c
(
1− e2a(tf−t0)

) [ea(tf−t) − ea(t+tf−2t0)
]
. (3.5)

We can use the form of this expression to explore how our cost function affects
the optimal trajectory. For example, we can ask what happens to the terminal
state x∗(tf) as c→∞. Setting t = tf in equation (3.5) and taking the limit we find
that

lim
c→∞

x∗(tf) = 0.

∇

Example 3.3 Bang-bang control
The time-optimal control program for a linear system has a particularly simple
solution. Consider a linear system with bounded input

ẋ = Ax+Bu, |u| ≤ 1,

and suppose we wish to minimize the time required to move from an initial state
x0 to a final state xf. Without loss of generality we can take xf = 0. We choose the
cost functions and terminal constraints to satisfy

J =

∫ T

0

1 dt, ψ(x(T)) = x(T).

In this case, the time T is not fixed and so it turns out that one additional condition
is required for the optimal controller. For the case considered in Theorem 3.1, where
the cost functions and constraints do not depend explicitly on time, the additional
condition is

H(x(T), u(T)) = 0

(see [LS95]).
To find the optimal control, we form the Hamiltonian

H = 1 + λT(Ax+Bu) = 1 + (λTA)x+ (λTB)u.

Now apply the conditions in the maximum principle:

ẋ =

(
∂H

∂λ

)T

= Ax+Bu,

−λ̇ =

(
∂H

∂x

)T

= ATλ,

u = arg min H = −sgn(λTB),

1 + λT(T)(Ax(T) +Bu(T)) = 0.

The optimal solution always satisfies this set of equations (since the maximum
principle gives a necessary condition) with x(0) = x0 and x(T) = 0. It follows

3-10 CHAPTER 3. OPTIMAL CONTROL

that the input is always either +1 or −1, depending on λTB. This type of control
is called “bang-bang” control since the input is always on one of its limits. If
λT(t)B = 0 then the control is not well defined, but if this is only true for a specific
time instant (e.g., λT(t)B crosses zero) then the analysis still holds. ∇

3.4 Implementation in Python1

The optimal module of the Python Control Systems Library (python-control) pro-
vides support for optimization-based controllers for nonlinear systems with state
and input constraints.

The optimal control module provides a means of computing optimal trajectories
for nonlinear systems and implementing optimization-based controllers, including
model predictive control (described in Chapter 4). The basic optimal control prob-
lem is to solve the optimization

min
u(·)

∫ T

0

L(x, u) dt+ V
(
x(T)

)
subject to the constraint

ẋ = f(x, u), x ∈ Rn, u ∈ Rm.

Constraints on the states and inputs along the trajectory and at the end of the
trajectory can also be specified:

lbi ≤ gi(x, u) ≤ ubi, i = 1, . . . , k

ψi(x(T)) = 0, i = 1, . . . , q.

The python-control implementation of optimal control follows the basic problem
setup described here, but carries out all computations in discrete time (so that
integrals become sums) and over a finite horizon.

To describe an optimal control problem we need an input/output system, a time
horizon, a cost function, and (optionally) a set of constraints on the state and/or
input, either along the trajectory and at the terminal time. The optimal control
module operates by converting the optimal control problem into a standard opti-
mization problem that can be solved by scipy.optimize.minimize(). The optimal
control problem can be solved by using the solve_ocp() function:

res = ct.optimal.solve_ocp(sys, timepts, X0, cost, constraints)

The sys parameter should be an InputOutputSystem and the timepts parameter
should represent a time vector that gives the list of times at which the cost and
constraints should be evaluated.

The cost function has call signature cost(x, u) and should return the (incre-
mental) cost at the given time, state, and input. It will be evaluated at each point
in the time points vector. The terminal_cost parameter can be used to specify a
cost function for the final point in the trajectory.

The constraints parameter is a list of constraints similar to that used by the
scipy.optimize.minimize() function. Each constraint is in one of the following
forms:

1The material in this section is drawn from [FGM+21].

3.5. LINEAR QUADRATIC REGULATORS 3-11

LinearConstraint(A, lb, ub)

NonlinearConstraint(f, lb, ub)

For a linear constraint, the 2D array A is multiplied by a vector consisting of the
current state x and current input u stacked vertically, then compared with the upper
and lower bound. This constraint is satisfied if

lb <= A @ np.hstack([x, u]) <= ub

A nonlinear constraint is satisfied if

lb <= f(x, u) <= ub

By default, constraints are taken to be trajectory constraints holding at all points
on the trajectory. The terminal_constraint parameter can be used to specify a
constraint that only holds at the final point of the trajectory.

The return value for solve_ocp() is a bundle object that has the following ele-
ments:

res.success: True if solved successfully
res.inputs: optimal input
res.states: state trajectory (if return_x == True)
res.time: copy of the time points vector

In addition, the results from scipy.optimize.minimize() are also available.
Providing a reasonable initial guess is often needed in order for the optimizer

to find a good answer. The initial_guess parameter provides trajectories for the
initial states and/or inputs to use as a guess for the optimal trajectory. The form
of the guess depends on whether the method used to solve the problem is based on
collocation or shooting (see Section 4.2 for more information on these methods).
For collocation methods, the initial guess is either the input vector or a 2-tuple
consisting guesses for the state and the input. For shooting methods, an array of
inputs for each time point should be specified. For an optimal control problem that
uses a terminal condition or a large terminal cost to get to a neighborhood of a
final point, a straight line in the state space often works well.

3.5 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a system, we
can also use optimal control theory to design a feedback law u = α(x) that stabilizes
a given equilibrium point. Roughly speaking, we do this by continuously re-solving
the optimal control problem from our current state x(t) and applying the resulting
input u(t). Of course, this approach is impractical unless we can solve explicitly
for the optimal control and somehow rewrite the optimal control as a function of
the current state in a simple way. In this section we explore exactly this approach
for the linear quadratic optimal control problem.

We begin with the the finite horizon, linear quadratic regulator (LQR) problem,
given by

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rn, x0 given,

J̃ =
1

2

∫ T

0

(
xTQxx+ uTQuu

)
dt+

1

2
xT(T)P1x(T),

3-12 CHAPTER 3. OPTIMAL CONTROL

where Qx ≥ 0, Qu > 0, P1 ≥ 0 are symmetric, positive (semi-) definite matrices.
Note the factor of 1

2 is usually left out, but we included it here to simplify the
derivation (the optimal control will be unchanged if we multiply the entire cost
function by 2).

To find the optimal control, we apply the maximum principle. We begin by
computing the Hamiltonian H:

H =
1

2
xTQxx+

1

2
uTQuu+ λT(Ax+Bu).

Applying the results of Theorem 3.1, we obtain the necessary conditions

ẋ =

(
∂H

∂λ

)T

= Ax+Bu, x(0) = x0,

−λ̇ =

(
∂H

∂x

)T

= Qxx+ATλ, λ(T) = P1x(T),

0 =

(
∂H

∂u

)T

= Quu+BTλ.

(3.6)

The last condition can be solved to obtain the optimal controller

u = −Q−1
u BTλ,

which can be substituted into the dynamic equation (3.6) To solve for the optimal
control we must solve a two point boundary value problem using the initial condition
x(0) and the final condition λ(T). Unfortunately, it is very hard to solve such
problems in general.

Given the linear nature of the dynamics, we attempt to find a solution by setting
λ(t) = P (t)x(t) where P (t) ∈ Rn×n. Substituting this into the necessary condition,
we obtain

λ̇ = Ṗ x+ Pẋ = Ṗ x+ P (Ax−BQ−1
u BTP)x,

=⇒ −Ṗ x− PAx+ PBQ−1
u BPx = Qxx+ATPx.

This equation is satisfied if we can find P (t) such that

− Ṗ = PA+ATP − PBQ−1
u BTP +Qx, P (T) = P1. (3.7)

This is a matrix differential equation that defines the elements of P (t) from a final
value P (T). Solving it is conceptually no different than solving the initial value
problem for vector-valued ordinary differential equations, except that we must solve
for the individual elements of the matrix P (t) backwards in time. Equation (3.7)
is called the Riccati ODE.

An important property of the solution to the optimal control problem when
written in this form is that P (t) can be solved without knowing either x(t) or u(t).
This allows the two point boundary value problem to be separated into first solving
a final-value problem and then solving a time-varying initial value problem. More
specifically, given P (t) satisfying equation (3.7), we can apply the optimal input

u(t) = −Q−1
u BTP (t)x.

3.5. LINEAR QUADRATIC REGULATORS 3-13

and then solve the original dynamics of the system forward in time from the ini-
tial condition x(0) = x0. Note that this is a (time-varying) feedback control that
describes how to optimally move from any state toward the origin in time T .

An important variation of this problem is the case when we choose T =∞ and
eliminate the terminal cost (set P1 = 0). This gives us the cost function

J =

∫ ∞
0

(xTQxx+ uTQuu) dt. (3.8)

Since we do not have a terminal cost, there is no constraint on the final value of λ or,
equivalently, P (T). We can thus seek to find a constant P satisfying equation (3.7).
In other words, we seek to find P such that

PA+ATP − PBQ−1
u BTP +Qx = 0. (3.9)

This equation is called the algebraic Riccati equation. Given a solution, we can
choose our input as

u = −Q−1
u BTPx.

This represents a constant gain K = Q−1
u BTP where P is the solution of the

algebraic Riccati equation.
The implications of this result are interesting and important. First, we notice

that if Qx > 0 and the control law corresponds to a finite minimum of the cost,
then we must have that limt→∞ x(t) = 0, otherwise the cost will be unbounded.
This means that the optimal control for moving from any state x toward the origin
can be achieved by applying a feedback u = −Kx for K chosen as described as
above and letting the system evolve in closed loop. More amazingly, the gain matrix
K can be written in terms of the solution to a (matrix) quadratic equation (3.9).
This quadratic equation can be solved numerically: in python-control the command
K, P, E = ct.lqr(A, B, Qx, Qu) provides the optimal feedback compensatorK, the
solution to the algebraic Riccati equation P , and the closed loop eigenvalues for
the system E.

In deriving the optimal quadratic regulator, we have glossed over a number of
important details. It is clear from the form of the solution that we must have
Qu > 0 since its inverse appears in the solution. We would typically also have
Qx > 0 so that the integral cost is only zero when x = 0, but in some instances
we might only care about certain states, which would imply that Qx ≥ 0. For this
case, if we let Qx = HTH (always possible), our cost function becomes

J =

∫ ∞
0

xTHTHx+ uTQuu dt =

∫ ∞
0

‖Hx‖2 + uTQuu dt.

A technical condition for the optimal solution to exist is that the pair (A,H) be
detectable (implied by observability). This makes sense intuitively by considering
y = Hx as an output. If y is not observable then there may be non-zero initial
conditions that produce no output and so the cost would be zero. This would lead
to an ill-conditioned problem and hence we will require that Qx ≥ 0 satisfy an
appropriate observability condition.

We summarize the main results as a theorem.

3-14 CHAPTER 3. OPTIMAL CONTROL

Theorem 3.2. Consider a linear control system with quadratic cost:

ẋ = Ax+Bu, J =

∫ ∞
0

xTQxx+ uTQuu dt.

Assume that the system defined by (A,B) is reachable, Qx = QT
x ≥ 0 and Qu =

QT
u > 0. Further assume that Qx = HTH and that the linear system with dynamics

matrix A and output matrix H is observable. Then the optimal controller satisfies

u = −Q−1
u BTPx, PA+ATP − PBQ−1

u BTP = −Qx,

and the minimum cost from initial condition x(0) is given by J∗ = xT(0)Px(0).

The basic form of the solution follows from the necessary conditions, with the
theorem asserting that a constant solution exists for T = ∞ when the additional
conditions are satisfied. The full proof can be found in standard texts on optimal
control, such as Lewis and Syrmos [LS95] or Athans and Falb [AF06]. A simplified
version, in which we first assume the optimal control is linear, is left as an exercise.

Example 3.4 Optimal control of a double integrator
Consider a double integrator system

dx

dt
=

[
0 1
0 0

]
x+

[
0
1

]
u

with quadratic cost given by

Qx =

[
q2 0
0 0

]
, Qu = 1.

The optimal control is given by the solution of matrix Riccati equation (3.9). Let
P be a symmetric positive definite matrix of the form

P =

[
a b
b c

]
.

Then the Riccati equation becomes[
−b2 + q2 a− bc
a− bc 2b− c2

]
=

[
0 0
0 0

]
,

which has solution

P =

[√
2q3 q

q
√

2q

]
.

The controller is given by

K = Q−1
u BTP = [q

√
2q].

The feedback law minimizing the given cost function is then u = −Kx.
To better understand the structure of the optimal solution, we examine the

eigenstructure of the closed loop system. The closed-loop dynamics matrix is given
by

Acl = A−BK =

[
0 1
−q −

√
2q

]
.

3.6. CHOOSING LQR WEIGHTS 3-15

The characteristic polynomial of this matrix is

λ2 +
√

2qλ+ q.

Comparing this to λ2 + 2ζω0λ+ ω2
0 , we see that

ω0 =
√
q, ζ =

1√
2
.

Thus the optimal controller gives a closed loop system with damping ratio ζ = 0.707,
giving a good tradeoff between rise time and overshoot (see FBS2e). ∇

3.6 Choosing LQR weights

One of the key questions in LQR design is how to choose the weights Qx and Qu.
To choose specific values for the cost function weights Qx and Qu, we must use our
knowledge of the system we are trying to control. A particularly simple choice is
to use diagonal weights

Qx =

q1 0
. . .

0 qn

 , Qu =

ρ1 0
. . .

0 ρn

 .
For this choice of Qx and Qu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through
choice of the corresponding input weight ρj .

Choosing the individual weights for the (diagonal) elements of the Qx and Qu
matrix can be done by deciding on a weighting of the errors from the individual
terms. Bryson and Ho [BH75] have suggested the following method for choosing
the matrices Qx and Qu in equation (3.8): (1) choose qi and ρj as the inverse of
the square of the maximum value for the corresponding xi or uj ; (2) modify the
elements to obtain a compromise among response time, damping, and control effort.
This second step can be performed by trial and error.

It is also possible to choose the weights such that only a given subset of variable
are considered in the cost function. Let z = Hx be the output we want to keep
small and verify that (A,H) is observable. Then we can use a cost function of the
form

Qx = HTH Qu = ρI.

The constant ρ allows us to trade off ‖z‖2 versus ρ‖u‖2.
We illustrate the various choices through an example application.

Example 3.5 Thrust vectored aircraft
Consider the thrust vectored aircraft example introduced in FBS2e, Example 3.12.
The system is shown in Figure 3.3, reproduced from FBS2e. The linear quadratic
regulator problem was illustrated in FBS2e 2e, Example 7.9, where the weights
were chosen as Qx = I and Qu = ρI. Figure 3.4 reproduces the step response

3-16 CHAPTER 3. OPTIMAL CONTROL

(a) Harrier “jump jet”

y

θ

F1

F2

r

x

(b) Simplified model

Figure 3.3: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F1 and a vertical force F2 acting at a distance r from the center of mass.

for this case, but using the full nonlinear, multi-input/multi-output model for the
system.

A more physically motivated weighted can be computing by specifying the com-
parable errors in each of the states and adjusting the weights accordingly. Suppose,
for example that we consider a 1 cm error in x, a 10 cm error in y and a 5◦ error in θ
to be equivalently bad. In addition, we wish to penalize the forces in the sidewards
direction (F1) since these result in a loss in efficiency. This can be accounted for in
the LQR weights be choosing

Qx =


100 0 0 0 0 0
0 10 0 0 0 0
0 0 36/π 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Qu =

[
10 0
0 1

]
.

The results of this choice of weights are shown in Figure 3.5. ∇

3.7 Advanced Topics

In this section we briefly touch on some related topics in optimal control, with
reference to more detailed treatments where appropriate.

Dynamic programming

An alternative formulation to the optimal control problem is to make use of the
“principle of optimality”, which states (roughly) that if we are given an optimal

3.7. ADVANCED TOPICS 3-17

0.0 2.5 5.0 7.5 10.0
Time t [s]

0.0

0.5

1.0

Po
si

tio
n
x

, y
 [m

]
x

y

(a) Step response in x and y

0.0 2.5 5.0 7.5 10.0
Time t [s]

0.0

0.5

1.0

Po
si

tio
n
x

, y
 [m

]

ρ

(b) Effect of control weight ρ

Figure 3.4: Step response for a vectored thrust aircraft. The plot in (a) shows
the x and y positions of the aircraft when it is commanded to move 1 m in each
direction. In (b) the x motion is shown for control weights ρ = 1, 102, 104. A higher
weight of the input term in the cost function causes a more sluggish response.

0.0 2.5 5.0 7.5 10.0
Time t [s]

0.0

0.5

1.0

Po
si

tio
n
x

, y
 [m

]

x

y

(a) Step response in x and y

0.0 2.5 5.0 7.5 10.0
Time t [s]

2

0

2
In

pu
ts
u1

u2

(b) Inputs for the step response

Figure 3.5: Step response for a vector thrust aircraft using physically motivated
LQR weights (a). The rise time for x is much faster than in Figure 3.4a, but there
is a small oscillation and the inputs required are quite large (b).

policy, then the optimal policy from any point along the implementation of that
policy must also be optimal. In the context of optimal trajectory generation, we can
interpret this as saying that if we solve an optimal control problem from any state
along an optimal trajectory, we will get the remainder of the optimal trajectory
(how could it be otherwise!?).

The implication of this statement for trajectory generation is that we can work
from the final time of our optimal control problem and compute the cost by moving
backwards in time until we reach the initial time. Toward this end, we define the
“cost to go” from a given state x at time t as

J(x, t) =

∫ T

t

L(x(τ), u(τ)) dτ + V (x(T)). (3.10)

Given a state x(t), We see that the cost at time T is given by J(T, x) = V (x(T))
and the cost at other times includes the integral of the cost from time t to T plus
the terminal cost.

3-18 CHAPTER 3. OPTIMAL CONTROL

It can be shown that a necessary condition for a trajectory x(·), u(·) to be
optimal is that the Hamilton-Jacobi-Bellman equation (HJB equation) be satisfied:

∂J∗

∂t
(x, t) = −H(x, u∗,

∂J∗T

∂x
(x, t)), J(x, T) = V (x), (3.11)

where H is the Hamiltonian function, u∗ is the optimal input, and V : Rn → R
is the terminal cost. As in the case of the maximum principle, we choose u∗ to
minimize the Hamiltonian:

u∗ = arg min
u

H
(
x∗, u,

∂J∗T

∂x
(x∗, u)

)
.

Equation (3.11) is a partial differential equation for J(x, t) with boundary condition
J(x, T) = V (x).

From the form of the Hamilton-Jacobi-Bellman equation, we see that we can
interpret the costate variables λ as

λT =
∂J∗

∂x
(x, t).

Thus the costate variables can be thought of as the sensitivity of the cost to go at
a given point along the optimal trajectory. This interpretation allows some alter-
native formulations of the optimal control problem, as well as additional insights.

While solving the Hamilton-Jacobi-Bellman equation is not particularly easy in
the continuous case, it turns out that discrete version of the problem can make good
use of the principle of optimality. In particular, for problems with variables that
take on a sequence of values from a finite set (known as discrete-decision making
problems), we can compute the optimal set of decisions by starting with the cost
at the end of the sequence and then computing the values of the optimized cost
stepping backwards in time. This technique is known as dynamic programming and
arises in a number of different applications in computer science, economics, and
other areas.

Detailed explanations of dynamic programming formulations of optimal control
are available in a wide variety of textbooks. The online notes from Daniel Liberzon
are a good open source resource for this material:

http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html

Chapter 5 in those notes provides a more detailed explanation of the material briefly
summarized here.

Integral action

Controllers based on state feedback achieve the correct steady-state response to
command signals by having a good model of the system that can generate the
proper feedforward signal ud. However, if the model is incorrect or disturbances
are present, there may be steady state errors. Integral feedback is a classic technique
for achieving zero steady state output error in the presence of constant disturbances
or errors in the feedforward signal.

http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html

3.7. ADVANCED TOPICS 3-19

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z,
which is the integral of the difference between the the actual output y = h(x) and
desired output yd = h(xd). The augmented state equations become

dξ

dt
=

d

dt

[
x
z

]
=

[
f(x, u)

h(x)− h(xd)

]
=: F (ξ, u, xd). (3.12)

We can now design a feedback compensator (such as an LQR controller) that sta-
bilizes the system to the desired trajectory ξd = (xd, 0), which will cause y to
approach h(xd) in steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u = ud −K(ξ − ξd) = ud −K
[
x− xd

z

]
, (3.13)

where K is state feedback term for the augmented system (3.12).
Integral action can be included in the python-control create_statefbk_iosystem

function using the integral_action keyword. The value of this keyword can either
be an matrix (2D array) or a function. If a matrix C is specified, the difference
between the desired state and system state will be multiplied by this matrix and
integrated. The controller gain should then consist of a set of proportional gains
Kp and integral gains Ki with

K =

[
Kp

Ki

]
.

If integral_action is a function h, that function will be called with the signature
h(t, x, u, params) to obtain the outputs whose error should be integrated. The
number of output errors that are to be integrated must match the number of addi-
tional columns in the K matrix. If an estimator is specified, x̂ will be used in place
of x. Gain scheduling can also be used, as described in Section 2.4.

Singular extremals

The necessary conditions in the maximum principle enforce the constraints through
the of the Lagrange multipliers λ(t). In some instances, we can get an extremal
curve that has one or more of the λ’s identically equal to zero. This corresponds
to a situation in which the constraint is satisfied strictly through the minimization
of the cost function and does not need to be explicitly enforced. We illustrate this
case through an example.

Example 3.6 Nonholonomic integrator
Consider the minimum time optimization problem for the nonholonomic integrator
introduced in Example 2.2 with input constraints |ui| ≤ 1. The Hamiltonian for
the system is given by

H = 1 + λ1u1 + λ2u2 + λ3x2u1,

3-20 CHAPTER 3. OPTIMAL CONTROL

and the resulting equations for the Lagrange multipliers are

λ̇1 = 0, λ̇2 = λ3x2, λ̇3 = 0. (3.14)

It follows from these equations that λ1 and λ3 are constant. To find the input u
corresponding to the extremal curves, we see from the Hamiltonian that

u1 = −sgn(λ1 + λ3x2u1), u2 = −sgnλ2.

These equations are well-defined as long as the arguments of sgn(·) are non-zero
and we get switching of the inputs when the arguments pass through 0.

An example of an abnormal extremal is the optimal trajectory between x0 =
(0, 0, 0) to xf = (ρ, 0, 0) where ρ > 0. The minimum time trajectory is clearly given
by moving on a straight line with u1 = 1 and u2 = 0. This extremal satisfies the
necessary conditions but with λ2 ≡ 0, so that the “constraint” that ẋ2 = u2 is not
strictly enforced through the Lagrange multipliers. ∇

3.8 Further Reading

There are a number of excellent books on optimal control. One of the first (and
best) is the book by Pontryagin et al. [PBGM62]. During the 1960s and 1970s a
number of additional books were written that provided many examples and served
as standard textbooks in optimal control classes. Athans and Falb [AF06] and
Bryson and Ho [BH75] are two such texts. A very elegant treatment of optimal
control from the point of view of optimization over general linear spaces is given by
Luenberger [Lue97]. A modern engineering textbook that contains a very compact
and concise derivation of the key results in optimal control is the book by Lewis,
Vrabie, and Syrmos [LVS12]. Finally, the online (and open access) notes by Daniel
Liberzon [Lib10] provide detailed coverage of all of the topics in this chapter.

Exercises

3.1. (a) Let G1, G2, . . . , Gk be a set of row vectors on Rn. Let F be another row
vector on Rn such that for every x ∈ Rn satisfying Gix = 0, i = 1, . . . , k, we have
Fx = 0. Show that there are constants λ1, λ2, . . . , λk such that

F =

k∑
i=1

λiGi.

(b) Let x∗ ∈ Rn be an the extremal point (maximum or minimum) of a function f
subject to the constraints gi(x) = 0, i = 1, . . . , k. Define a new function

f̃(x, λ) = f(x) +

k∑
i=1

λigi(x).

Assuming that the gradients ∂gi(x
∗)/∂x are linearly independent, show that there

are k scalars λi, i = 1, . . . , k such that x∗ is the (unconstrained) extremal of f̃(x, λ).

3.8. FURTHER READING 3-21

3.2. Consider the following control system

q̇ = u

Ẏ = quT − uqT

where u ∈ Rm and Y ∈ Rm×m is a skew symmetric matrix, Y T = Y .

(a) For the fixed end point problem, derive the form of the optimal controller
minimizing the following integral

1

2

∫ 1

0

uTu dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =

 0 −y3 y2

y3 0 −y1

−y2 y1 0


for some y ∈ R3, give an explicit formula for the optimal inputs u.

(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ) ∈ Rm ×
Rm×m where Ỹ T = −Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

3.3. In this problem, you will use the maximum principle to show that the shortest
path between two points is a straight line. We model the problem by constructing
a control system

ẋ = u,

where x ∈ R2 is the position in the plane and u ∈ R2 is the velocity vector along
the curve. Suppose we wish to find a curve of minimal length connecting x(0) = x0

and x(1) = xf . To minimize the length, we minimize the integral of the velocity
along the curve,

J =

∫ 1

0

‖ẋ‖ dt =

∫ 1

0

√
ẋTẋ dt,

subject to to the initial and final state constraints. Use the maximum principle to
show that the minimal length path is a straight line.

3.4. Consider the optimal control problem for the system

ẋ = −ax+ bu,

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is given,
and a, b ∈ R are positive constants. (Note that this system is not quite the same
as the one in Example 3.2.) The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf),

where the terminal time tf is given and c is a constant.

3-22 CHAPTER 3. OPTIMAL CONTROL

(a) Solve explicitly for the optimal control u∗(t) and the corresponding state x∗(t)
in terms of t0, tf, x(t0) and t and describe what happens to the terminal state x∗(tf)
as c→∞.

Hint: Once you have u∗(t), you can use the convolution equation to solve for the
optimal state x∗(t).

(b) Let a = 1, b = 1, c = 1, and tf − t0 = 1. Solve the optimal control problem
numerically using python-control (or MATLAB) and compare it to your analytical
solution by plotting the state and input trajectories for each solution. Take the
initial conditions as x(t0) = 1, 5, and 10.

(c) Suppose that we wish to have the final state be exactly zero. Change the
optimization problem to impose a final constraint instead of a final cost. Solve the
fixed endpoint, optimal control problem using python-control (or MATLAB), plot
the state and input trajectories for the initial conditions in 0b, and compare the
computation times for each approach

(d) Show that the system is differentially flat with appropriate choice of output(s)
and compute the state and input as a function of the flat output(s).

(e) Using the polynomial basis {tk, k = 0, . . . ,M − 1} with an appropriate choice
of M , solve for the (non-optimal) trajectory between x(t0) and x(tf). Your answer
should specify the explicit input ud(t) and state xd(t) in terms of t0, tf, x(t0), x(tf)
and t.

(f) Using the same parameters and initial conditions as in part 0b, compute a
flatness-based trajectory between an initial condition x0 and xf = 0. Plot the state
and input trajectories for each solution.

(g) Suppose that we choose more than the minimal number of basis functions for
the differentially flat output. Show how to use the additional degrees of freedom
to minimize the cost of the flat trajectory and demonstrate (numerically) that you
can obtain a cost that is closer to the optimal.

3.5. Repeat Exercise 3.4 using the system

ẋ = −ax3 + bu.

For part (a) you need only write the conditions for the optimal cost.

3.6. Consider the problem of moving a two-wheeled mobile robot (e.g., a Segway)
from one position and orientation to another. The dynamics for the system is given
by the nonlinear differential equation

ẋ = cos θ v, ẏ = sin θ v, θ̇ = ω,

where (x, y) is the position of the rear wheels, θ is the angle of the robot with
respect to the x axis, v is the forward velocity of the robot and ω is spinning rate.
We wish to choose an input (v, ω) that minimizes the time that it takes to move
between two configurations (x0, y0, θ0) and (xf , yf , θf), subject to input constraints
|v| ≤ L and |ω| ≤M .

3.8. FURTHER READING 3-23

Use the maximum principle to show that any optimal trajectory consists of
segments in which the robot is traveling at maximum velocity in either the forward
or reverse direction, and going either straight, hard left (ω = −M) or hard right
(ω = +M).

Note: one of the cases is a bit tricky and cannot be completely proven with the
tools we have learned so far. However, you should be able to show the other cases
and verify that the tricky case is possible.

3.7. Consider a linear system with input u and output y and suppose we wish to
minimize the quadratic cost function

J =

∫ ∞
0

(
yTy + ρuTu

)
dt.

Show that if the corresponding linear system is observable, then the closed loop
system obtained by using the optimal feedback u = −Kx is guaranteed to be stable.

3.8. Consider the system transfer function

H(s) =
s+ b

s(s+ a)
, a, b > 0

with state space representation

ẋ =

[
0 1
0 −a

]
x+

[
0
1

]
u,

y =
[
b 1

]
x

and performance criterion

V =

∫ ∞
0

(x2
1 + u2)dt.

(a) Let

P =

[
p11 p12

p21 p22

]
,

with p12 = p21 and P > 0 (positive definite). Write the steady state Riccati
equation as a system of four explicit equations in terms of the elements of P and
the constants a and b.

(b) Find the gains for the optimal controller assuming the full state is available for
feedback.

3.9. Consider the optimal control problem for the system

ẋ = ax+ bu J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is given, and
a, b ∈ R are positive constants. We take the terminal time tf as given and let c > 0
be a constant that balances the final value of the state with the input required to
get to that position. The optimal trajectory is derived in Example 3.2.

3-24 CHAPTER 3. OPTIMAL CONTROL

Now consider the infinite horizon cost

J = 1
2

∫ ∞
t0

u2(t) dt

with x(t) at t =∞ constrained to be zero.

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution corresponding
to the algebraic Riccati equation. Note that this gives an explicit feedback law
(u = −bPx).

3.10. Consider a linear system of the form

dx

dt
=

[
0 2
−1 −0.1

]
x+

[
0
1

]
(u+ d)

where d is a disturbance input.

(a) Design an LQR controller for the system that regulates the system to a desired
equilibrium point xd = (1, 0), assuming no disturbance (d = 0). Plot the response
of the system starting from an initial condition x(0) = (0, 0) and show that the
system response converges to the desired equilibrium point.

(b) Assume now that d = 0.1. Show that the system response with your LQR
controller from part (a) no longer converges to the desired equilibrium point and
construct a controller using integral action that recovers the ability to drive the
system state to that point.

(c) Suppose that there is uncertainty in the input matrix, so that the B matrix
becomes

B =

[
0
γ

]
, 0.5 ≤ γ ≤ 2.

Show that the uncertain system response with your original LQR controller no
longer converges to the desired equilibrium (even with d = 0), but that the controller
with integral action still causes the system to converge to the desired equilibrium.
(OK to just show this for γ = 0.5 and 2.)

3.11. Consider the lateral control problem for an autonomous ground vehicle from
Example 2.1. We assume that we are given a reference trajectory r = (xd, yd)
corresponding to the desired trajectory of the vehicle. For simplicity, we will assume
that we wish to follow a straight line in the x direction at a constant velocity vd > 0
and hence we focus on the y and θ dynamics:

ẏ = sin θ vd, θ̇ =
1

l
tan δ vd.

We let vd = 10 m/s and l = 2 m.

(a) Design an LQR controller that stabilizes the position y to yd = 0. Plot the
step and frequency response for your controller and determine the overshoot, rise
time, bandwidth and phase margin for your design. (Hint: for the frequency domain
specifications, break the loop just before the process dynamics and use the resulting
SISO loop transfer function.)

3.8. FURTHER READING 3-25

(b) Suppose now that yd(t) is not identically zero, but is instead given by yd(t) =
r(t). Modify your control law so that you track r(t) and demonstrate the perfor-
mance of your controller on a “slalom course” given by a sinusoidal trajectory with
magnitude 1 meter and frequency 1 Hz.

3.12. Consider the dynamics of the vectored thrust aircraft described in Exam-
ples 2.4 and 3.5. The equations of motion are given by

mẍ = F1 cos θ − F2 sin θ − cẋ,
mÿ = F1 sin θ + F2 cos θ − cẏ −mg,
Jθ̈ = rF1.

(3.15)

with parameter values

m = 4 kg, J = 0.0475 kg m2, r = 0.25 m, g = 9.8 m/s2, c = 0.05 Ns/m,

which corresponds roughly to the values for the Caltech ducted fan flight control
testbed.

We wish to generate an optimal trajectory for the system that corresponds to
moving the system for an initial hovering position to a hovering position one meter
to the right (xf = x0 + 1).

For each of the parts below, you should solve for the optimal input, simulate
the (open loop) system, and plot the xy trajectory of the system, along with the
angle θ and inputs F1 and F2 over the time interval. In addition, create a time and
record the following information for each approach:

• the computation time required;

• the final position (for the open loop system);

• the weighted integrated cost of the input along the trajectory:∫ T

0

(
10F 2

1 (τ) + (F2 −mg)2(τ)
)
dτ. (3.16)

(a) Solve for an optimal trajectory using a quadratic cost from the final point with
weights

Qx = diag([1, 1, 10, 0, 0, 0]), Qu = diag([10, 1]).

This cost function attempts to minimize the angular deviation θ and the sideways
force F1.

(b) Re-solve the problem using Bezier curves as the basis functions for the inputs.
This should give you smoother inputs and a nicer response.

(c) Re-solve the problem using a terminal cost V (x(T)) = x(T)TP1x(T) to try to
get the system closer to the final value. You should try adjusting the cost along
the trajectory Qx versus the terminal cost P1 to minimize the weighted integrated
cost (3.16).

3-26 CHAPTER 3. OPTIMAL CONTROL

(d) Re-solve the problem using a terminal constraint to try to get the system closer
to the final value. Adjust the cost along the trajectory to try to minimize the cost in
equation (3.16). (Hint: you may have to use an initial guess to get the optimization
to converge.)

(e) If c = 0, it can be shown that this system is differentially flat (see Example 2.4).
Setting c = 0, re-solve the optimization problem using differential flatness. (The
flatness mappings can be found in the file pvtol.py, available on the companion
website.)

pvtol.py

Chapter 4

Receding Horizon Control

This chapter builds on the previous two chapters and explores the use of online
optimization as a tool for control of nonlinear systems. We begin with a discussion
of the technique of receding horizon control (RHC), which builds on the ideas of
trajectory generation and optimization. We focus on a particular form of receding
horizon control that makes use of a control Lyapunov function as a terminal cost, for
which there are good stability and performance properties, and include a (optional)
proof of stability. Methods for implementing receding horizon control, making
use of numerical optimization possibly combined with differential flatness, are also
provided. We conclude the chapter with a detailed design example, in which we
explore some of the computational tradeoffs in optimization-based control as applied
to a flight control experiment.

Prerequisites. Readers should be familiar with the concepts of trajectory generation
and optimal control as described in Chapters 2 and 3 in this supplement. For the
proof of stability for the receding horizon controller that we present, familiarity with
Lyapunov stability analysis at the level given in FBS2e, Chapter 5 is assumed (but
this material can be skipped if the reader is not familiar with Lyapunov stability
analysis).

The material in this chapter is based in part on joint work with John Hauser, Ali
Jadbabaie, Mark Milam, Nicolas Petit, William Dunbar, and Ryan Franz [MHJ+03].

4.1 Overview

The use of real-time trajectory generation techniques enables a sophisticated ap-
proach to the design of control systems, especially those in which constraints must
be taken into account. The ability to compute feasible trajectories quickly enables
us to make use of online computation of trajectories as an “outer feedback” loop
that can be used to take into account nonlinear dynamics, input constraints, and
more complex descriptions of performance goals.

Figure 4.1, a version of which was shown already in Chapter 2, provides a high
level view of how real-time trajectory generation can be utilized. The dashed line
from the output of the process to the trajectory generation block represents the use

4-1

4-2 CHAPTER 4. RECEDING HORIZON CONTROL

Nonlinear design:
global nonlinearities

state space constraints
input saturation

ud

xd

ref

ufb

Process

P
outputnoise

Feedback

Compensation

Trajectory

Generation

∆

Figure 4.1: Two degree-of-freedom controller design for a process P with uncer-
tainty ∆. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block ∆, representing unmodeled dynamics, as well as dis-
turbances and noise.

of “on-the-fly” computation of the trajectory based on the current outputs of the
process. This dynamically generated trajectory is then fed to the more traditional
feedback controller. This same type of structure can also be seen in Figure 1.6,
where the trajectory generation “layer” can make use of current measurements
of the environment, as well as an online model of the process and upper level
(supervisory controller) commands for the task to be accomplished.

The approach that we explore in this chapter is to make use of receding horizon
control: a (optimal) feasible trajectory is computed from the current state to the
desired state over a finite time horizon T , used for a short period of time ∆T < T ,
and then recomputed based on the new system state starting at time t+ ∆T until
time t+T +∆T , as shown in Figure 4.2. As in the case of trajectory generation, we
will normally compute the optimal trajectory assuming no process disturbances d,
sensor noise n, or uncertainty ∆, relying on the feedback controller to compensate
for those effects.

For the techniques that we will consider here, the problem that we solve at each
time step ti is a constrained, optimal trajectory generation problem of the form

u[ti,ti+∆T] = arg min
(x,u)

∫ ti+T

ti

L(x, u) dτ + V (x(ti + T))

subject to

x(ti) = current state

ẋ = f(x, u)

gj(x, u) ≤ 0, j = 1, . . . , r,

ψk(x(ti + T)) = 0, k = 1, . . . , q.

(4.1)

4.1. OVERVIEW 4-3

Figure 4.2: Receding horizon control. Every ∆T seconds, a trajectory generation
problem is solved over a T second horizon, starting from the current state. In
reality, the system will not follow the predicted path exactly, so that the red
(computed) and blue (actual) trajectories will diverge. We then recompute the
optimal path from the new state at time t + ∆T , extending our horizon by an
additional ∆T units of time.

We note that the cost consists of a trajectory cost L(x, u) as well as an end-of-
horizon (terminal) cost V (x(t + T)). In addition, we allow for the possibility of
trajectory constraints on the states and inputs given by a set of functions gj(x, u)
and a set of terminal constraints given by ψk(x(t+ T)).

One of the challenges of properly implementing receding horizon control is that
instabilities can result if the problem is not specified correctly. In particular, be-
cause we optimize the system dynamics over a finite horizon T , it can happen that
choosing the optimal short term behavior can lead us away from the long term
solution (see Exercise 4.4 for an example). To address this problem, the terminal
cost V (x(t + T)) and/or the terminal constraints ψk(x(t + T)) must have certain
properties to ensure stability (see [MRRS00] for details). In this chapter we focus
on the use of terminal costs since these have certain advantages in terms of the
underlying optimization problem to be solved.

Development and application of receding horizon control (also called model pre-
dictive control, or MPC) originated in process control industries where the processes
being controlled are often sufficiently slow to permit its implementation with only
modest computational resources. The rapid advances in computation over the last
several decades have enabled receding horizon control to be used in many new
applications, and they are especially prevalent in autonomous vehicles, where the
trajectory generation layer is particularly important for achieving safe operation in
complex environments. Proper formulation of the problem to enable rapid compu-
tation is still often required, and the use of differential flatness and other techniques
(such as motion primitives) can be very important.

Finally, we note that it is often the case that the trajectory generation problems
to be solved may have non-unique or non-smooth solutions, and that these can often
be very sensitive to small changes in the inputs to the algorithm. Full implementa-
tion of receding horizon control techniques thus often requires careful attention to
details in how the problems are solved and the use of additional methods to ensure
that good solutions are obtained in specific application scenarios. Despite all of

4-4 CHAPTER 4. RECEDING HORIZON CONTROL

these warnings, receding horizon control is one of the dominant methods used for
control of nonlinear systems and one of the few methods that works in the presence
of input (and state) constraints, leading to its wide popularity.

4.2 Receding Horizon Control with Terminal Cost

One of the earliest techniques for ensuring stability of the closed loop system under
receding horizon control was to impose a terminal constraint on the optimization
through use of the function ψ(x(t + T)) in equation (4.1). While this technique
can be shown to be sound from a theoretical point of view, it can be very difficult
to satisfy from a computational point of view, since imposing equality constraints
on the terminal state of a trajectory generation problem can be computationally
expensive. In this section we explore an alternative formulation, making use of an
appropriate terminal cost function.

Stability of Receding Horizon Control using Terminal Costs

We consider the following special case of receding horizon control problem in equa-
tion (4.1):

ẋ = f(x, u), x(0) given, u ∈ U ⊂ Rm

u[t,t+∆T] = arg min
(x,u)

∫ t+T

t

L(x, u) dτ + V (x(t+ T)).
(4.2)

The main differences between equation (4.2) and equation (4.1) are that we only
consider constraints on the input (u ∈ U) and we do not impose any terminal
constraints.

Stability of this system is not guaranteed in general, but if we choose the tra-
jectory and terminal cost functions carefully, it is possible to provide stability guar-
antees.

To illustrate how the choice of the terminal condition can provide stability,
consider the case where we have an infinite horizon optimal control problem. If we
start at state x at time t, we can seek to minimize the “cost to go” function

J(t, x) =

∫ ∞
t

L(x, u) dt.

If we let J∗(x, t) represent the optimal cost to go function, then a natural choice
for the terminal cost is V (x(t+T)) = J∗(x(t+T), T), since then the optimal finite
and infinite horizon costs are the same:

min

∫ ∞
t

L(x, u) dτ =

∫ t+T

t

L(x∗, u∗) dt+

∫ ∞
t+T

L(x∗, u∗) dt

=

∫ t+T

t

L(x∗, u∗) dt+ J∗(t+ T, x∗)︸ ︷︷ ︸
V (x∗(t+T))

.

Intuitively, if we solve the infinite horizon problem at each update ∆T and ∆T is
sufficiently small, then we anticipate that the system trajectory should converge

4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-5

to the optimal trajectory, and hence to the origin (otherwise the cost would not
converge to a finite value, assuming Qx > 0).

Of course, if the optimal value function were available there would be no need
to solve a trajectory optimization problem, since we could just use the gradient of
the cost function to choose the input u. Only in special cases (such as the linear
quadratic regulator problem) can the infinite horizon optimal control problem be
solved in closed form, and we thus seek to find a simpler set of conditions under
which we can guarantee stability of closed loop, receding horizon controller. The
following theorem summarizes on such set of conditions:

Theorem 4.1 (based on [JYH01]). Consider the receding horizon control problem
in equation (4.2) and suppose that the trajectory cost L(x, u) and terminal cost
V (x(t+ T)) satisfy

min
u∈U

(
∂V

∂x
f(x, u) + L(x, u)

)
≤ 0 (4.3)

for all x in a neighborhood of the origin. Then, for every T > 0 and ∆T ∈ (0, T],
there exist constants M > 0 and c > 0 such that the resulting receding horizon
trajectories converge to 0 exponentially fast:

‖x(t)‖ ≤Me−ct‖x(0)‖.

Before providing more insights into when these conditions can be satisfied, it is
useful to take think about the implications of Theorem 4.1. In particular, it provides
us a method for defining a stabilizing feedback controller for a fully nonlinear system
in the presence of input constraints. This latter feature is particularly important,
since it turns out that input constraints are ubiquitous in control systems and must
other methods, including LQR and gain scheduling, are not able to take them into
account in a systematic and rigorous way. It is because of this ability to handle
constraints that receding horizon control is so widely used.

Control Lyapunov Functions �

To provide insight into the conditions in Theorem 4.1, we need to define the concept
of a control Lyapunov function. The material in this subsection is rather advanced
in nature and can be skipped on first reading. Readers should be familiar with
(regular) Lyapunov stability analysis at the level given in FBS2e, Chapter 5 prior
to tackling the concepts in this section.

Control Lyapunov functions are an extension of standard Lyapunov functions
and were originally introduced by Sontag [Son83]. They allow constructive design
of nonlinear controllers and the Lyapunov function that proves their stability. We
give a brief description of the basic idea of control Lyapunov functions here; a more
complete treatment is given in [KKK95].

Consider a nonlinear control system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm, (4.4)

and recall that a function V (x) is a positive definite function if V (x) ≥ 0 for all
x ∈ Rn and V (x) = 0 if and only if x = 0. A function V (x) is locally positive definite
if it is positive definite on a ball of radius ε around the origin, Bε(0) = {x : ‖x‖ < ε}.

4-6 CHAPTER 4. RECEDING HORIZON CONTROL

Definition 4.1 (Control Lyapunov Function). A locally positive function V : Rn →
R+ is called a control Lyapunov function (CLF) for a control system (4.4) if

inf
u∈Rm

(
∂V

∂x
f(x, u)

)
< 0 for all x 6= 0.

Intuitively, a control Lyapunov function is a positive definite function for which
it is always possible to choose an input u that makes the function decrease if we
apply that input to the control system (4.4). Since the function V is positive
definite, if we always choose a u that makes it decrease then eventually the value
of the Lyapunov function must converge to 0 and hence the state x(t) must also
converge to zero. It turns out that this property is enough to show that the system
is stabilizable using continuous (though not necessarily linear) feedback laws of the
form u = −k(x).

In general, it is difficult to find a control Lyapunov function for a given system.
However, for many classes of systems, there are specialized methods that can be
used. One of the simplest is to use the Jacobian linearization of the system around
the desired equilibrium point and generate a control Lyapunov function by solving
an LQR problem. To see how this works, we consider first the case of a linear
system with quadratic cost function.

As described in Chapter 3, the problem of minimizing the quadratic performance
index

J =

∫ ∞
0

(xT(t)Qxx(t) + uT(t)Quu(t)) dt subject to
ẋ = Ax+Bu,

x(0) = x0,
(4.5)

results in finding the positive definite solution of the following Riccati equation:

ATP + PA− PBR−1BTP +Q = 0. (4.6)

The optimal control action is given by

u∗ = −R−1BTPx

and V = xTPx is a control Lyapunov function for the system since it can be shown
(with a bit of algebra) that

min
u

∂V

∂x
f(x, u) ≤ ∂V

∂x
f(x, u∗) = −xT(Qx + PBQ−1

u BTP)x ≤ 0.

In the case of the nonlinear system ẋ = f(x, u), A and B are taken as

A =
∂f(x, u)

∂x

∣∣∣∣
(0,0)

B =
∂f(x, u)

∂u

∣∣∣∣
(0,0)

where the pairs (A,B) and (Q
1
2
x , A) are assumed to be stabilizable and detectable

respectively. The control Lyapunov function V (x) = xTPx is valid in a region
around the equilibrium (0, 0), as shown in Exercise 4.1.

More complicated methods for finding control Lyapunov functions are often
required and many techniques have been developed. An overview of some of these
methods can be found in [Jad01].

4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-7

Solving Receding Horizon Optimal Control Problems

We now return to the problem of implementing the receding horizon controller in
equation (4.3). As illustrated in Figure 4.2, at every time instant ti we compute
the optimal trajectory that minimizes the cost function

J(x, t) =

∫ t+T

t

L(x, u) dτ + V (x(t+ T))

subject to the satisfying the equations of motion with constrained inputs:

ẋ = f(x, u), u ∈ U ⊂ Rm.

This is precisely the optimal control problem that we considered in Chapter 3 and
so the numerical methods used in that chapter can be utilized.

One conceptually simple way to implement the optimization required to solve
this optimal control problem is to parameterize the inputs of the system u, either by
setting the values of u at discrete time points or by choosing a set of basis functions
for u and searching over linear combinations of the basis functions. These methods
are often referred to as “shooting” methods, since they integrate (“shoot”) the
equations forward in time and then attempt to compute the changes in parameter
values to allow the system to minimize the cost and satisfy any constraints. While
crude, this approach does work for simple systems and can be used to gain insights
into the properties of a receding horizon controller based on simulations (where
real-time computation is not needed).

Example 4.1 Double integrator with bounded input
To illustrate the implementation of a receding horizon controller, we consider a
linear system corresponding to a double integrator with bounded input:

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
clip(u) where clip(u) =


−1 u < −1,

u −1 ≤ u ≤ 1,

1 u > 1.

We implement a model predictive controller by choosing

Qx =

[
1 0
0 0

]
, Qu =

[
1
]
, P1 =

[
0.1 0
0 0.1

]
.

Figure 4.3 shows the results of this computation, with the inputs plotted for the
planning horizon, showing that the final computed input differs from the planned
inputs over the horizon. (The code for computing these solutions is given in Sec-
tion 4.3.) ∇

Implementing receding horizon control for realistic problems requires care in
formulating the optimization optimization so that it can be done in real-time. For
example, for a typical autonomous vehicle (land, air, or sea), a reasonable opti-
mization horizon might be the next 10-60 s and a typical update period might be
as short as 10-100 ms. There are a variety of methods for speeding up computa-
tions, as well as taking into account finite computation times. Some of these are

4-8 CHAPTER 4. RECEDING HORIZON CONTROL

0 2 4 6 8 10
Time t [sec]

4

2

0

2

St
at

e
x

1
, i

np
ut

 u

x1
u
prediction

Figure 4.3: Receding horizon controller for a double integrator. Dashed lines
show the planned trajectory over each horizon; solid lines show the closed loop
trajectory. The horizontal dashed line on each plot shows the lower limit of the
input.

described in more detail in Section 4.6, where we describe a specific implementation
of receding horizon control on a flight control testbed.

A relatively efficient numerical approach to solving the optimal control problem
is the direct collocation method (see [Kel17] for a good overview). The idea behind
this approach is to transform the optimal control problem into a constrained non-
linear programming problem. This is accomplished by discretizing time into a set
of N − 1 intervals defined by grid points

t0 = t1 < t2 < . . . < tN = tf

and approximating the state x and the control input u as piecewise polynomials x̃
and ũ. For example, on each interval the states can be approximated by a cubic
polynomial and the control can be approximated by a linear polynomial. The
value of the polynomial at the midpoint of each interval is then used to satisfy the
dynamics

ẋ = f(x, u).

To solve the problem, let x̃(x(t1), . . . , x(tN)) and ũ(u(t1), . . . , u(tN)) denote
the approximations to x and u, which depend on (x(t1), . . . , x(tN)) ∈ RnN and
(u(t1), . . . , u(tN)) ∈ RN , representing the value of x and u at the grid points.
We then solve the following finite dimension approximation of the original control
problem (4.1):

min
ξ∈RM

F (ξ) = J(x̃(ξ), ũ(ξ))

subject to


˙̃x− f(x̃(ξ, ũ(ξ) = 0,

lb ≤ c(x̃(ξ), ũ(ξ)) ≤ ub,

∀t =
tj + tj+1

2
j = 1, . . . , N − 1

(4.7)

where ξ = (x(t1), u(t1), . . . , x(tN), u(tN)), and M = dim ξ = (n + 1)N . Note here
that we are optimizing over both the x and u variables at the grid points and then
seeking to (approximately) satisfying the differential equation, compared to the

4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-9

shooting method, which optimizes just over the inputs at the grid points and then
integrates the differential equation.

Collocation techniques turn out to be much more numerically well-conditioned
than shooting methods, and there are excellent software packages available for
solving collocation-based optimization problems.

Proof of Stability (with J. E. Hauser and A. Jadbabaie) �

In this final (optional) subsection, we return to Theorem 4.1 and provide a math-
ematically rigorous version of the theorem and a sketch of its proof. In order to
show the stability of the proposed approach, and give full conditions on the terminal
cost V (x(T)), we briefly review the problem of optimal control over a finite time
horizon as presented in Chapter 3 to establish some notation and set some more
specific conditions required for receding horizon control. This material is based
on [MHJ+03].

Given an initial state x0 and a control trajectory u(·) for a nonlinear control
system ẋ = f(x, u), let xu(·;x0) represent the state trajectory. We can write this
solution as a continuous curve

xu(t;x0) = x0 +

∫ t

0

f(xu(τ ;x0), u(τ)) dτ

for t ≥ 0. We require that the trajectories of the system satisfy an a priori bound

‖x(t)‖ ≤ β(x, T, ‖u(·)‖1) <∞, t ∈ [0, T],

where β is continuous in all variables and monotone increasing in T and ‖u(·)‖1 =
‖u(·)‖L1(0,T). Most models of physical systems will satisfy a bound of this type.

The performance of the system will be measured by an integral cost L : Rn ×
Rm → R. We require that L be twice differentiable (C2) and fully penalize both
state and control according to

L(x, u) ≥ cq(‖x‖2 + ‖u‖2), x ∈ Rn, u ∈ Rm

for some cq > 0 and L(0, 0) = 0. It follows that the quadratic approximation of L
at the origin is positive definite,

∂L

∂x

∣∣∣∣
(0,0)

≥ cqI > 0.

To ensure that the solutions of the optimization problems of interest are well
behaved, we impose some convexity conditions. We require the set f(x,Rm) ⊂ Rn
to be convex for each x ∈ Rn. Letting λ ∈ Rn represent the co-state, we also require
that the pre-Hamiltonian function λTf(x, u) + L(x, u) =: K(x, u, λ) be strictly
convex for each (x, λ) ∈ Rn × Rn and that there is a C2 function ū∗ : Rn × Rn →
Rm providing the global minimum of K(x, u, λ). The Hamiltonian H(x, λ) :=
K(x, ū∗(x, λ), λ) is then C2, ensuring that extremal state, co-state, and control
trajectories will all be sufficiently smooth (C1 or better). Note that these conditions
are automatically satisfied for control affine f and quadratic L.

4-10 CHAPTER 4. RECEDING HORIZON CONTROL

The cost of applying a control u(·) from an initial state x over the infinite time
interval [0,∞) is given by

J∞(x, u(·)) =

∫ ∞
0

L(xu(τ ;x), u(τ)) dτ.

The optimal cost (from x) is given by

J∗∞(x) = inf
u(·)

J∞(x, u(·)),

where the control function u(·) belongs to some reasonable class of admissible con-
trols (e.g., piecewise continuous). The function J∗∞(x) is often called the optimal
value function for the infinite horizon optimal control problem. For the class of f
and L considered, it can be verified that J∗∞(·) is a positive definite C2 function in
a neighborhood of the origin [HO01].

For practical purposes, we are interested in finite horizon approximations of the
infinite horizon optimization problem. In particular, let V (·) be a non-negative C2

function with V (0) = 0 and define the finite horizon cost (from x using u(·)) to be

JT (x, u(·)) =

∫ T

0

L(xu(τ ;x), u(τ)) dτ + V (xu(T ;x)), (4.8)

and denote the optimal cost (from x) as

J∗T (x) = inf
u(·)

JT (x, u(·)) .

As in the infinite horizon case, one can show, by geometric means, that J∗T (·) is
locally smooth (C2). Other properties will depend on the choice of V and T .

Let Γ∞ denote the domain of J∗∞(·) (the subset of Rn on which J∗∞ is finite).
It is not too difficult to show that the cost functions J∗∞(·) and J∗T (·), T ≥ 0, are
continuous functions on Γ∞ [Jad01]. For simplicity, we will allow J∗∞(·) to take
values in the extended real line so that, for instance, J∗∞(x) = +∞ means that
there is no control taking x to the origin.

We will assume that f and L are such that the minimum value of the cost
functions J∗∞(x), J∗T (x), T ≥ 0, is attained for each (suitable) x. That is, given x
and T > 0 (including T =∞ when x ∈ Γ∞), there is a (C1 in t) optimal trajectory
(x∗T (t;x), u∗T (t;x)), t ∈ [0, T], such that JT (x, u∗T (·;x)) = J∗T (x). For instance,
if f is such that its trajectories can be bounded on finite intervals as a function
of its input size, e.g., there is a continuous function β such that ‖xu(t;x0)‖ ≤
β(‖x0‖, ‖u(·)‖L1[0,t]), then (together with the conditions above) there will be a
minimizing control (cf. [LM67]). Many such conditions may be used to good effect;
see [Jad01] for a more complete discussion.

It is easy to see that J∗∞(·) is proper on its domain so that the sub-level sets

Γ∞r := {x ∈ Γ∞ : J∗∞(x) ≤ r2}

are compact and path connected and moreover Γ∞ =
⋃
r≥0 Γ∞r . Note also that Γ∞

may be a proper subset of Rn since there may be states that cannot be driven to
the origin. We use r2 (rather than r) here to reflect the fact that our integral cost

4.2. RECEDING HORIZON CONTROL WITH TERMINAL COST 4-11

is quadratically bounded from below. We refer to sub-level sets of J∗T (·) and V (·)
using

ΓT
r := path connected component of {x ∈ Γ∞ : J∗T (x) ≤ r2} containing 0,

and

Ωr := path connected component of {x ∈ Rn : V (x) ≤ r2} containing 0.

These results provide the technical framework needed for receding horizon con-
trol. The following restated version of Theorem 4.1 provides a more rigorous de-
scription of the results of this section.

Theorem 1’. [JYH01] Consider the receding horizon control problem in equa-
tion (4.2) and suppose that the terminal cost V (·) is a control Lyapunov function
such that

min
u∈Rm

(V̇ + L)(x, u) ≤ 0 (4.9)

for each x ∈ Ωrv for some rv > 0. Then, for every T > 0 and δ ∈ (0, T], the
resulting receding horizon trajectories go to zero exponentially fast. For each T > 0,
there is a constant r̄(T) ≥ rv such that ΓT

r̄(T) is contained in the region of attraction

of RH(T, δ). Moreover, given any compact subset Λ of Γ∞, there is a T ∗ such that
Λ ⊂ ΓT

r̄(T) for all T ≥ T ∗.

Theorem 1’ shows that for any horizon length T > 0 and any sampling time
δ ∈ (0, T], the receding horizon scheme is exponentially stabilizing over the set ΓT

rv .
For a given T , the region of attraction estimate is enlarged by increasing r beyond
rv to r̄(T) according to the requirement that V (x∗T (T ;x)) ≤ r2

v on that set. An
important feature of the above result is that, for operations with the set ΓT

r̄(T),
there is no need to impose stability ensuring constraints which would likely make
the online optimizations more difficult and time consuming to solve.

Sketch of proof. Let xu(τ ;x) represent the state trajectory at time τ starting from
initial state x and applying a control trajectory u(·), and let (x∗T , u

∗
T)(·, x) represent

the optimal trajectory of the finite horizon, optimal control problem with horizon
T . Assume that x∗T (T ;x) ∈ Ωr for some r > 0. Then for any δ ∈ [0, T] we want to
show that the optimal cost x∗T (δ;x) satisfies

J∗T
(
x∗T (δ;x)

)
≤ J∗T (x)−

∫ δ

0

q
(
L(x∗T (τ ;x), u∗T (τ ;x)) dτ. (4.10)

This expression says that solution to the finite-horizon, optimal control problem
starting at time t = δ has cost that is less than the cost of the solution from time
t = 0, with the initial portion of the cost subtracted off.. In other words, we are
closer to our solution by a finite amount at each iteration of the algorithm. It follows
using Lyapunov analysis that we must converge to the zero cost solution and hence
our trajectory converges to the desired terminal state (given by the minimum of
the cost function).

To show equation (4.10) holds, consider a trajectory in which we apply the op-
timal control for the first T seconds and then apply a closed loop controller using a

4-12 CHAPTER 4. RECEDING HORIZON CONTROL

stabilizing feedback u = −k(x) for another T seconds. (The stabilizing compensator
is guaranteed to exist since V is a control Lyapunov function.) Let (x∗T , u

∗
T)(t;x),

t ∈ [0, T] represent the optimal control and (xk, uk)(t−T ;x∗T (T ;x)), t ∈ [T, 2T] rep-
resent the control with u = −k(x) applied where k satisfies (V̇ +L)(x,−k(x)) ≤ 0.
Finally, let (x̃(t), ũ(t)), t ∈ [0, 2T] represent the trajectory obtained by concatenat-
ing the optimal trajectory (x∗T , u

∗
T) with the control Lyapunov function trajectory

(xk, uk).
We now proceed to show that the inequality (4.10) holds. The cost of using ũ(·)

for the first T seconds starting from the initial state x∗T (δ;x)), δ ∈ [0, , T] is given
by

JT (x∗T (δ;x), ũ(·)) =

∫ T+δ

δ

L(x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

= J∗T (x)−
∫ δ

0

L(x∗T (τ ;x), u∗T (τ ;x)) dτ − V (x∗T (T ;x))

+

∫ T+δ

T

L(x̃(τ), ũ(τ)) dτ + V (x̃(T + δ)).

Note that the second line is simply a rewriting of the integral in terms of the optimal
cost J∗T with the necessary additions and subtractions of the additional portions of
the cost for the interval [δ, T + δ]. We can how use the bound

L(x̃(τ), ũ(τ)) ≤ V̇ (x̃(τ), ũ(τ), τ ∈ [T, 2T],

which follows from the definition of the control Lyapunov function V and stabilizing
controller k(x). This allows us to write

JT (x∗T (δ;x), ũ(·)) ≤ J∗T (x)−
∫ δ

0

L(x∗T (τ ;x), u∗T (τ ;x)) dτ − V (x∗T (T ;x))

−
∫ T+δ

T

V̇ (x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

= J∗T (x)−
∫ δ

0

L(x∗T (τ ;x), u∗T (τ ;x)) dτ − V (x∗T (T ;x))

− V (x̃(τ))
∣∣∣T+δ

T
+ V (x̃(T + δ))

= J∗T (x)−
∫ δ

0

L(x∗T (τ ;x), u∗T (τ ;x)).

Finally, using the optimality of u∗T we have that J∗T (x∗T (δ;x)) ≤ JT (x∗T (δ;x), ũ(·))
and we obtain equation (4.10).

An important benefit of receding horizon control is its ability to handle state and
control constraints. While the above theorem provides stability guarantees when
there are no constraints present, it can be modified to include constraints on states
and controls as well. In order to ensure stability when state and control constraints
are present, the terminal cost V (·) should be a local control Lyapunov function
satisfying minu∈U V̇ + L(x, u) ≤ 0 where U is the set of controls where the control

4.3. IMPLEMENTATION IN PYTHON 4-13

constraints are satisfied. Moreover, one should also require that the resulting state
trajectory xCLF(·) ∈ X , where X is the set of states where the constraints are
satisfied. (Both X and U are assumed to be compact with origin in their interior).
Of course, the set Ωrv will end up being smaller than before, resulting in a decrease
in the size of the guaranteed region of operation (see [MRRS00] for more details).

4.3 Implementation in Python

The optimal control module of the python-control package allows implementation
of receding horizon control by solving an optimization problem based on the current
state of a nonlinear system. We begin by defining an optimal control problem using
the OptimalControlProblem class:

ocp = obc.OptimalControlProblem(

sys, timepts, cost, constraints, terminal_cost)

To describe an optimal control problem we need an input/output system, a list of
time points, a cost function, and (optionally) a set of constraints on the state and/or
input, either along the trajectory (via the trajectory_constraint keyword) or at the
terminal time (via the terminal_constraint keyword). The OptimalControlProblem

class sets up an optimization over the inputs at each point in time, using the integral
and terminal costs as well as the trajectory and terminal constraints.

Once an optimal control problem has been defined, the compute_trajectory

method can be used to solve for an optimal trajectory from a given state x:

res = ocp.compute_trajectory(x)

t, u = res.time, res.inputs

This is the method that the opt.solve_ocp function uses to compute an optimal
trajectory. In the context of model predictive control, we would repeatedly call
compute_trajectory from the state at each update time ti and then apply the input
u for the next ∆T seconds.

For discrete time systems, the create_mpc_iosystem method can be used to cre-
ate an input/output system that implements the control law:

ctrl = ocp.create_mpc_iosystem()

The resulting object takes as input the current state of the system as returns as
output the commanded input from the MPC controller.

For continuous time system, receding horizon control must be implemented
“manually”, by computing the optimal input at time instant ti and then simulating
the system over the interval [ti, ti+∆T]. This is illustrated in the following example.

Example 4.2 Double integrator with bounded input
We the consider linear system corresponding to a double integrator with bounded
input described in Example 4.1. The equations of motion are given by

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
clip(u) where clip(u) =


−1 u < −1,

u −1 ≤ u ≤ 1,

1 u > 1.

This function can be created with the Python code

4-14 CHAPTER 4. RECEDING HORIZON CONTROL

def doubleint_update(t, x, u, params):

return np.array([x[1], np.clip(u, -1, 1)])

proc = ct.NonlinearIOSystem(

doubleint_update, None, name="double integrator",

inputs = [’u’], outputs=[’x[0]’, ’x[1]’], states=2, dt=True)

We now define an optimal control problem with quadratic costs and input con-
straints:

Cost function

Qx = np.diag([1, 0]) # state cost

Qu = np.diag([1]) # input cost

P1 = np.diag([0.1, 0.1]) # terminal cost

Constraints (using input_poly_constraint to illustrate its use)

traj_constraints = opt.input_poly_constraint(

proc, np.array([[1, 0], [-1, 0]]), np.array([1, 1]))

Horizon

T = 5

timepts = np.linspace(0, T, 5, endpoint=True)

Set up the optimal control problem

ocp = opt.OptimalControlProblem(

proc, timepts,

opt.quadratic_cost(proc, Qx, Qu),

trajectory_constraints=traj_constraints,

terminal_cost=opt.quadratic_cost(proc, P1, None)

)

This optimal control problem contains all of the information required to compute
the optimal input from a state x over the specified time horizon.

To use this optimal control problem in a receding horizon fashion, we manually
compute the trajectory at each time point:

x = X0 # initial condition (updated as we go)

Tf = 10 # total simulation time

for t in np.linspace(0, Tf-T, 6, endpoint=True):

Compute the optimal trajectory over the horizon

res = ocp.compute_trajectory(x, return_states=True)

Simulate the system for the update period

time = np.linspace(0, res.time[1], 20)

soln = ct.input_output_response(proc, time, inputs, x)

Update the state for the next iteration

x = soln.states[:, -1]

Figure 4.3 in the previous section shows the results of this computation, with the
inputs plotted for the planning horizon, showing that the final computed input
differs from the planned inputs over the horizon. ∇

4.4. RECEDING HORIZON CONTROL USING DIFFERENTIAL FLATNESS4-15

4.4 Receding Horizon Control Using Differential
Flatness

For systems that are differentially flat, it is possible to use the flatness-based struc-
ture of the system to implement receding horizon control. In this section we summa-
rize how to exploit differential flatness to find fast numerical algorithms for solving
the optimal control problems required for the receding horizon control results of
the previous section.

We consider the affine nonlinear control system

ẋ = f(x) + g(x)u, (4.11)

where all vector fields and functions are smooth. For simplicity, we focus on the
single input case, u ∈ R. We wish to find a trajectory of equation (4.11) that
minimizes the performance index (4.8), subject to a vector of initial, final, and
trajectory constraints

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,
lbf ≤ ψf(x(tf), u(tf)) ≤ ubf,
lbt ≤ S(x, u) ≤ ubt,

(4.12)

respectively. For conciseness, we will refer to this optimal control problem as

min
(x,u)

J(x, u) subject to

{
ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.
(4.13)

For a system that is differentially flat, we can compute feasible trajectories in
terms of the flat output trajectory z(·), as described in Section 2.3. When the
parameterization is only partial, the dimension of the subspace spanned by the
output and its derivatives is given by r the relative degree of this output [Isi89]. In
this case, it is possible to write the system dynamics as

x = α(z, ż, . . . , z(q)),

u = β(z, ż, . . . , z(q)),

Φ(z, ż, . . . , zn−r) = 0,

(4.14)

where z ∈ Rp, p > m represents a set of outputs that parameterize the trajectory
and Φ : Rn ×Rm represents n− r remaining differential constraints on the output.
(In the case that the system is flat, r = n and we eliminate these differential
constraints.)

A computationally attractive representation for the flat outputs is to use B-
splines, which are a set of piecewise polynomials defined across a set of knot points
with given degree and smoothness. On each interval between two knot points, we
have a polynomial of a given degree and the spline is continuous up to a given
smoothness at interior breakpoints. B-splines are chosen as basis functions because
of their ease of enforcing continuity across knot points and ease of computing their
derivatives. A pictorial representation of such an approximation is given in Figure
4.4. In this formulation, each flat output zj is represented as

4-16 CHAPTER 4. RECEDING HORIZON CONTROL

zj(to)

knotpoint

mj at knotpoints defines smoothness

collocation point

kj − 1 degree polynomial between knotpoints

zj(t)

zj(tf)

Figure 4.4: Spline representation of a variable.

zj =

pj∑
i=1

Bi,kj (t)C
j
i , pj = lj(kj −mj) +mj

where Bi,kj (t) is the B-spline basis function defined in [dB78] for the output zj with

order kj , C
j
i are the coefficients of the B-spline, lj is the number of knot intervals,

and mj is number of smoothness conditions at the knots. The set (z1, z2, . . . , zn−r)
is thus represented by M =

∑
j∈{1,r+1,...,n} pj coefficients.

In general, w collocation points are chosen uniformly over the time interval [to, tf]
(though non-uniform knots placements may also be considered). Both dynamics
and constraints will be enforced at the collocation points. The problem can be
stated as the following nonlinear programming form:

min
y∈RM

F (y) subject to

{
Φ(z(y), ż(y), . . . , z(n−r)(y)) = 0,

lb ≤ c(y) ≤ ub,
(4.15)

where

y = (C1
1 , . . . , C

1
p1 , C

r+1
1 , . . . , Cr+1

pr+1
, . . . , Cn1 , . . . , C

n
pn).

The coefficients of the B-spline basis functions can be found using nonlinear pro-
gramming.

4.5 Choosing Cost Functions

The receding horizon control methodology is a very powerful tool for design of feed-
back controllers for constrained, nonlinear control systems. While the controllers
that it produces are guaranteed to be stable under appropriate conditions, the
choice of cost functions is left to the designer and can often require substantial trial
and error. In this section we describe some tools for helping obtain cost functions
based on insights from linear systems theory.

Design approach

The basic philosophy that we propose is illustrated in Figure 4.5. We begin with

4.5. CHOOSING COST FUNCTIONS 4-17

Nonlinearities

Cost Function

Linearized Model

Linear

Design

Linear Controller

Linear SystemNonlinear System

with Constraints

Model Predictive

Control

Constraints and

Figure 4.5: Optimization-based control approach.

a nonlinear system, including a description of the constraint set. We linearize
this system about a representative equilibrium point and perform a linear control
design using standard control design tools. Such a design can provide provably
robust performance around the equilibrium point and, more importantly, allows the
designer to meet a wide variety of formal and informal performance specifications
through experience and the use of sophisticated linear design tools.

The resulting linear control law then serves as a specification of the desired
control performance for the entire nonlinear system. We convert the control law
specification into a receding horizon control formulation, chosen such that for the
linearized system, the receding horizon controller gives comparable performance.
However, because of its use of optimization tools that can handle nonlinearities
and constraints, the receding horizon controller is able to provide the desired per-
formance over a much larger operating envelope than the controller design based
just on the linearization. Furthermore, by choosing cost formulations that have
certain properties, we can provide proofs of stability for the full nonlinear system
and, in some cases, the constrained system.

The advantage of the proposed approach is that it exploits the power of humans
in designing sophisticated control laws in the absence of constraints with the power
of computers to rapidly compute trajectories that optimize a given cost function in
the presence of constraints. New advances in online trajectory generation serve as
an enabler for this approach and their demonstration on representative flight control
experiments shows their viability [MFHM05]. This approach can be extended to
existing nonlinear paradigms as well, as we describe in more detail below.

An advantage of optimization-based approaches is that they allow the potential
for online customization of the controller. By updating the model that the opti-
mization uses to reflect the current knowledge of the system characteristics, the
controller can take into account changes in parameters values or damage to sensors
or actuators. In addition, environmental models that include dynamic constraints
can be included, allowing the controller to generate trajectories that satisfy complex
operating conditions. These modifications allow for many state- and environment-
dependent uncertainties to including the receding horizon feedback loop, providing
potential robustness with respect to those uncertainties.

4-18 CHAPTER 4. RECEDING HORIZON CONTROL

A number of approaches in receding horizon control employ the use of termi-
nal state equality or inequality constraints, often together with a terminal cost,
to ensure closed loop stability. In Primbs et al. [PND99], aspects of a stability-
guaranteeing, global control Lyapunov function (CLF) were used, via state and
control constraints, to develop a stabilizing receding horizon scheme. Many of the
nice characteristics of the control Lyapunov function controller together with better
cost performance were realized. Unfortunately, a global control Lyapunov function
is rarely available and often not possible.

Motivated by the difficulties in solving constrained optimal control problems,
researchers have developed an alternative receding horizon control strategy for the
stabilization of nonlinear systems [JYH01]. In this approach, closed loop stability is
ensured through the use of a terminal cost consisting of a control Lyapunov function
that is an incremental upper bound on the optimal cost to go. This terminal
cost eliminates the need for terminal constraints in the optimization and gives a
dramatic speed-up in computation. Also, questions of existence and regularity of
optimal solutions (very important for online optimization) can be dealt with in a
rather straightforward manner.

Inverse Optimality

The philosophy presented here relies on the synthesis of an optimal control problem
from specifications that are embedded in an externally generated controller design.
This controller is typically designed by standard classical control techniques for
a nominal process, absent constraints. In this framework, the controller’s per-
formance, stability and robustness specifications are translated into an equivalent
optimal control problem and implemented in a receding horizon fashion.

One central question that must be addressed when considering the usefulness
of this philosophy is: Given a control law, how does one find an equivalent optimal
control formulation? The paper by Kalman [Kal64] lays a solid foundation for this
class of problems, known as inverse optimality. In this paper, Kalman considers the
class of linear time-invariant (LTI) processes with full-state feedback and a single
input variable, with an associated cost function that is quadratic in the input and
state variables. These assumptions set up the well-known linear quadratic regulator
(LQR) problem, by now a staple of optimal control theory.

In Kalman’s paper, the mathematical framework behind the LQR problem is
laid out, and necessary and sufficient algebraic criteria for optimality are presented
in terms of the algebraic Riccati equation, as well as in terms of a condition on the
return difference of the feedback loop. In terms of the LQR problem, the task of
synthesizing the optimal control problem comes down to finding the integrated cost
weights Qx and Qu given only the dynamical description of the process represented
by matrices A and B and of the feedback controller represented by K. Kalman
delivers a particularly elegant frequency characterization of this map [Kal64], which
we briefly summarize here.

We consider a linear system

ẋ = Ax+Bu x ∈ Rn, u ∈ Rm (4.16)

with state x and input u. We consider only the single input, single output case for

4.5. CHOOSING COST FUNCTIONS 4-19

now (m = 1). Given a control law

u = −Kx

we wish to find a cost functional of the form

J =

∫ T

0

xTQxx+ uTQuu dt+ xT(T)PTx(T) (4.17)

where Qx ∈ Rn×n and Qu ∈ Rm×m define the integrated cost, PT ∈ Rn×n is the
terminal cost, and T is the time horizon. Our goal is to find PT > 0, Qx > 0,
Qu > 0, and T > 0 such that the resulting optimal control law is equivalent to
u = Kx.

The optimal control law for the quadratic cost function (4.17) is given by

u = −R−1BTP (t),

where P (t) is the solution to the Riccati ordinary differential equation

− Ṗ = ATP + PA− PBR−1BTP +Q (4.18)

with terminal condition P (T) = PT . In order for this to give a control law of the
form u = −Kx for a constant matrix K, we must find PT , Qx, and Qu that give
a constant solution to the Riccati equation (4.18) and satisfy R−1BTP = K. It
follows that PT , Qx and Qu should satisfy

ATPT + PTA− PTBQ−1
u BTPT +Q = 0

−Q−1
u BTPT = K.

(4.19)

We note that the first equation is simply the normal algebraic Riccati equation of
optimal control, but with PT , Q, and R yet to be chosen. The second equation
places additional constraints on R and PT .

Equation (4.19) is exactly the same equation that one would obtain if we had
considered an infinite time horizon problem, since the given control was constant
and hence P (t) was forced to be constant. This infinite horizon problem is pre-
cisely the one that Kalman considered in 1964, and hence his results apply directly.
Namely, in the single-input single-output case, we can always find a solution to the
coupled equations (4.19) under standard conditions on reachability and observabil-
ity [Kal64]. The equations can be simplified by substituting the second relation
into the first to obtain

ATPT + PTA−KTRK +Q = 0.

This equation is linear in the unknowns and can be solved directly (remembering
that PT , Qx and Qu are required to be positive definite).

The implication of these results is that any state feedback control law satisfy-
ing these assumptions can be realized as the solution to an appropriately defined
receding horizon control law. Thus, we can implement the design framework sum-
marized in Figure 4.5 for the case where our (linear) control design results in a
state feedback controller.

4-20 CHAPTER 4. RECEDING HORIZON CONTROL

The above results can be generalized to nonlinear systems, in which one takes a
nonlinear control system and attempts to find a cost function such that the given
controller is the optimal control with respect to that cost.

The history of inverse optimal control for nonlinear systems goes back to the
early work of Moylan and Anderson [MA73]. More recently, Sepulchre et al. [SJK97]
showed that a nonlinear state feedback obtained by Sontag’s formula from a control
Lyapunov function (CLF) is inverse optimal. The connections of this inverse opti-
mality result to passivity and robustness properties of the optimal state feedback
are discussed in Jankovic et al. [JSK99]. Most results on inverse optimality do not
consider the constraints on control or state. However, the results on the uncon-
strained inverse optimality justify the use of a more general nonlinear loss function
in the integrated cost of a finite horizon performance index combined with a real-
time optimization-based control approach that takes the constraints into account.

4.6 Implementation on the Caltech Ducted Fan
(with M. Milam and N. Petit)

To demonstrate the use of the techniques described in the previous section, we
present an implementation of optimization-based control on the Caltech Ducted
Fan, a real-time, flight control experiment that mimics the longitudinal dynamics
of an aircraft. The experiment is show in Figure 4.6. The work in this section is
based on the work of Mark Milam and Ryan Franz [Mil03, MFHM05] and is drawn
from [MHJ+03]. It illustrates some of the practical considerations in implementing
receding horizon control and describes techniques for addressing computational
limitations.

The experimental results in this section were implemented using the Nonlinear
Trajectory Generation (NTG) [MM02] software package. The sequential quadratic
programming package NPSOL by [GMSW] is used as the nonlinear programming
solver in NTG. When specifying a problem to NTG, the user is required to state
the problem in terms of some choice of outputs and its derivatives. The user is also
required to specify the regularity of the variables, the placement of the knot points,
the order and regularity of the B-splines, and the collocation points for each output.
The python-control package also includes an implementation of B-splines and these
can be used for both flat and non-flat optimal trajectory generation problems.

Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research and devel-
opment of nonlinear flight guidance and control techniques for Uninhabited Aerial
Vehicles (UAVs). The fan is a scaled model of the longitudinal axis of a flight ve-
hicle and flight test results validate that the dynamics replicate qualities of actual
flight vehicles [MM99].

The ducted fan has three degrees of freedom: the boom holding the ducted fan
is allowed to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting
horizontal and vertical displacements. A counterweight is connected to the vertical
axis of the stand, allowing the effective mass of the fan to be adjusted. Also, the
wing/fan assembly at the end of the boom is allowed to rotate about its center of

4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-21

Figure 4.6: Caltech ducted fan.

mass. Optical encoders mounted on the ducted fan, counterweight pulley, and the
base of the stand measure the three degrees of freedom. The fan is controlled by
commanding a current to the electric motor for fan thrust and by commanding RC
servos to control the thrust vectoring mechanism.

The sensors are read and the commands sent by a DSP-based multi-processor
system, comprised of a D/A card, a digital I/O card, two Texas Instruments C40
signal processors, two Compaq Alpha processors, and a high-speed host PC in-
terface. A real-time interface provides access to the processors and I/O hardware.
The NTG software resides on both of the Alpha processors, each capable of running
real-time optimization.

The ducted fan is modeled in terms of the position and orientation of the fan,
and their velocities. Letting x represent the horizontal translation, z the vertical
translation and θ the rotation about the boom axis, the equations of motion are
given by

mẍ+ FXa − FXb cos θ − FZb sin θ = 0,

mz̈ + FZa + FXb sin θ − FZb cos θ = mgeff,

Jθ̈ −Ma +
1

rs
IpΩẋ cos θ − FZbrf = 0,

(4.20)

where FXa = D cos γ + L sin γ and FZa = −D sin γ + L cos γ are the aerodynamic
forces and FXb and FZb are thrust vectoring body forces in terms of the lift (L),

4-22 CHAPTER 4. RECEDING HORIZON CONTROL

drag (D), and flight path angle (γ). Ip and Ω are the moment of inertia and angular
velocity of the ducted fan propeller, respectively. J is the moment of ducted fan and
rf is the distance from center of mass along the Xb axis to the effective application
point of the thrust vectoring force. The angle of attack α can be derived from the
pitch angle θ and the flight path angle γ by

α = θ − γ.

The flight path angle can be derived from the spatial velocities by

γ = arctan
−ż
ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(α) D = qSCD(α) M = c̄SCM (α),

respectively. The dynamic pressure is given by q = 1
2ρV

2. The norm of the ve-
locity is denoted by V , S the surface area of the wings, and ρ is the atmospheric
density. The coefficients of lift (CL(α)), drag (CD(α)) and the moment coeffi-
cient (CM (α)) are determined from a combination of wind tunnel and flight testing
and are described in more detail in [MM99], along with the values of the other
parameters.

Real-Time Trajectory Generation

In this section we describe the implementation of the trajectory generation algo-
rithms by using NTG to generate minimum time trajectories in real time. An
LQR-based regulator is used to stabilize the system. We focus in this section on
aggressive, forward flight trajectories. The next section extends the controller to
use a receding horizon controller, but on a simpler class of trajectories.

Stabilization around a reference trajectory

The results in this section rely on the traditional two degree of freedom design
paradigm described in Chapter 2. In this approach, a local control law (inner loop)
is used to stabilize the system around the trajectory computed based on a nominal
model. This compensates for uncertainties in the model, which are predominantly
due to aerodynamics and friction. Elements such as the ducted fan flying through
its own wake, ground effects and velocity- and angle-of-attack dependent thrust
contribute to the aerodynamic uncertainty. Actuation models are not used when
generating the reference trajectory, resulting in another source of uncertainty.

Since only the position of the fan is measured, we must estimate the velocities.
We use an extended Kalman filter (described in later chapters) with the optimal
gain matrix is gain scheduled on the (estimated) forward velocity.

The stabilizing LQR controllers were gain scheduled on pitch angle, θ, and the
forward velocity, ẋ. The pitch angle was allowed to vary from −π/2 to π/2 and
the velocity ranged from 0 to 6 m/s. The weights were chosen differently for the
hover-to-hover and forward flight modes. For the forward flight mode, a smaller

4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-23

weight was placed on the horizontal (x) position of the fan compared to the hover-
to-hover mode. Furthermore, the z weight was scheduled as a function of forward
velocity in the forward flight mode. There was no scheduling on the weights for
hover-to-hover. The elements of the gain matrices for each of the controller and
observer are linearly interpolated over 51 operating points.

Nonlinear trajectory generation parameters

We solve a minimum time optimal control problem to generate a feasible trajectory
for the system. The system is modeled using the nonlinear equations described
above and computed the open loop forces and state trajectories for the nominal
system. This system is not known to be differentially flat (due to the aerodynamic
forces) and hence we cannot completely eliminate the differential constraints.

We choose three outputs, z1 = x, z2 = z, and z3 = θ, which results in a
system with one remaining differential constraint. Each output is parameterized
with four, sixth order C4 piecewise polynomials over the time interval scaled by the
minimum time. A fourth output, z4 = T , is used to represent the time horizon to
be minimized and is parameterized by a scalar. There are a total of 37 variables in
this optimization problem. The trajectory constraints are enforced at 21 equidistant
breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the
outputs. Clearly there is a trade between the parameters (variables, initial values
of the variables, and breakpoints) and measures of performance (convergence, run-
time, and conservative constraints). Extensive simulations were run to determine
the right combination of parameters to meet the performance goals of our system.

Forward flight

To obtain the forward flight test data, an operator commanded a desired forward
velocity and vertical position with joysticks. We set the trajectory update time δ to
2 seconds. By rapidly changing the joysticks, NTG produces high angle of attack
maneuvers. Figure 4.7aa depicts the reference trajectories and the actual θ and
ẋ over 60 s. Figure 4.7b shows the commanded forces for the same time interval.
The sequence of maneuvers corresponds to the ducted fan transitioning from near
hover to forward flight, then following a command from a large forward velocity to
a large negative velocity, and finally returning to hover.

Figure 4.8 is an illustration of the ducted fan altitude and x position for these
maneuvers. The air-foil in the figure depicts the pitch angle (θ). It is apparent from
this figure that the stabilizing controller is not tracking well in the z direction. This
is due to the fact that unmodeled frictional effects are significant in the vertical
direction. This could be corrected with an integrator in the stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average
computation time was less than one second. Each of the 30 trajectories converged
to an optimal solution and was approximately between 4 and 12 seconds in length.
A random initial guess was used for the first NTG trajectory computation. Sub-
sequent NTG computations used the previous solution as an initial guess. Much
improvement can be made in determining a “good” initial guess. Improvement in
the initial guess will improve not only convergence but also computation times.

4-24 CHAPTER 4. RECEDING HORIZON CONTROL

110 120 130 140 150 160 170 180
−4

−2

0

2

4

6

t

x
’

x’
act

x’
des

110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

3

t

θ

θ
act

θ
des

(a) System state

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

f
x

f z

constraints

desired

(b) Input forces

Figure 4.7: Forward flight test case: (a) θ and ẋ desired and actual, (b) desired
FXb and FZb with bounds.

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

a
lt
 (

m
)

x (m)

x vs. alt

Figure 4.8: Forward flight test case: altitude and x position (actual (solid) and
desired (dashed)). Airfoil represents actual pitch angle (θ) of the ducted fan.

Receding Horizon Control Implementation

The results of the previous section demonstrate the ability to compute optimal
trajectories in real time, although the computation time was not sufficiently fast
for closing the loop around the optimization. In this section, we make use of a
shorter update time δ, a fixed horizon time T with a quadratic integral cost, and a
control Lyapunov function terminal cost to implement a receding horizon controller
as described in Section 4.2. We focus on the operation of the system to near hover,
so that we can use the local linearization to find the terminal control Lyapunov
function.

We have implemented the receding horizon controller on the ducted fan exper-
iment where the control objective is to stabilize the hover equilibrium point. The
quadratic cost is given by

L(x, u) =
1

2
x̂TQx̂+

1

2
ûTRû,

V (x) = γx̂TPx̂,
(4.21)

4.6. IMPLEMENTATION ON THE CALTECH DUCTED FAN 4-25

where
x̂ = x− xeq = (x, z, θ − π/2, ẋ, ż, θ̇),
û = u− ueq = (FXb −mg,FZb),
Q = diag{4, 15, 4, 1, 3, 0.3},
R = diag{0.5, 0.5}.

For the terminal cost, we choose γ = 0.075 and P is the unique stable solution to
the algebraic Riccati equation corresponding to the linearized dynamics of equa-
tion (4.20) at hover and the weights Q and R. Note that if γ = 1/2, then V (·)
is the control Lyapunov function for the system corresponding to the LQR prob-
lem. Instead V is a relaxed (in magnitude) control Lyapunov function, which
achieved better performance in the experiment. In either case, V is valid as a con-
trol Lyapunov function only in a neighborhood around hover since it is based on
the linearized dynamics. We do not try to compute off-line a region of attraction
for this control Lyapunov function. Experimental tests omitting the terminal cost
and/or the input constraints leads to instability. The results in this section show
the success of this choice for V for stabilization. An inner-loop PD controller on θ, θ̇
is implemented to stabilize to the receding horizon states θ∗T , θ̇

∗
T . The θ dynamics

are the fastest for this system and although most receding horizon controllers were
found to be nominally stable without this inner-loop controller, small disturbances
could lead to instability.

The optimal control problem is set-up in NTG code by parameterizing the three
position states (x, z, θ), each with 8 B-spline coefficients. Over the receding horizon
time intervals, 11 and 16 breakpoints were used with horizon lengths of 1, 1.5, 2,
3, 4 and 6 seconds. Breakpoints specify the locations in time where the differential
equations and any constraints must be satisfied, up to some tolerance. The value
of Fmax

Xb
for the input constraints is made conservative to avoid prolonged input

saturation on the real hardware. The logic for this is that if the inputs are saturated
on the real hardware, no actuation is left for the inner-loop θ controller and the
system can go unstable. The value used in the optimization is Fmax

Xb
= 9 N.

Computation time is non-negligible and must be considered when implementing
the optimal trajectories. The computation time varies with each optimization as
the current state of the ducted fan changes. The following notational definitions
will facilitate the description of how the timing is set-up:

i Integer counter of RHC computations
ti Value of current time when RHC computation i started
δc(i) Computation time for computation i

u∗T (i)(t) Optimal output trajectory corresponding to computation
i, with time interval t ∈ [ti, ti + T]

A natural choice for updating the optimal trajectories for stabilization is to do so
as fast as possible. This is achieved here by constantly resolving the optimization.
When computation i is done, computation i + 1 is immediately started, so ti+1 =
ti + δc(i). Figure 4.9 gives a graphical picture of the timing set-up as the optimal
input trajectories u∗T (·) are updated. As shown in the figure, any computation
i for u∗T (i)(·) occurs for t ∈ [ti, ti+1] and the resulting trajectory is applied for
t ∈ [ti+1, ti+2]. At t = ti+1 computation i+ 1 is started for trajectory u∗T (i+ 1)(·),
which is applied as soon as it is available (t = ti+2). For the experimental runs

4-26 CHAPTER 4. RECEDING HORIZON CONTROL

ti+2

time

Input

computation
(i)

computation
(i+1)

Legend

computed applied unused

δc(i) δc(i+1)

 *u (i-1) T

ti+1 ti

 *u (i) T

 *u (i+1) T
X

X X X

X X

X
X

X

Figure 4.9: Receding horizon input trajectories.

detailed in the results, δc(i) is typically in the range of [0.05, 0.25] seconds, meaning
4 to 20 optimal control computations per second. Each optimization i requires the
current measured state of the ducted fan and the value of the previous optimal
input trajectories u∗T (i − 1) at time t = ti. This corresponds to, respectively, 6
initial conditions for state vector x and 2 initial constraints on the input vector u.
Figure 4.9 shows that the optimal trajectories are advanced by their computation
time prior to application to the system. A dashed line corresponds to the initial
portion of an optimal trajectory and is not applied since it is not available until that
computation is complete. The figure also reveals the possible discontinuity between
successive applied optimal input trajectories, with a larger discontinuity more likely
for longer computation times. The initial input constraint is an effort to reduce
such discontinuities, although some discontinuity is unavoidable by this method.
Also note that the same discontinuity is present for the 6 open-loop optimal state
trajectories generated, again with a likelihood for greater discontinuity for longer
computation times. In this description, initialization is not an issue because we
assume the receding horizon computations are already running prior to any test
runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller to a
6 meter horizontal offset, which is effectively engaging a step-response to a change
in the initial condition for x. The following details the effects of different receding
horizon control parameterizations, namely as the horizon changes, and the responses
with the different controllers to the induced offset.

The first comparison is between different receding horizon controllers, where
time horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses 16
breakpoints. Figure 4.10a shows a comparison of the average computation time as
time proceeds. For each second after the offset was initiated, the data correspond
to the average run time over the previous second of computation. Note that these
computation times are substantially smaller than those reported for real-time tra-
jectory generation, due to the use of the control Lyapunov function terminal cost
versus the terminal constraints in the minimum-time, real-time trajectory genera-

4.7. FURTHER READING 4-27

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Average run time for previous second of computation

seconds after initiation

av
er

ag
e

ru
n

 t
im

e
(s

ec
o

n
d

s)

T = 1.5
T = 2.0
T = 3.0
T = 4.0
T = 6.0

(a) Average run time

−5 0 5 10 15 20 25
−1

0

1

2

3

4

5

6
MPC response to 6m offset in x for various horizons

time (sec)

x
 (

m
)

 step ref
+ T = 1.5
o T = 2.0
* T = 3.0
x T = 4.0
 . T = 6.0

(b) Step responses

Figure 4.10: Receding horizon control: (a) moving one second average of com-
putation time for RHC implementation with varying horizon time, (b) response of
RHC controllers to 6 meter offset in x for different horizon lengths.

tion experiments.

There is a clear trend toward shorter average computation times as the time
horizon is made longer. There is also an initial transient increase in average compu-
tation time that is greater for shorter horizon times. In fact, the 6 second horizon
controller exhibits a relatively constant average computation time. One explana-
tion for this trend is that, for this particular test, a 6 second horizon is closer to
what the system can actually do. After 1.5 seconds, the fan is still far from the
desired hover position and the terminal cost control Lyapunov function is large,
likely far from its region of attraction. Figure 4.10b shows the measured x response
for these different controllers, exhibiting a rise time of 8–9 seconds independent of
the controller. So a horizon time closer to the rise time results in a more feasible
optimization in this case.

4.7 Further Reading

Receding horizon control (more commonly referred to as model predictive control
or MPC) has a long history and there are many good textbooks available. The book
by Rawlings, Mayne, and Diehl [RMD17] is an excellent resource (available for free
download), as well as the textbook (also freely available) by Borelli, Bemporad, and
Morari [BBM17], which matches the material in the MATLAB-based MPT toolbox.
An overview of the early evolution of commercially available MPC technology is
given in [QB97] and a survey of the state of stability theory of MPC circa 2000 is
given in [MRRS00].

4-28 CHAPTER 4. RECEDING HORIZON CONTROL

Exercises

4.1. Consider a nonlinear control system

ẋ = f(x, u)

with linearization
ẋ = Ax+Bu.

Show that if the linearized system is reachable, then there exists a (local) control
Lyapunov function for the nonlinear system. (Hint: start by proving the result for
a stable system.)

4.2. Consider the optimal control problem given in Example 3.2:

ẋ = ax+ bu, J = 1
2

∫ tf

t0

u2(t) dt+ 1
2cx

2(tf),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is given,
and a, b ∈ R are positive constants. We take the terminal time tf as given and let
c > 0 be a constant that balances the final value of the state with the input required
to get to that position. The optimal control for a finite time tf > 0 is derived in
Example 3.2. Now consider the infinite horizon cost

J = 1
2

∫ ∞
t0

u2(t) dt

with x(t) at t =∞ constrained to be zero.

(a) Solve for u = −Q−1
u BTPx where P is the positive solution corresponding to

the algebraic Riccati equation, and compute the optimal trajectory x∗(t) from an
initial condition x(0).

(b) Plot the state solution of the finite time optimal controller for the following
parameter values

a = 2, b = 0.5, x(t0) = 4,

c = 0.1, 10, , t0 = 0, tf = 0.5, 1, 10

(this should give you a total of 6 curves.) Compare these to the infinite time optimal
control solution. Which finite time solution is closest to the infinite time solution?
Why?

(c) Using the solution given in equation (3.5), implement the finite-time optimal
controller in a receding horizon fashion with an update time of δ = 0.5. Using
the parameter values in part (b), compare the responses of the receding horizon
controllers to the LQR controller you designed in part (a), from the same initial
condition. What do you observe as c and tf increase?

4.3. In this problem we will explore the effect of constraints on control of the linear
unstable system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u, ẋ2 = x1 + 0.5u,

subject to the constraint that |u| ≤ a where a is a postive constant.

4.7. FURTHER READING 4-29

(a) Ignore the constraint (a = ∞) and design an LQR controller to stabilize the
system. Plot the response of the closed system from the initial condition given by
x = (1, 0).

(b) Simulate the initial condition response of system for some finite value of a
with an initial condition x(0) = (1, 0). Numerically (trial and error) determine the
smallest value of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable from
x(0) = (ρ, 0). Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control law for
this system. Show that this controller has larger region of attraction than the con-
troller designed in part (b). (Hint: solve the finite horizon LQ problem analytically,
using the bang-bang example as a guide to handle the input constraint.)

4.4. [Instability of MPC with short horizons (Mark Cannon, Oxford University,
2020)] Consider a linear, discrete time system with dynamics

x[k + 1] =

[
1 0.1
0 2

]
x[k] +

[
0

0.5

]
u[k], y[k] =

[
1 0

]
x[k]

with finite time horizon cost given by

J(x[k], u) =

N−1∑
i=0

(
y2[k + i] + u2[k + i]

)
+ y2[k +N].

(a) Show that the predicted state of the system can be written in the form
x[k]

x[k + 1]
...

x[k +N]

 =Mx[k] + L


u[k]

u[k + 1]
...

u[k +N − 1]


and give formulas for M and L in terms of A, B, and C for the case N = 3.

(b) Show that the cost function can be written as

J(x[k], u) = ūT[k]Hū[k] + 2xT[k]Fū[k] + xT[k]Gx[k],

where ū[k] = (u[k], u[k + 1], . . . , u[k + N − 1], and give expressions for F , G, and
H.

(c) Show that the RHC controller that minimizes the cost function for a horizon
length of N can be written as u = −Kx and find an expression for K in terms of
F , G, and H. Show that for N = 3 the feedback gain is given by

K =
[
0.1948 0.1168

]
.

(d) Compute the closed loop eigenvalues for the system with a receding horizon
controller with N = 3 and show that the system is unstable. What is the smallest
value of N such that the system is stable?

4-30 CHAPTER 4. RECEDING HORIZON CONTROL

(e) Change the terminal cost to use the optimal cost-to-go function returned by
the dlqr command in MATLAB or Python. Verify that the closed loop system is
stable for N = 1, . . . , 5.

4.5. Consider the double integrator system from Example 4.1. A discrete time
representation of this system with sampling time of 1 second is given by

x[k + 1] =

[
1 1
0 1

]
x+

[
0
1

]
clip(u), where clip(u) =


−1 u < −1,

u −1 ≤ u ≤ 1,

1 u > 1.

We choose the same weighting matrices as in Example 4.1:

Qx =

[
1 0
0 0

]
, Qu =

[
1
]
, P1 =

[
0.1 0
0 0.1

]
.

(a) Construct a discrete-time receding horizon control law for the system and recre-
ate Figure 4.3 using x0 = (2, 1) as the initial condition. Your plot should should
show the actual trajectory for x and u as solid lines and the predicted trajectories
from the optimization as dashed lines.

(b) The discrete time equivalent of the conditions in Theorem 4.1 are

min
u
V (f(x, u))− V (x) + L(x, u) ≤ 0 for all x,

where f represents the discrete time dynamics x[k+1] = f(x[k], u[k]). Check to see
if these conditions are satisfied for this system using the weights above along the
states that are visited along the trajectory of the system in (a). (For Theorem 4.1
to hold you would need to show this condition at all states x, so we are just checking
a subset in this problem.)

(c) Replace the terminal cost P1 with the solution to the discrete time algebraic
Riccati equation (which can be obtained using the dlqr command in MATLAB or
Python), recompute and plot the initial condition response of the receding horizon
controller, and check that whether satisfies the stability condition along the states
in the trajectory.

(d) Modify the terminal cost P1 obtained in part (c) by 10X in each direction
(P ′1 = 0.1P1 and P ′1 = 10P1), recompute and plot the initial condition response
of the receding horizon controller, and check that whether satisfies the stability
condition along the trajectory.

4.6. Consider the dynamics of the vectored thrust aircraft described in Exam-
ples 2.4 and 3.5. Assume that the inputs must satisfy the constraints

|F1| ≤ 0.1 |F2|, 0 ≤ F2 ≤ 1.5mg.

(a) Design a receding horizon controller for the system that stabilizes the origin
using an optimization horizon of T = 3 s and an update period of ∆T = 1 s. Demon-
strate the performance of your controller from initial conditions starting at initial
position (x0, y0) = (0 m, 5 m) and desired final position (xf, yf) = (10 m, 5 m) (all
other states should be zero).

4.7. FURTHER READING 4-31

(b) Suppose that the system is subject to a sinusoidal disturbance force due to
wind blowing in the horizontal direction, so that the dynamics in the x coordinate
become

mẍ = F1 cos θ − F2 sin θ − cẋ+ d

with d = sin(t). Design a two-layer (inner/outer) feedback controller that uses
the trajectories from (a) as inputs to an LQR controller that provides disturbance
rejection. Compare the performance of the RHC controller in (a) in the presence of
the disturbance to a two-layer controller using the initial and final conditions from
(a).

(The Python function pvtol-windy in pvtol.py provides a model of this system
using a third input corresponding to d.)

4-32 CHAPTER 4. RECEDING HORIZON CONTROL

Chapter 5

Stochastic Systems

In this chapter we present a focused overview of stochastic systems, suitable for
use in estimation theory. After a brief review of random variables, we define
discrete-time and continuous-time random processes, including the expectation,
(co-)variance, and correlation functions for a random process. These definitions are
used to describe linear stochastic systems (in continuous time) and the stochastic
response of a linear system to a random process (e.g., noise). We initially derive the
relevant quantities in the state space, followed by a presentation of the equivalent
frequency domain concepts.

Prerequisites. Readers should be familiar with basic concepts in probability, in-
cluding random variables and standard distributions. We do not assume any prior
familiarity with random processes.

Caveats. This chapter is written to provide a brief introduction to stochastic pro-
cesses that can be used to derive the results in other subject areas. In order to keep
the presentation compact, we gloss over several mathematical details that are re-
quired for rigorous presentation of the results. A more detailed (and mathematically
precise) derivation of this material is available in the book by Åström [Åst06a].

5.1 Brief Review of Random Variables

To help fix the notation that we will use, we briefly review the key concepts of
random variables. A more complete exposition is available in standard books on
probability, such as Grimmett and Stirzaker [GS01].

Random variables and processes are defined in terms of an underlying proba-
bility space that captures the nature of the stochastic system we wish to study.
A probability distribution is used to describe the likelihood that a random variable
takes a given set of values.

More formally, a probability space (Ω,F ,P) consists of:

• a sample space Ω that represents the set of all possible outcomes;

• a set of events F the captures combinations of elementary outcomes that are
of interest; and

5-1

5-2 CHAPTER 5. STOCHASTIC SYSTEMS

• a probability measure P that describes the likelihood of a given event occurring.

Ω can be any set, either with a finite, countable or infinite number of elements. The
event space F consists of subsets of Ω. There are some mathematical limits on the
properties of the sets in F , but these are not critical for our purposes here. The
probability measure P is a mapping from P : F → [0, 1] that assigns a probability to
each event. It must satisfy the property that given any two disjoint sets A,B ∈ F ,
P(A ∪B) = P(A) + P(B).

With these definitions, we can model many different stochastic phenomena.
Given a probability space, we can choose samples ω ∈ Ω and identify each sample
with a collection of events chosen from F . These events should correspond to
phenomena of interest and the probability measure P should capture the likelihood
of that event occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number of situations
as special cases.

A random variable X is a function X : Ω → S that gives a value in S, called
the state space, for any sample ω ∈ Ω. Given a subset A ⊂ S, we can write the
probability that X ∈ A as

P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}).

We will often find it convenient to omit ω when working random variables and
hence we write X ∈ S rather than the more correct X(ω) ∈ S. The term probability
distribution is used to describe the set of possible values that X can take.

A discrete random variable X is a variable that can take on any value from
a discrete set S with some probability for each element of the set. We model a
discrete random variable by its probability mass function pX(s), which gives the
probability that the random variable X takes on the specific value s ∈ S:

pX(s) = probability that X takes on the value s ∈ S.

The sum of the probabilities over the entire set of states must be unity, and so we
have that ∑

s∈S
pX(s) = 1.

If A is a subset of S, then we can write P(X ∈ A) for the probability that X will
take on some value in the set A. It follows from our definition that

P(X ∈ A) =
∑
s∈A

pX(s).

Note that we use the convention that capital letters to refer to a random variable
and lower case letters to refer to a specific value of the variable.

Definition 5.1 (Bernoulli distribution). The Bernoulli distribution is used to
model a random variable that takes the value 1 with probability p and 0 with
probability 1− p:

P(X = 1) = p, P(X = 0) = 1− p.

5.1. BRIEF REVIEW OF RANDOM VARIABLES 5-3

0 10 20 30 40
k

0.0

0.1

0.2

0.3

0.4

p
(k

)

p= 0.5, n= 20

p= 0.7, n= 20

p= 0.5, n= 40

(a) Binomial distribution

0 5 10 15 20
k

0.0

0.1

0.2

0.3

0.4

p
(k

)

λ= 1

λ= 4

λ= 10

(b) Poisson distribution

Figure 5.1: Probability mass functions for common discrete distributions.

Alternatively, it can be written in terms of its probability mass function

p(s) =


p s = 1

1− p s = 0

0 otherwise.

Bernoulli distributions are used to model independent experiments with binary
outcomes, such as flipping a coin.

Definition 5.2 (Binomial distribution). The binomial distribution models the
probability of successful trials in n experiments, given that a single experiment
has probability of success p. If we let Xn be a random variable that indicates the
number of success in n trials, then the binomial distribution is given by

pXn(k) = P(Xn = k) =

(
n

k

)
pk(1− p)n−k

for k = 1, . . . , n. The probability mass function is shown in Figure 5.1a.

Definition 5.3 (Poisson distribution). The Poisson distribution is used to describe
the probability that a given number of events will occur in a fixed interval of time
t. The Poisson distribution is defined as

pNt(k) = P(Nt = k) =
(λt)k

k!
e−λt, (5.1)

where Nt is the number of events that occur in a period t and λ is a real number
parameterizing the distribution. This distribution can be considered as a model
for a counting process, where we assume that the average rate of occurrences in a
period t is given by λt and λ represents the rate of the counting process. Figure 5.1b
shows the form of the distribution for different values of k and λt.

5-4 CHAPTER 5. STOCHASTIC SYSTEMS

When studying dynamical systems, we will make use of random variables that
take on values in R. A continuous (real-valued) random variable X is a variable
that can take on any value in the set of real numbers R. We can model the random
variable X according to its probability distribution function F : R→ [0, 1]:

F (x) = P(X ≤ x) = probability that X takes on a value in the range (−∞, x].

More generally, we write P(A) as the probability that an event A will occur (e.g.,
A = {X ≤ x}). It follows from the definition that if X is a random variable in the
range [L,U] then P(l ≤ X ≤ u) = 1. Similarly, if m ∈ [l, u] then P(l ≤ X < m) =
1− P(m ≤ X ≤ u).

We characterize a random variable in terms of the probability density function
(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

P(xl ≤ X ≤ xu) =

∫ xu

xl

p(x)dx. (5.2)

It is also possible to compute p(x) given the distribution function F (x) = P(X ≤ x)
as long as the distribution function is suitably smooth:

p(x) =
∂F

∂x
(x).

We will sometimes write pX(x) when we wish to make explicit that the pdf is
associated with the random variable X.

Probability distributions provide a general way to describe stochastic phenom-
ena. Some common distributions include the uniform distribution, the Gaussian
distribution, and the exponential distribution.

Definition 5.4 (Uniform distribution). The uniform distribution on an interval
[L,U] assigns equal probability to any number in the interval. Its pdf is given by

p(x) =
1

U − L
. (5.3)

The uniform distribution is illustrated in Figure 5.2a.

Definition 5.5 (Gaussian distribution). The Gaussian distribution (also called a
normal distribution) has a pdf of the form

p(x) =
1√

2πσ2
e
− 1

2

(
x−µ
σ

)2

. (5.4)

The parameter µ is called the mean of the distribution and σ is called the stan-
dard deviation of the distribution. Figure 5.2b shows a graphical representation a
Gaussian pdf.

Definition 5.6 (Exponential distribution). The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x) = λe−λx, x ≥ 0

where λ is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in Figure 5.2c.

5.1. BRIEF REVIEW OF RANDOM VARIABLES 5-5

p(x)

L U

(a) Uniform

µ

p(x)

σ

(b) Gaussian

0 2 4
x

0.0

0.5

1.0

1.5

p
(x

)

λ= 0.5

λ= 1.0

λ= 1.5

(c) Exponential

Figure 5.2: Probability density function (pdf) for uniform, Gaussian and expo-
nential distributions.

There many other distributions that arise in applications, but for the purpose
of these notes we focus on uniform distributions and Gaussian distributions.

We now define a number of properties of collections of random variables. We
focus on the continuous random variable case, but unless noted otherwise these
concepts can all be defined similarly for discrete random variables (using the prob-
ability mass function in place of the probability density function).

If two random variables are related, we can talk about their joint probability
distribution: PX,Y (A,B) is the probability that both event A occurs for X and B
occurs for Y . This is sometimes written as P (A ∩ B), where we abuse notation
by implicitly assuming that A is associated with X and B with Y . For continuous
random variables, the joint probability distribution can be characterized in terms
of a joint probability density function

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
p(u, v) du dv. (5.5)

The joint pdf thus describes the relationship between X and Y , and for sufficiently
smooth distributions we have

p(x, y) =
∂2F

∂x∂y
.

We say that X and Y are independent if p(x, y) = p(x) p(y), which implies that
FX,Y (x, y) = FX(x)FY (y) for all x, y. Equivalently, P(A ∩ B) = P(A)P(B) if A
and B are independent events.

The conditional probability for an event A given that an event B has occurred,
written as P(A | B), is given by

P(A | B) =
P(A ∩B)

P (B)
. (5.6)

If the events A and B are independent, then P(A | B) = P(A). Note that the
individual, joint and conditional probability distributions are all different, so if we
are talking about random variables we can write PX,Y (A,B), PX|Y (A | B) and
PY (B), where A and B are appropriate subsets of R.

5-6 CHAPTER 5. STOCHASTIC SYSTEMS

If X is dependent on Y then Y is also dependent on X. Bayes’ theorem relates
the conditional and individual probabilities:

P(A | B) =
P(B | A)P(A)

P(B)
, P (B) 6= 0. (5.7)

Bayes’ theorem gives the conditional probability of event A on event B given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesis H given data D when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function p(x | y)

p(x | y) =
p(x, y)

p(y)
, p(y) > 0. (5.8)

It follows that
p(x, y) = p(x | y)p(y) (5.9)

and
P(X ≤ x | y) := P (X ≤ x | Y = y)

=

∫ x

−∞
p(u | y)du =

∫ x
−∞ p(u, y)du

p(y)
.

(5.10)

If X and Y are independent than p(x | y) = p(x) and p(y | x) = p(y). Note that
p(x, y) and p(x | y) are different density functions, though they are related through
equation (5.9). If X and Y are related with joint probability density function p(x, y)
and conditional probability density function p(x | y) then

p(x) =

∫ ∞
−∞

p(x, y)dy =

∫ ∞
−∞

p(x | y)p(y)dy.

Example 5.1 Conditional probability for a sum
Consider three random variables X, Y , and Z related by the expression

Z = X + Y.

In other words, the value of the random variable Z is given by choosing values
from two random variables X and Y and adding them. We assume that X and
Y are independent Gaussian random variables with mean µ1 and µ2 and standard
deviation σ = 1 (the same for both variables).

Clearly the random variable Z is not independent of X (or Y) since if we know
the values of X then it provides information about the likely value of Z. To see
this, we compute the joint probability between Z and X. Let

A = {xl ≤ x ≤ xu}, B = {zl ≤ z ≤ zu}.

The joint probability of both events A and B occurring is given by

PX,Z(A ∩B) = P(xl ≤ x ≤ xu, zl ≤ x+ y ≤ zu)

= P(xl ≤ x ≤ xu, zl − x ≤ y ≤ zu − x).

5.1. BRIEF REVIEW OF RANDOM VARIABLES 5-7

We can compute this probability by using the probability density functions for X
and Y :

P(A ∩B) =

∫ xu

xl

(∫ zu−x

zl−x
pY (y)dy

)
pX(x)dx

=

∫ xu

xl

∫ zu

zl

pY (z − x)pX(x)dzdx =:

∫ zu

zl

∫ xu

xl

pZ,X(z, x)dxdz.

Using Gaussians for X and Y we have

pZ,X(z, x) =
1√
2π
e−

1
2 (z − x− µY)2

· 1√
2π
e−

1
2 (x− µX)2

=
1

2π
e−

1
2

(
(z − x− µY)2 + (x− µX)2

)
.

A similar expression holds for pZ,Y . ∇

Given a random variable X, we can define various standard measures of the
distribution. The expectation or mean of a random variable is defined as

E(X) = 〈X〉 =

∫ ∞
−∞

x p(x) dx,

and the mean square of a random variable is

E(X2) = 〈X2〉 =

∫ ∞
−∞

x2 p(x) dx.

If we let µ represent the expectation (or mean) of X then we define the variance of
X as

E((X − µ)2) = 〈(X − 〈X〉)2〉 =

∫ ∞
−∞

(x− µ)2 p(x) dx.

We will often write the variance as σ2. As the notation indicates, if we have a
Gaussian random variable with mean µ and (stationary) standard deviation σ,
then the expectation and variance as computed above return µ and σ2.

Example 5.2 Exponential distribution
The exponential distribution has mean and variance given by

µ =
1

λ
, σ2 =

1

λ2
.

∇

Several useful properties follow from the definitions.

Proposition 5.1 (Properties of random variables).

1. If X is a random variable with mean µ and variance σ2, then αX is random
variable with mean αµ and variance α2σ2.

2. If X and Y are two random variables, then E(αX + βY) = αE(X) + βE(Y).

5-8 CHAPTER 5. STOCHASTIC SYSTEMS

3. If X and Y are Gaussian random variables with means µX , µY and variances
σ2
X , σ2

Y ,

p(x) =
1√

2πσ2
X

e
− 1

2

(
x−µX
σX

)2

, p(y) =
1√

2πσ2
Y

e
− 1

2

(
y−µY
σY

)2

,

then X + Y is a Gaussian random variable with mean µZ = µX + µY and
variance σ2

Z = σ2
X + σ2

Y ,

p(x+ y) =
1√

2πσ2
Z

e
− 1

2

(
x+y−µZ
σZ

)2

.

Proof. The first property follows from the definition of mean and variance:

E(αX) =

∫ ∞
−∞

αxp(x) dx = α

∫ ∞
−∞

αxp(x) dx = αE(X)

E((αX)2) =

∫ ∞
−∞

(αx)2 p(x) dx = α2

∫ ∞
−∞

x2 p(x) dx = α2E(X2).

The second property follows similarly, remembering that we must take the expecta-
tion using the joint distribution (since we are evaluating a function of two random
variables):

E(αX + βY) =

∫ ∞
−∞

∫ ∞
−∞

(αx+ βy) pX,Y (x, y) dxdy

= α

∫ ∞
−∞

∫ ∞
−∞

x pX,Y (x, y) dxdy + β

∫ ∞
−∞

∫ ∞
−∞

y pX,Y (x, y) dxdy

= α

∫ ∞
−∞

x pX(x) dx+ β

∫ ∞
−∞

y pY (y) dy = αE(X) + βE(Y).

The third item is left as an exercise.

5.2 Introduction to Random Processes

A random process is a collection of time-indexed random variables. Formally, we
consider a random process X to be a joint mapping of sample and a time to a state:
X : Ω × T → S, where T is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpret X(ω, t) as a regular
random variable, with X(ω, t′) representing a different random variable if t 6= t′.
Our description of random processes will consist of describing how the random
variable at a time t2 relates to the value of the random variable at an earlier time
t1.

To build up some intuition about random processes, we will begin with the
discrete time case, where the calculations are a bit more straightforward, and then
proceed to the continuous time case.

5.2. INTRODUCTION TO RANDOM PROCESSES 5-9

A discrete-time random process is a stochastic system characterized by the evo-
lution of a sequence of random variables X[k], where k is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k + 1] = AX[k] +Bu[k] + FV [k], Y [k] = CX[k] +W [k]. (5.11)

As in FBS2e, X ∈ Rn represents the state of the system, u ∈ Rm is the vector
of inputs (considered to be non-stochastic and therefore represented as u instead
of U), and Y ∈ Rp is the vector of outputs. The (possibly vector-valued) signal
V represents disturbances to the process dynamics and W represents noise in the
measurements. To try to fix the basic ideas, we will take u = 0, n = 1 (single state)
and F = 1 for now.

We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosen from some proba-
bility distribution. Thus we will let V [k] be a collection of random variables where
the values at each instant k are chosen from a probability distribution with pdf
pV,k(x). As the notation indicates, the distributions might depend on the time
instant k, although the most common case is to have a stationary distribution in
which the distributions are independent of k (defined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of V at time k is independent of the values of V at time l if k 6= l. In other words,
V [k] and V [l] are two separate random variables that are independent of each other.
We say that the corresponding random process is uncorrelated (also defined more
formally below). As a consequence of our independence assumption, we have that

E(V [k]V [l]) = E(V 2[k])δ(k − l) =

{
E(V 2[k]) k = l

0 k 6= l.

In the case that V [k] is a Gaussian with mean zero and (stationary) standard
deviation σ, then E(V [k]V [l]) = σ2 δ(k − l).

We next wish to describe the evolution of the state x in equation (5.11) in the
case when V is a random variable. In order to do this, we describe the state x as a
sequence of random variables X[k], k = 1, · · · , N . Looking back at equation (5.11),
we see that even if V [k] is an uncorrelated sequence of random variables, then the
states X[k] are not uncorrelated since

X[k + 1] = AX[k] + FV [k],

and hence the probability distribution for X at time k + 1 depends on the value
of X at time k (as well as the value of V at time k), similar to the situation in
Example 5.1.

Since each X[k] is a random variable, we can define the mean and variance as
µ[k] and σ2[k] using the previous definitions at each time k:

µ[k] := E(X[k]) =

∫ ∞
−∞

x p(x, k) dx,

σ2[k] := E((X[k]− µ[k])2) =

∫ ∞
−∞

(x− µ[k])2 p(x, k) dx.

5-10 CHAPTER 5. STOCHASTIC SYSTEMS

To capture the relationship between the current state and the future state, we define
the correlation function for a random process as

r(k1, k2) := E(X[k1]X[k2]) =

∫ ∞
−∞

x1x2 p(x1, x2; k1, k2) dx1dx2

The function p(xi, xj ; k1, k2) is the joint probability density function, which depends
on the times k1 and k2. A process is stationary if p(x, k + d) = p(x, d) for all k,
p(xi, xj ; k1 + d, k2 + d) = p(xi, xj ; k1, k2), etc. In this case we can write p(xi, xj ; d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write r(k1, k2) as r(d) = r(k, k + d).

We can compute the correlation function by explicitly computing the joint pdf
(see Example 5.1) or by directly computing the expectation. Suppose that we take
a random process of the form (5.11) with E(X[0]) = 0 and V having zero mean and
standard deviation σ. The correlation function is given by

E(X[k1]X[k2]) = E
{(k1−1∑

i=0

Ak1−iBV [i]
)(k2−1∑

j=0

Ak2−jBV [j]
)}

= E
{k1−1∑
i=0

k2−1∑
j=0

Ak1−iBV [i]V [j]BAk2−j
}
.

We can now use the linearity of the expectation operator to pull this inside the
summations:

E(X[k1]X[k2]) =

k1−1∑
i=0

k2−1∑
j=0

Ak1−iBE(V [i]V [j])BAk2−j

=

k1−1∑
i=0

k2−1∑
j=0

Ak1−iBσ2δ(i− j)BAk2−j

=

k1−1∑
i=0

Ak1−iBσ2BAk2−i.

Note that the correlation function depends on k1 and k2.
We can see the dependence of the correlation function on the time more clearly

by letting d = k2 − k1 and writing

r(k, k + d) = E(X[k]X[k + d]) =

k1−1∑
i=0

Ak−iBσ2BAd+k−i

=

k∑
j=1

AjBσ2BAj+d =
(k∑
j=1

AjBσ2BAj
)
Ad.

In particular, if the discrete time system is asymptotically stable then |A| < 1 and
the correlation function decays as we take points that are further departed in time
(d large). Furthermore, if we let k → ∞ (i.e., look at the steady state solution)
then the correlation function only depends on d (assuming the sum converges) and
hence the steady state random process is stationary.

5.3. CONTINUOUS-TIME, VECTOR-VALUED RANDOM PROCESSES 5-11

In our derivation so far, we have assumed that X[k + 1] only depends on the
value of the state at time k (this was implicit in our use of equation (5.11) and the
assumption that V [k] is independent of X). This particular assumption is known
as the Markov property for a random process: a Markovian process is one in which
the distribution of possible values of the state at time k depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that
a discrete random process is Markovian if

pX,k(x | X[k − 1], X[k − 2], . . . , X[0]) = pX,k(x | X[k − 1]).

Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not its history of values prior to that).

5.3 Continuous-Time, Vector-Valued Random Pro-
cesses

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful use of measure
theory and is beyond the scope of this text, so we focus here on the concepts that
will be useful for modeling and analysis of important physical properties.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X(t), t ∈ [0, T]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X(t1) with X(t2). We assume, as above,
that the process is described by continuous random variables, but the discrete state
case (with time still modeled as a real variable) can be handled in a similar fashion.

We call X(t) ∈ Rn the state of the random process at time t. For the case n > 1,
we have a vector of random processes:

X(t) =

X1(t)
...

Xn(t)


We can characterize the state in terms of a (joint) time-varying pdf,

P({xi,l ≤ Xi(t) ≤ xi,u}) =

∫ x1,u

x1,l

· · ·
∫ xn,u

xn,l

pX1,...,Xn(x; t)dxn . . . dx1.

Note that the state of a random process is not enough to determine the exact next
state, but only the distribution of next states (otherwise it would be a deterministic
process). We typically omit indexing of the individual states unless the meaning is
not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms of joint probability density functions:

P(x1l ≤ Xi(t1) ≤ x1u, x2l ≤ Xj(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l

pXi,Yi(x1, x2; t1, t2) dx1dx2

5-12 CHAPTER 5. STOCHASTIC SYSTEMS

The function p(xi, xj ; t1, t2) is called a joint probability density function and depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that if i = j, then pXi,Xi describes how Xi at time
t1 is related to Xi at time t2.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as
described in FBS2e). A process is stationary if p(x, t + s) = p(x, t) for all s,
p(xi, xj ; t1 + s, t2 + s) = p(xi, xj ; t1, t2), etc. In this case we can write p(xi, xj ; τ)
for the joint probability distribution, where τ = t2 − t1. Stationary distributions
roughly correspond to the steady state properties of a random process and we will
often restrict our attention to this case.

We are often interested in random processes in which changes in the state occur
when a random event occurs. In this case, it is natural to describe the state of
the system in terms of a set of times t0 < t1 < t2 < · · · < tn and X(ti) is the
random variable that corresponds to the possible states of the system at time ti.
Note that time time instants do not have to be uniformly spaced and most often
(for physical systems) they will not be. All of the definitions above carry through,
and the process can now be described by a probability distribution of the form

P
(
X(ti) ∈ [xi, xi + dxi], i = 1, . . . , n

)
=

p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0) dxn dxn−1 dx1,

where dxi are taken as infinitesimal quantities.
Just as in the case of discrete time processes, we define a continuous time random

process to be a Markov process if the probability of being in a given state at time
tn depends only on the state that we were in at the previous time instant tn−1 and
not the entire history of states prior to tn−1:

P
(
X(tn) ∈ [xn, xn + dxn] | X(ti) ∈ [xi, xi + dxi], i = 1, . . . , n− 1

)
= P

(
X(tn) ∈ [xn, xn + dxn] | X(tn−1) ∈ [xn−1, xn−1 + dxn−1]

)
. (5.12)

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(xi, xj ; t1, t2) but instead describe them in terms of a propagator
function. Let X(t) be a Markov process and define the Markov propagate as

Ξ(dt;x, t) = X(t+ dt)−X(t), given X(t) = x.

The propagate function describes how the random variable at time t is related to
the random variable at time t + dt. Since both X(t + dt) and X(t) are random
variables, Ξ(dt;x, t) is also a random variable and hence it can be described by its
density function, which we denote as Π(ξ, x; dt, t):

P
(
x ≤ X(t+ dt) ≤ x+ ξ

)
=

∫ x+ξ

x

Π(dx, x; dt, t) dx.

5.3. CONTINUOUS-TIME, VECTOR-VALUED RANDOM PROCESSES 5-13

The previous definitions for mean, variance, and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

µ(t) := E(X(t)) =

E(X1(t))
...

E(Xn(t))


Σ(t) := E((X(t)− µ(t))(X(t)− µ(t))T) =

E(X1(t)X1(t)) . . . E(X1(t)Xn(t))

. . .
...

E(Xn(t)Xn(t))


R(t1, t2) := E(X(t1)XT(t2)) =

E(X1(t1)X1(t2)) . . . E(X1(t1)Xn(t2))

. . .
...

E(Xn(t1)Xn(t2))


Note that the random variables and their statistical properties are all indexed by
the time t (or t1 and t2). The matrix R(t1, t2) is called the correlation matrix
for X(t) ∈ Rn. If t1 = t2 = t then R(t, t) describes how the elements of x are
correlated at time t (with each other) and in the case that the processes have zero
mean, R(t, t) = Σ(t). The elements on the diagonal of Σ(t) are the variances of the
corresponding scalar variables. A random process is uncorrelated if R(t1, t2) = 0
for all t 6= s. This implies that X(t1) and X(t2) are independent random events
and is equivalent to pX,Y (x, y) = pX(x)pY (y).

If a random process is stationary, then it can be shown that R(t1 + τ, t2 + τ) =
R(t1, t2) and it follows that the correlation matrix depends only on t2 − t1. In
this case we will often write R(t1, t2) = R(t2 − t1) or simply R(τ) where τ is the
correlation time. The covariance matrix in this case is simply R(0).

In the case where X is also scalar random process, the correlation matrix is
also a scalar and we will write r(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
r(τ) = r(−τ) = r(|τ |). This property also holds for the diagonal entries of the
correlation matrix since Rii(t2, t1) = Rii(t1, t2) from the definition.

Definition 5.7 (Ornstein-Uhlenbeck process). Consider a scalar random process
defined by a Gaussian pdf with µ = 0,

p(x, t) =
1√

2πσ2
e−

1
2
x2

σ2 ,

and a correlation function given by

r(t1, t2) =
Q

2ω0
e−ω0|t2−t1|.

The correlation function is illustrated in Figure 5.3. This process is known as an
Ornstein-Uhlenbeck process and it is a stationary process.

Note on terminology. The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the

5-14 CHAPTER 5. STOCHASTIC SYSTEMS

ρ(t1 − t2)

τ = t1 − t2

Figure 5.3: Correlation function for a first-order Markov process.

relationship between different variables X and Y and the relationship between a
single variable at different times, X(t1) and X(t2). The term “cross-covariance” is
used to refer to the covariance between two random vectors X and Y , to distinguish
this from the covariance of the elements of X with each other. The term “cross-
correlation” is sometimes also used. Finally, the term “correlation coefficient” refers
to the normalized correlation.

We will also make use of a special type of random process referred to as “white
noise”. A white noise process X(t) satisfies E(X(t)) = 0 and R(t1, t2) = Qδ(t2−t1),
where δ(τ) is the impulse function and Q > 0 is called the noise intensity. White
noise is an idealized process, similar to the impulse function or Heaviside (step)
function in deterministic systems. In particular, we note that r(0) = E(X2(t)) =∞,
so the covariance is infinite and we never see this signal in practice. However, like
the step and impulse functions, it is very useful for characterizing the response of a
linear system, as described in the following proposition. It can be shown that the
integral of a white noise process is a Wiener process, and so often white noise is
described as the derivative of a Wiener process.

5.4 Linear Stochastic Systems with Gaussian Noise

We now consider the problem of how to compute the response of a linear system to
a random process. We assume we have a linear system described in state space as

Ẋ = AX + FV, Y = CX (5.13)

Given an “input” V , which is itself a Gaussian random process with mean µ(t),
variance σ2(t) and correlation r(t, t + τ), what is the description of the random
process Y ?

Let V be a white noise process, with zero mean and noise intensity Q:

r(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y (t) =

∫ t

0

h(t− τ)V (τ) dτ,

where h(t− τ) is the impulse response for the system

h(t− τ) = CeA(t−τ)F

5.4. LINEAR STOCHASTIC SYSTEMS WITH GAUSSIAN NOISE 5-15

We now compute the statistics of the output, starting with the mean:

E(Y (t)) = E(

∫ t

0

h(t− η)V (η) dη)

=

∫ t

0

h(t− η)E(V (η)) dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull
the expectation inside the integral.

We can compute the covariance of the output by computing the correlation r(τ)
and setting σ2 = r(0). The correlation function for y is

rY (t1, t2) = E
(
Y (t1)Y (t2)

)
= E

(∫ t1

0

h(t1 − η)V (η) dη ·
∫ t2

0

h(t2 − ξ)V (ξ) dξ
)

= E
(∫ t1

0

∫ t2

0

h(t1 − η)V (η)V (ξ)h(t2 − ξ) dηdξ
)
.

Once again linearity allows us to exchange expectation and integration:

rY (t1, t2) =

∫ t1

0

∫ t2

0

h(t1 − η)E(V (η)V (ξ))h(t2 − ξ) dηdξ

=

∫ t1

0

∫ t2

0

h(t1 − η)Qδ(η − ξ)h(t2 − ξ) dηdξ

=

∫ t1

0

h(t1 − η)Qh(t2 − η) dη.

Now let τ = t2 − t1 and write

rY (τ) = rY (t, t+ τ) =

∫ t

0

h(t− η)Qh(t+ τ − η) dη

=

∫ t

0

h(ξ)Qh(ξ + τ) dξ (setting ξ = t− η).

Finally, we let t→∞ (steady state) to obtain

lim
t→∞

rY (t, t+ τ) = r̄Y (τ) =

∫ ∞
0

h(ξ)Qh(ξ + τ)dξ. (5.14)

If this integral exists, then we can compute the second order statistics for the output
Y .

We can provide a more explicit formula for the correlation function r in terms of
the matrices A, F and C by expanding equation (5.14). We will consider the general
case where V ∈ Rm and Y ∈ Rp and use the correlation matrix R(t1, t2) instead
of the correlation function r(t1, t2). Define the state transition matrix Φ(t, t0) =
eA(t−t0) so that the solution of system (5.13) is given by

X(t) = Φ(t, t0)X(t0) +

∫ t

t0

Φ(t, λ)FV (λ)dλ

5-16 CHAPTER 5. STOCHASTIC SYSTEMS

Proposition 5.2 (Stochastic response to white noise). Let E(X(t0)XT(t0)) =
P (t0) and V be white noise with E(V (λ)V T(ξ)) = RV δ(ξ − λ). Then the corre-
lation matrix for X is given by

RX(t1, t2) = P (t1)ΦT(t2, t1)

where P (t) satisfies the linear matrix differential equation

Ṗ (t) = AP + PAT + FRV F
T, P (0) = P0.

Proof. Using the definition of the correlation matrix, we have

E(X(t1)XT(t2)) = E
(
Φ(t, 0)X(0)XT(0)ΦT(t, 0) + cross terms

+

∫ t1

0

Φ(t1, ξ)FV (ξ) dξ

∫ t2

0

V T(λ)FTΦ(t2, λ) dλ

)
= Φ(t1, 0)E(X(0)XT(0))Φ(t2, 0)

+

∫ t1

0

∫ t2

0

Φ(t1, ξ)FE(V (ξ)V T(λ))FTΦ(t2, λ) dξ dλ

= Φ(t1, 0)P (0)ΦT(s2, 0) +

∫ t1

0

Φ(t1, λ)FRV (λ)FTΦ(t2, λ) dλ.

Now use the fact that Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0) (and similar relations) to obtain

RX(t1, t2) = P (t1)ΦT(t2, t1)

where

P (t) = Φ(t, 0)P (0)ΦT(t, 0) +

∫ T

0

Φ(t, λ)FRV F
T(λ)ΦT(t, λ)dλ

Finally, differentiate to obtain

Ṗ (t) = AP + PAT + FRV F
T, P (0) = P0

(see Friedland [Fri04] for details).

The correlation matrix for the output Y can be computed using the fact that
Y = CX and hence RY = CTRXC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 5.3 (Steady state response to white noise). For a time-invariant
linear system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+ τ) = PeA
Tτ , RY (τ) = CRX(τ)CT

where P satisfies the algebraic equation

AP + PAT + FRV F
T = 0 P > 0. (5.15)

Equation (5.15) is called the Lyapunov equation and can be solved in Python
using the function ct.lyap(A, Q), where Q = FRV F

T.

5.5. RANDOM PROCESSES IN THE FREQUENCY DOMAIN 5-17

Example 5.3 First-order system
Consider a scalar linear process

Ẋ = −aX + V, Y = cX,

where V is a white, Gaussian random process with noise intensity Q. Using the
results of Proposition 5.2, the correlation function for X is given by

RX(t, t+ τ) = p(t)e−aτ

where p(t) > 0 satisfies
ṗ(t) = −2ap+Q.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2atp(0) + (1− e−2at)
Q

2a
.

Finally, making use of the fact that Y = cX we have

r(t, t+ τ) = c2(e−2atp(0) + (1− e−2at)
Q

2a
)e−aτ .

In steady state, the correlation function for the output becomes

r(τ) =
c2Q

2a
e−aτ .

Note that the correlation function has the same form as the Ornstein-Uhlenbeck
process in Example 5.7 (with Q = c2σ2). This process is also called a first-order
Markov process, corresponding to the fact that white noise is passed through a
first-order (low-pass) filter. ∇

5.5 Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain
approach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the
properties of the response. In particular, if we let r(τ) be the correlation function
for a (scalar) random process, then we define the power spectral density function as
the Fourier transform of r:

S(ω) =

∫ ∞
−∞

r(τ)e−jωτ dτ, r(τ) =
1

2π

∫ ∞
−∞

S(ω)ejωτ dτ.

The power spectral density provides an indication of how quickly the values of a
random process can change through the frequency content: if there is high frequency
content in the power spectral density, the values of the random variable can change
quickly in time.

5-18 CHAPTER 5. STOCHASTIC SYSTEMS

ω0 logω

logS(ω)

Figure 5.4: Power spectral density for a first-order Markov process.
.

Example 5.4 First-order Markov process
To illustrate the use of these measures, consider a first-order Markov process as
defined in Example 5.7. The correlation function is

r(τ) =
Q

2ω0
e−ω0(τ).

The power spectral density becomes

S(ω) =

∫ ∞
−∞

Q

2ω0
e−ω|τ |e−jωτ dτ

=

∫ 0

−∞

Q

2ω0
e(ω−jω)τ dτ +

∫ ∞
0

Q

2ω0
e(−ω−jω)τ dτ =

Q

ω2 + ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plot S(ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 5.4. Note that although S(ω) has a form similar to a transfer function, it is
a real-valued function and is not defined for complex s. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise process is a zero-mean, random process with power spectral density
S(ω) = Q = constant for all ω. If X(t) ∈ Rn (a random vector), then Q ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”. The following proposition verifies that this formal definition agrees with
our previous (time domain) definition.

Proposition 5.4. For a white noise process,

r(τ) =
1

2π

∫ ∞
−∞

S(ω)ejωτ dτ = Qδ(τ),

where δ(τ) is the unit impulse function.

Proof. If τ 6= 0 then

r(τ) =
1

2π

∫ ∞
−∞

Q(cos(ωτ) + j sin(ωτ) dτ = 0

5.6. IMPLEMENTATION IN PYTHON 5-19

If τ = 0 then r(τ) =∞. Can show that

r(0) = lim
ε→0

∫ ε

−ε

∫ ∞
−∞

(· · ·) dωdτ = Qδ(0)

Given a linear system

Ẋ = AX + FV, Y = CX,

with V given by white noise, we can compute the spectral density function corre-
sponding to the output Y . We start by computing the Fourier transform of the
steady state correlation function (5.14):

SY (ω) =

∫ ∞
−∞

[∫ ∞
0

h(ξ)Qh(ξ + τ)dξ

]
e−jωτ dτ

=

∫ ∞
0

h(ξ)Q

[∫ ∞
−∞

h(ξ + τ)e−jωτ dτ

]
dξ

=

∫ ∞
0

h(ξ)Q

[∫ ∞
0

h(λ)e−jω(λ−ξ) dλ

]
dξ

=

∫ ∞
0

h(ξ)ejωξ dξ ·QH(jω) = H(−jω)QH(jω)

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

SY (ω) = H1(−jω)H2(−jω)QH2(jω)H1(jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbances is
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a noise intensity Q and filter H(s) such that we
match the statistics S(ω) of a measured noise or disturbance signal. In other words,
given S(ω), find Q > 0 and H(s) such that S(ω) = H(−jω)QH(jω). This problem
is know as the spectral factorization problem.

Figure 5.5 summarizes the relationship between the time and frequency domains.

5.6 Implementation in Python

NumPy and SciPy have a number of functions to implement covariance and corre-
lation, which mostly match the terminology here:

• numpy.cov(Xs) - returns the sample variance of the vector random variable
X ∈ Rn where each column of Xs represents samples of X.

5-20 CHAPTER 5. STOCHASTIC SYSTEMS

p(v) =
1√

2πRV
e
− v2

2RV

SV (ω) = RV

V −→ H −→ Y
p(y) =

1√
2πRY

e
− y2

2RY

SY (ω) = H(−jω)RVH(jω)

RV (τ) = RV δ(τ)
Ẋ = AX + FV

Y = CX

RY (τ) = CPe−A|τ |CT

AP + PAT + FRV F
T = 0

Figure 5.5: Summary of steady state stochastic response.

• numpy.cov(Xs, Ys) - returns the (cross-)covariance of the variables X and Y
where Xs and Ys represent samples of the given random variables.

• scipy.correlate(X, Y) - the “cross-correlation” between two random (1D)
sequences. If these sequences came from a random process, this is a single
sample approximation of the (discrete-time) correlation function. Use the
function scipy.correlation_lags(len(X), len(Y)) to compute the lag τ and
scipy.correlate(X, X) to get the (auto) correlation function rX(τ).

The python-control package has variants of these functions that do appropriate
processing for continuous time models.

The white_noise function generates a (multi-variable) white noise signal of spec-
ified intensity as either a sampled continuous time signal or a discrete time signal.
A white noise signal along a 1D array of linearly spaced set of times timepts can
be computing using

V = ct.white_noise(timepts, Q[, dt])

where Q is a positive definite matrix providing the noise intensity and dt is the
sampling time (or 0 for continuous time).

In continuous time, the white noise signal is scaled such that the integral of the
covariance over a sample period is Q, thus approximating a white noise signal. In
discrete time, the white noise signal has covariance Q at each point in time (without
any scaling based on the sample time).

The correlation function computes the correlation matrix E(XT(t+ τ)X(t)) or
the cross-correlation matrix E(XT(t+ τ)Y (t)):

tau, Rtau = correlation(timepts, X[, Y])

The signal X (and Y, if present) represents a continuous time signal sampled at reg-
ularly spaced times timepts. The return value provides the correlation Rτ between
X(t + τ) and X(t) at a set of time offsets τ (determined based on the spacing of
entries in the timepts vector.

Note that the computation of the correlation function is based on a single time
signal (or pair of time signals) and is thus a very crude approximation to the true
correlation function between two random processes.

To compute the response of a linear (or nonlinear) system to a white noise input,
use the forced_response (or input_output_response) function:

a, c = 1, 1

sys = ct.ss([[-a]], [[1]], [[c]], 0)

timepts = np.linspace(0, 5, 1000)

5.7. FURTHER READING 5-21

0 1 2 3 4 5
Time t [sec]

30

20

10

0

10

20

30

In
pu

t V

(a) White noise input

4 2 0 2 4
Correlation time au [sec]

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Co
rre

la
tio

n
fu

nc
tio

n
r(a

u)

numerical
analytical

(b) Output correlation function, r(τ)

Figure 5.6: Stochastic response of a first order system.

Q = np.array([[0.1]])

V = ct.white_noise(timepts, Q)

resp = ct.forced_response(sys, timepts, V)

The correlation function for the output can be computed using the correlation

function and compared to the analytical expression:

tau, r_Y = ct.correlation(timepts, resp.outputs)

plt.plot(tau, r_Y)

plt.plot(tau, c**2 * Q.item() / (2 * a) * np.exp(-a * np.abs(tau)))

An example set of outputs is shown in Figure 5.6.

5.7 Further Reading

There are several excellent books on stochastic systems that cover the results in this
chapter in much more detail. For discrete-time systems, the textbook by Kumar and
Varaiya [KV86] provides an derivation of the key results. Results for continuous-
time systems can be found in the textbook by Friedland [Fri04]. Åström [Åst06a]
gives a very elegant derivation in a unified framework that integrates discrete-time
and continuous-time systems.

Exercises

5.1. Let Z be a random random variable that is the sum of two independent nor-
mally (Gaussian) distributed random variables X1 and X2 having means m1, m2

and variances σ2
1 , σ2

2 respectively. Show that the probability density function for Z
is

p(z) =
1

2πσ1σ2

∫ ∞
−∞

exp

{
− (z − x−m1)2

2σ2
1

− (x−m2)2

2σ2
2

}
dx

and confirm that this is normal (Gaussian) with mean m1+m2 and variance σ2
1 +σ2

2 .
(Hint: Use the fact that p(z|x2) = pX1

(x1) = pX1
(z − x2).)

5-22 CHAPTER 5. STOCHASTIC SYSTEMS

5.2 (Feedback Systems, 1st edition [ÅM08], Exercise 7.13). Consider the motion of
a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k + 1] = x[k] + u[k],

where x is the position of the particle and u is a white noise process with E(u[i]) = 0
and E(u[i]u[j])Ruδ(i−j). Show that the expected value of the particle as a function
of k is given by

E(x[k]) = x[0] =: µx

and the covariance is given by

E((x[k]− µx)2) = kRu

5.3. Consider a second order system with dynamics[
Ẋ1

Ẋ2

]
=

[
−a 0
0 −b

] [
X1

X2

]
+

[
1
1

]
V, Y =

[
1 1

] [X1

X2

]
that is forced by Gaussian white noise with zero mean and variance σ2. Assume
a, b > 0 and E(X(0)) = 0.

(a) Compute the (steady state) correlation function r(τ) for the output of the
system. Your answer should be an explicit formula in terms of a, b and σ.

(b) Assuming that the input transients have died out, compute the mean and
variance of the output.

5.4. Find a constant matrix A and vectors F and C such that for

Ẋ = AX + FW, Y = CX

the power spectrum of Y is given by

S(ω) =
1 + ω2

(1− 7ω2)2 + 1

Describe the sense in which your answer is unique.

5.5. Consider the dynamics of the vectored thrust aircraft described in Exam-
ples 2.4 and 3.5 with disturbances added in the x and y coordinates:

mẍ = F1 cos θ − F2 sin θ − cẋ+Dx,

mÿ = F1 sin θ + F2 cos θ − cẏ −mg +Dy,

Jθ̈ = rF1.

(5.16)

The measured values of the system are the position and orientation, with added
noise Nx, Ny, and Nθ:

~Y =

xy
θ

+

NxNy
Nz

 . (5.17)

5.7. FURTHER READING 5-23

Assume that the input disturbances are modeled by independent, first order Markov
(Ornstein-Uhlenbeck) processes with QD = diag(0.01, 0.01) and ω0 = 1 (see Defi-
nition 5.7) and that the noise is modeled as white noise with covariance matrix

QN =

2× 10−4 0 1× 10−5

0 2× 10−4 1× 10−5

1× 10−5 1× 10−5 1× 10−4


(a) Create disturbance and noise vectors with the desired characteristics and then
compute the sample mean, covariance, and correlation, showing that they match
the specifications.

(b) Create a simulation of the PVTOL system with noise and disturbance inputs
and plot the response of the system from an initial equilibrium position (x0, y0) =
(2, 1) to the origin using an LQR compensator with weights

Qx = diag([1, 1, 10, 0, 0, 0]), Qu = diag([10, 1]).

(c) Compute the linearization of the system and find the (steady state) mean and
variance of the output of the linearized system.

(d) Use the linearization to compute the (analytical) correlation function for the

output vector ~Y . Plot the (auto) correlation function for x, y, and θ.

(e) Using the “stationary” (post-initial transient) portion of your simulation from
part (b), compute the sample mean, sample variance, and sample correlation for
the output Y . Compare these to the calculations from parts (c) and (d).

5-24 CHAPTER 5. STOCHASTIC SYSTEMS

Chapter 6

Kalman Filtering

In this chapter we derive the optimal estimator for a linear system in continuous
time (also referred to as the Kalman-Bucy filter). This estimator minimizes the
covariance and can be implemented as a recursive filter. We also show how to com-
bine optimal estimation with state feedback to solve the linear quadratic Gaussian
(LQG) control problem, and explore extensions of Kalman filtering for continuous
time systems, such as the extended Kalman filter. Optimal estimation of discrete
time systems is described in more detail in Chapter 7, in the context of sensor
fusion.

Prerequisites. Readers should have basic familiarity with continuous-time stochastic
systems at the level presented in Chapter 5 as well as the material in FBS2e,
Chapter 8 on state space observability and estimators.

6.1 Linear Quadratic Estimators

Consider a stochastic system

Ẋ = AX +Bu+ FV, Y = CX +W,

where X represents that state, u is the (deterministic) input, V represents dis-
turbances that affect the dynamics of the system and W represents measurement
noise. Assume that the disturbance V and noise W are zero-mean, Gaussian white
noise (but not necessarily stationary):

p(w) =
1√

det(2πRV)
e−

1
2w

TR−1
V w E(V (t1)V T(t2)) = RV (t1)δ(t2 − t1)

p(v) =
1√

det(2πRV)
e−

1
2v

TR−1
W v E(W (t1)WT(t2)) = RW (t1)δ(t2 − t1)

We also assume that the cross correlation between V and W is zero, so that the
disturbances are not correlated with the noise. Note that we use multi-variable
Gaussians here, with noise intensities RV ∈ Rm×m and RW ∈ Rp×p. In the scalar
case, RV = σ2

V and RW = σ2
W .

6-1

6-2 CHAPTER 6. KALMAN FILTERING

We formulate the optimal estimation problem as finding the estimate x̂(t) that
minimizes the mean square error E((x(t)− X̂(t))(X(t)− x̂(t))T) given {y(τ) : 0 ≤
τ ≤ t} where X and X̂ satisfy the dynamics for the system and y is the measured
outputs of the system. Note that our system state is not known, but we do have a
description of X as a random process, and hence we can reason over the distribution
of possible states of that process that are consistent with the output measurements.

The estimation problem be viewed as solving a least squares problem: given all
previous y(t), find the estimate X̂(t) that satisfies the dynamics and minimizes the
square error between the system state and the estimated state. It can be shown
that this is equivalent to finding the expected value of X subject to the “constraint”
given by all of the previous measurements, so that X̂(t) = E(X(t) | Y (τ), τ ≤ t).
(This was the way that Kalman originally formulated the problem, and is explored
in Exercise 6.1.)

The following theorem provides the solution to the optimal estimation problem
for a linear system driven by disturbances and noise that are modeled as white
noise processes.

Theorem 6.1 (Kalman-Bucy, 1961). The optimal estimator has the form of a
linear observer

˙̂x = Ax̂+Bu− L(Cx̂− y)

where L(t) = P (t)CTR−1
W and P (t) = E((X(t)− x̂(t))(X(t)− x̂(t))T) satisfies

Ṗ = AP + PAT − PCTR−1
W (t)CP + FRV (t)FT,

P (0) = E(X(0)XT(0)).

Sketch of proof. The error dynamics are given by

Ė = (A− LC)E + ξ, ξ = FV − LW, Rξ = FRV F
T + LRWL

T

The covariance matrix PE = P for this process satisfies

Ṗ = (A− LC)P + P (A− LC)T + FRV F
T + LRWL

T

= AP + PAT + FRV F
T − LCP − PCTLT + LRWL

T

= AP + PAT + FRV F
T + (LRW − PCT)R−1

W (LRW − PCT)T

− PCTR−1
W CP,

where the last line follows by completing the square. We need to find L such that
P (t) is as small as possible, which can be done by choosing L so that Ṗ decreases
by the maximum amount possible at each instant in time. This is accomplished by
setting

LRW = PCT =⇒ L = PCTR−1
W ,

and the final form of the update law for P follows by substitution of L.

Note that the Kalman filter has the form of a recursive filter: given P (t) =
E(E(t)ET(t)) at time t, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X̂(t) and the covariance PE(t), so you can see how
well the error is converging.

6.1. LINEAR QUADRATIC ESTIMATORS 6-3

Another observation is that form of the covariance update can be considered to
consist of a prediction step and a correction step. If we had no information about
the output, then the covariance matrix would change just as in the case of the
stochastic response from Chapter 5:

Ṗ = AP + PAT + FRV (t)FT.

If A is stable then the first two terms tend to decrease the error covariance, but the
third term will increase the covariance (because of the effect of disturbances). The
remaining term in the covariance update is

−PCTR−1
W (t)CP,

which we can regard as a correction term due to the feedback term −L(Cx̂ − y).
This term decreases the covariance (because we have new data), but the amount to
which it does so is limited by the noisiness of the measurement (hence the scaling
by R−1

W).

Example 6.1 First-order system
Consider a first-order linear system of the form

Ẋ = −aX + V, Y = cX +W,

where V is white noise with variance σ2
V and W is white noise with variance σ2

W .
The optimal estimator has the form

˙̂x = −ax̂− L(x̂− y) where L = p(t)c/σ2
W ,

and the error covariance p(t) satisfies the differential equation

ṗ = −2ap− c2p2

σ2
W

+ σ2
V , p(0) = E(x(0)2).

Figure 6.1 shows a sample plot of p(t) and the estimate x̂ versus x for an instance of
the noise and disturbance signals. We see that while there is a large initial error in
the state estimate, it quickly reduces the error and then (roughly) tracks the state
of the underlying (noisy) process. (Since the disturbances are large and unknown,
it is not possible to exactly track the actual system state.) ∇

If the noise is stationary (RV , RW constant) and if the dynamics for P (t) are
stable, then the observer gain converges to a constant and satisfies the algebraic
Riccati equation:

L = PCTR−1
W AP + PAT − PCTR−1

W CP + FRV F
T.

This is the most commonly used form of the controller since it gives an explicit
formula for the estimator gains that minimize the error covariance. The gain matrix
for this case can solved use the control.lqe command in Python or MATLAB.

Another property of the Kalman filter is that it extracts the maximum possible
information about output data. To see this, consider the residual random process

R = Y − CX̂

6-4 CHAPTER 6. KALMAN FILTERING

0.0 0.2 0.4
Time t [s]

0.0

0.5

1.0

p
(t

)

(a) Covariance p(t)

0.0 0.2 0.4
Time t [s]

0

1

x
(t

),
x̂
(t

)

x x̂

(b) State x and estimate x̂

Figure 6.1: Optimal estimator for a first-order linear system with parameter
values a = 1, c = 1, σV = 1, σW = 0.1, starting from initial condition x(0) = 1.

(this process is also called the innovations process). It can be shown for the Kalman
filter that the correlation matrix of R is given by

RR(t1, t2) = V (t1)δ(t2 − t1).

This implies that the residuals are a white noise process and so the output error
has no remaining dynamic information content.

6.2 Extensions of the Kalman Filter

The Kalman filter has a number of extensions that are used to extend its utility to
cases where the noise and disturbances are not white noise and when the process
is not linear. We summarize some of these extensions briefly here, with additional
extensions provided in the next chapter.

Correlated disturbances and noise

The derivation of the Kalman filter assumes that the disturbances and noise are
independent and white. Removing the assumption of independence is straightfor-
ward and simply results in a cross term (E(V (t)W (s)) = RVW δ(s−t)) being carried
through all calculations.

To remove the assumption of white noise for the process disturbances or sensor
noise, we can construct a filter that takes white noise as an input and produces a
random process with the appropriate correlation function (or equivalently, spectral
power density function). The intuition behind this approach is that we must have an
internal model of the noise and/or disturbances in order to capture the correlation
between different times.

Extended Kalman filters

Consider a nonlinear system

Ẋ = f(X,u, V), X ∈ Rn, u ∈ Rm,
Y = CX +W, Y ∈ Rp,

6.2. EXTENSIONS OF THE KALMAN FILTER 6-5

where V and W are Gaussian white noise processes with covariance matrices RV
and RW . A nonlinear observer for the system can be constructed by using the
process

˙̂
X = f(X̂, u, 0) + L(Y − CX̂).

If we define the error as E = X − X̂, the error dynamics are given by

Ė = f(X,u, V)− f(X̂, u, 0)− LC(X − X̂)

= F (E, X̂, u, V)− LCe,

where
F (E, X̂, u, V) = f(E + X̂, u, V)− f(X̂, u, 0).

We can now linearize around current estimate X̂:

Ê =
∂F

∂E
E + F (0, X̂, u, 0)︸ ︷︷ ︸

=0

+
∂F

∂V
V︸ ︷︷ ︸

noise

− LCe︸︷︷︸
observer gain

+ h.o.t

≈ ÃE + F̃ V − LCE,

where the matrices

Ã =
∂F

∂e

∣∣∣∣
(0,X̂,u,0)

=
∂f

∂X

∣∣∣∣
(X̂,u,0)

,

F̃ =
∂F

∂V

∣∣∣∣
(0,X̂,u,0)

=
∂f

∂V

∣∣∣∣
(X̂,u,0)

depend on current estimate X̂. We can now design an observer for the linearized
system around the current estimate:

˙̂
X = f(X̂, u, 0) + L(Y − CX̂), L = PCTR−1

V ,

Ṗ = (Ã− LC)P + P (Ã− LC)T + F̃RV F̃
T + LRWL

T,

P (t0) = E(X(t0)XT(t0)).

This is called the (Schmidt) extended Kalman filter (EKF).
The intuition in the Kalman filter is that we replace the prediction portion of

the filter with the nonlinear modeling while using the instantaneous linearization
to compute the observer gain. Although we lose optimality, in applications the
extended Kalman filter often works well and it is very versatile, as illustrated in
the following example.

Example 6.2 Online parameter estimation
Consider a linear system with unknown parameters ξ

Ẋ = A(ξ)X +B(ξ)u+ FV, ξ ∈ Rp,
Y = C(ξ)X +W.

We wish to solve the parameter identification problem: given u(t) and Y (t), esti-
mate the value of the parameters ξ.

6-6 CHAPTER 6. KALMAN FILTERING

Observer

Σ
ufb

Σ Σ
ηµ

Process

v w

ye
State

Feedback

xdGeneration

Trajectory

ud

Σ

Td

−x̂

u

Figure 6.2: Block diagram of a basic feedback loop.
.

One approach to this online parameter estimation problem is to treat ξ as an
unknown state that has zero derivative:

Ẋ = A(ξ)X +B(ξ)u+ FV, ξ̇ = 0.

We can now write the dynamics in terms of the extended state Z = (X, ξ):

d

dt

[
X
ξ

]
=

f(
[
X
ξ

]
,u,V)︷ ︸︸ ︷[

A(ξ) 0
0 0

] [
X
ξ

]
+

[
B(ξ)

0

]
u+

[
F
0

]
V,

Y = C(ξ)X +W︸ ︷︷ ︸
h(
[
X
ξ

]
,V)

.

This system is nonlinear in the extended state Z, but we can use the extended
Kalman filter to estimate Z. If this filter converges, then we obtain both an estimate
of the original state X and an estimate of the unknown parameter ξ ∈ Rp.

Remark: need various observability conditions on augmented system in order
for this to work. ∇

6.3 LQG Control

We now return to the full control problem, in which we wish to design a controller
that uses the estimated state and tracks a trajectory. Figure 1.4 shows the high
level view of the system, which we replicate in Figure 6.2, leaving out the unmodeled
dynamics for simplicity. We assume that all processes are linear and hence it will
suffice to consider the problem of stabilizing the origin.

The model for our process dynamics now must include the control input u and
so we write

Ẋ = AX +Bu+ FV,

Y = CX +W,

where V and W are white noise processes with appropriate covariances.
The linear quadratic Gaussian control problem is to find a controller that will

minimize

J = E
(∫ ∞

0

[
(Y − yd)TQy(Y − yd) + (U − ud)TQu(U − ud)

]
dt

)
,

6.4. IMPLEMENTATION IN PYTHON 6-7

where U is now considered as a random variable. While in general we might imag-
ine that the optimal controller could require some complex combination of state
estimation and state feedback, it turns out that it can be shown that the struc-
ture of the optimal control separates into an optimal controller assuming perfect
state knowledge and an optimal estimator that is independent of the control system
gains.

Theorem 6.2 (Separation principle). The optimal controller for a linear system
with white noise process disturbances and sensor noise has the form

˙̂x = Ax̂+Bu− L(Cx̂− y)

u = ud −K(x̂− xd)

where L is the optimal observer gain ignoring the controller and K is the optimal
controller gain ignoring the noise.

This is called the separation principle (for H2 control). A proof of this theorem
can be found in Friedland [Fri04] (and many other textbooks).

6.4 Implementation in Python

Stationary Kalman gains can be computed in python-control using the lqe function,
which constructs an optimal estimator gain and covariance for a linear system. The
Python command

L, P, E = ct.lqe(sys, Qv, Qw[, Qvw])

computes the optimal estimator gain L, steady state error covariance matrix P, and
closed loop poles for the estimator E given the system dynamics and covariance of
the process disturbances (Qv) and sensor noise (Qw), as well as any cross-covariance
between the two sets of signals (Qvw).

The create_estimator_iosystem function can be used to create an I/O system
implementing a Kalman filter, including integration of the Riccati ODE. The com-
mand has the form

estim = ct.create_estimator_iosystem(sys, Qv, Qw)

The input to the estimator is the measured outputs y and the system input u. To
run the estimator on a noisy signal, use the command

resp = ct.input_output_response(est, timepts, [Y, U], [X0, P0])

If desired, the correct parameter can be set to False to allow prediction with no
additional sensor information:

resp = ct.input_output_response(

estim, timepts, 0, [X0, P0], param={’correct’: False})

The create_statefbk_iosystem function can be used to combine an estimator
with a state feedback controller:

K, _, _ = ct.lqr(sys, Qx, Qu)

estim = ct.create_estimator_iosystem(sys, Qv, Qw, P0)

ctrl, clsys = ct.create_statefbk_iosystem(sys, K, estimator=estim)

6-8 CHAPTER 6. KALMAN FILTERING

The controller will have the same form as a full state feedback controller, but with
the system state x input replaced by the estimated state x̂ (output of estim):

u = ud −K(x̂− xd).

The closed loop controller clsys includes both the state feedback and the estimator
dynamics and takes as its input the desired state xd and input ud:

resp = ct.input_output_response(

clsys, timepts, [Xd, Ud], [X0, np.zeros_like(X0), P0])

6.5 Application to a Thrust Vectored Aircraft

To illustrate the use of the Kalman filter, we consider the problem of estimating
the state for the Caltech ducted fan, described already in Section 4.6. We use the
simplified model described in Example 3.5, with added disturbances and noise.

We begin by defining an extended Kalman filter that uses the nonlinear dynam-
ics to estimate the current state. The dynamics of the system with disturbances on
the x and y variables is given by

mẍ = F1 cos θ − F2 sin θ − cẋ+ dx,

mÿ = F1 sin θ + F2 cos θ − cẏ −mg + dy,

Jθ̈ = rF1.

(6.1)

The measured values of the system are the position and orientation, with added
noise nx, ny, and nθ:

~y =

xy
θ

+

nxny
nz

 . (6.2)

We assume that the disturbances are represented by white noise with intensity
σ2 = 0.01 and that the sensor noise has noise intensity matrix

QN =

2× 10−4 0 1× 10−5

0 2× 10−4 1× 10−5

1× 10−5 1× 10−5 1× 10−4

 .
To compute the update for the Kalman filter, we require the linearization of the

system at a state ~x = (x, y, θ, ẋẏ, ż), which can be computed from equation (6.1)
to be

Ẋ = AX +Bu+ FV,

where

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 −F1
m
sθ − F2

m
cθ − c

m
0 0

0 0 F1
m
cθ − F2

m
sθ 0 − c

m
0

0 0 0 0 0 0

 , B =



0 0
0 0
0 0

1
m
cθ − 1

m
sθ

1
m
sθ

1
m
cθ

r/J 0

 , F =


0
0
0
1
1
0

 ,

6.6. FURTHER READING 6-9

with cθ = cos θ and sθ = sin θ.

The state estimate is given by using the nonlinear dynamics for the prediction
of the state error with a linear correction term, and the linearized dynamics for the
update of the covariance matrix. If we let ξ = (x, y, θ, ẋ, ẏ, θ̇) ∈ R6 represent the
states and η = (x, y, θ) ∈ R3 represent write the the output, the dynamics of the
state estimate written as

˙̂
ξ = f(ξ, u)− L(Cξ̂ − η),

where f(ξ, u) represents the full nonlinear dynamics in equation (6.1) and C =[
I 0

]
∈ R3×6 represents the output matrix. The gain matrix L = P (t)CTR−1

W is
chosen based on the time-varying error covariance matrix P (t), which evolves using
the linearized dynamics:

Ṗ = A(ξ)P + PA(ξ)T − PCTR−1
W (t)CP + FRV (t)FT,

P (0) = E(X(0)XT(0)).

To show how this estimator can be used, consider the problem of stabilizing
the system to the origin with an LQR controller that uses the estimated state.
We compute the LQR controller as if the entire state ξ were available directly, so
the computations are identical to those in Example 3.5. We choose the physically
motivated set of weights given by

Qξ =


100 0 0 0 0 0
0 10 0 0 0 0
0 0 36/π 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Qu =

[
10 0
0 1

]
.

For the (extended) Kalman filter, we model the process disturbances and sensor
noise as white noise processes with noise intensities

RV =

[
0.01 0

0 0.01

]
, RW =

2× 10−4 0 1× 10−5

0 2× 10−4 1× 10−5

1× 10−5 1× 10−5 1× 10−4


Figure 6.3 shows the response of the system starting from an initial position

(x0, y0) = (2, 1) and with disturbances and noise with intensity 10-100X smaller
than the worst case for which we designed the system.

6.6 Further Reading

There is a vast literature on Kalman filtering and linear quadratic Gaussian (LQG)
control theory. The treatment in this chapter follows fairly closely to that of Fried-
land [Fri04]. A compact treatment of LQG theory is given in the books by Anderson
and Moore [AM90], Åström [Åst06b], and Lindquist and Picci [LP15].

6-10 CHAPTER 6. KALMAN FILTERING

0.0 2.5 5.0 7.5 10.0
Time t [s]

0

1

2

Po
si

tio
n
x

, y
 [m

] x

y

x̂

ŷ

(a) Estimated states

0 1 2
x [m]

0.0

0.5

1.0

y
[m

]

Extended KF
Full state

(b) Full state versus EKF

Figure 6.3: LQR control of the VTOL system with an extended Kalman filter to
estimate the state. (a) The x and y positions as a function of time, with dashed
lines showing the estimated values from the extended Kalman filter. (b) The xy
path of the system with full state feedback (and no noise) versus the controller
using the extended Kalman filter.

Exercises

6.1. Show that if we define the estimated state of a random process X as the
conditional mean

x̂(t) = E(X(t) | y(τ), τ ≤ t)

that x̂ minimizes

E(x̂(t)−X(t) | y(τ), τ ≤ t).

6.2. Consider a scalar control system

Ẋ = λX + u+ σvV

Y = X + σwW,

where V and W are zero-mean, Gaussian white noise processes with covariance 1
and σv, σw > 0. Assume that the initial value of X is modeled as a Gaussian with
mean X0 and variance σ2

X0
.

(a) Assume that we initialize a Kalman filter such that the initial covariance starts
near a steady state value p∗. Given conditions on λ such that error covariance is
locally stable about this solution.

(b) Suppose that V is no longer taken to be white noise and instead has a correla-
tion function given by

ρV (τ) = e−α|τ |, α > 0.

Write down an estimator that minimizes the mean square error of the output under
these conditions. You do not need to explicitly solve the resulting equations, just
write them down in a form that is similar to an appropriate Kalman filter equation.

6.6. FURTHER READING 6-11

6.3. Consider a discrete-time, scalar linear system with dynamics

x[k + 1] = ax[k] + v[k], y[k] = x[k] + w[k],

where v and w are discrete-time, Gaussian random processes with mean zero and
variances 1 and σ2, respectively. Assume that the initial value of the state has zero
mean and variance σ2

0 .

(a) Compute the optimal estimator for the system using y as a (noisy) measure-
ment. Your solution should be in the form of an explicit, time-varying, discrete-time
system.

(b) Assume that a < 1. Write down an explicit formula for the mean and covariance
of the steady-state error of the optimal estimator.

(c) Suppose the mean value of the initial condition is E(x[0]) = 1 and a = 1.
Determine the optimal steady-state estimator for the system.

6.4. Consider the dynamics of an inverted pendulum whose dynamics are given by

dx

dt
=

[
x2

sinx1 − cx2 + u cosx1

]
,

where x = (θ, θ̇) and c > 0 is the damping coefficient. We assume that we have a
sensor that can measure the offset of a point along the inverted pendulum

y = r sin θ,

where r ∈ [0, `] is a point along the pendulum and ` is the length of the pendulum.
Assume that the pendulum is subject to input disturbances v that are modeled as
white noise with intensity σ2

v and that the sensor is subject to additive Guassian
white noise with noise intensity σ2

w.

(a) Determine the optimal location of the sensor (r∗) that minimizes the steady
state covariance of the error P for system linearized around xe = 0 and justify your
answer.

(b) Show that the Kalman filter gain L = PCTR−1
w does not depend on the covari-

ance of the error in θ̇.

(c) Take c = 0 and compute the steady state gain for the Kalman filter as a function
of the sensor location r.

Note: for the first two parts it is not necessary to solve equations for the steady
state covariance of the error. For the last part, your answer should not require
a substantial amount of algebra if you organize your calculations a bit (and set
c = 0).

6.5. Consider the problem of estimating the position of an autonomous mobile ve-
hicle using a GPS receiver and an IMU (inertial measurement unit). The dynamics
of the vehicle are given by

6-12 CHAPTER 6. KALMAN FILTERING

x

l

φ

θ
y ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

`
tan δ v,

We assume that the vehicle has disturbances in the inputs v and δ with standard
deviation of up to 10% and noisy measurements from the GPS receiver and IMU.

We consider a trajectory in which the car is driving on a constant radius curve
at v = 10 m/s forward speed with δ = 5◦ for a duration of 10 seconds.

(a) Suppose first that we only have the GPS measurements for the xy position of
the vehicle. These measurements give the position of the vehicle with approximately
10 cm accuracy. Model the GPS error as Gaussian white noise with σ = 0.1 meter
in each direction. Design a Kalman filter-based estimator for the system and plot
the estimated states versus the actual states. What is the covariance of the estimate
at the end of the trajectory?

(b) An IMU can be used to measure angular rates and linear acceleration. For
simplicity, we assume that the IMU is able to directly measure the angle of the car
with a standard deviation of 1 degree. Design an updated estimator for the system
using the GPS and IMU measurements, and plot the estimated states versus the
actual states. What is the covariance of the estimate at the end of the trajectory?

Chapter 7

Sensor Fusion

In this chapter we consider the problem of combining the data from different sensors
to obtain an estimate of a (common) dynamical system. Unlike the previous chap-
ters, we focus here on discrete-time processes, leaving the continuous-time case to
the exercises. We begin with a summary of the input/output properties of discrete-
time systems with stochastic inputs, then present the discrete-time Kalman filter,
and use that formalism to formulate and present solutions for the sensor fusion
problem. Some advanced methods of estimation and fusion are also summarized at
the end of the chapter that demonstrate how to move beyond the linear, Gaussian
process assumptions.

Prerequisites. The material in this chapter is designed to be reasonably self-
contained, so that it can be used without covering Sections 5.3–5.4 or Chapter 6
of this supplement. We assume rudimentary familiarity with discrete-time linear
systems, at the level of the brief descriptions in Chapters 3 and 7 of FBS2e, and
discrete-time random processes as described in Section 5.2 of these notes.

7.1 Discrete-Time Stochastic Systems

We begin with a concise overview of stochastic system in discrete time, echoing
our development of continuous-time random systems described in Chapter 5. We
consider systems of the form

X[k + 1] = AX[k] +Bu[k] + FV [k], Y [k] = CX[k] +W [k], (7.1)

where X ∈ Rn represents the state, u ∈ Rm represents the (deterministic) input,
V ∈ Rq represents process disturbances, Y ∈ Rp represents the system output and
V ∈ Rp represents measurement noise.

As in the case of continuous-time systems, we are interested in the response
of the system to the random input V [k]. We will assume that V is a Gaussian
process with zero mean and correlation function rV (k, k+d) (or correlation matrix
RV (k, k+d) if V is vector valued). As in the continuous case, we say that a random
process is white noise if rV (k, k+d) = rV δ(d) with δ(d) = 1 if d = 0 and 0 otherwise.
(Note that in the discrete-time case, white noise has finite covariance.)

7-1

7-2 CHAPTER 7. SENSOR FUSION

To compute the response Y [k] of the system, we look at the properties of the
state vector X[k]. For simplicity, we take u = 0 (since the system is linear, we can
always add it back in by superposition). Note first that the state at time k+ d can
be written as

X[k + d] = AX[k + d− 1] + FV [x+ l − 1]

= A(AX[k + d− 2] + FV [x+ l − 2]) + FV [x+ l − 1]

= AdX[k] +

d∑
j=1

Aj−1FV [k + d− j].

The mean of the state at time k is given by

E(X[k]) = AkE(E[0]) +

k∑
j=1

Aj−1FE(V [k − j]) = AkE(X[0]).

To compute the covariance RX(k, k + d), we start by computing RX(k, k + 1):

RX(k, k + 1) = E(X[k]XT[k + 1])

= E((Akx[0] +Ak−1Fw[0] + · · ·+AFw[k − 2] + F [k − 1])·
(Ak+1x[0] +AkFw[0] + · · ·+ Fw[k])T)

Performing a similar calculation for RX(k, k + d), it can be shown that

RX(k, k + d) =
(
AkP [0](AT)k +Ak−1FRV [0]FT(AT)k−1 + . . .

+ FRV [k]FT
)
(AT)d =: P [k](AT)d, (7.2)

where

P [k + 1] = AP [k]AT + FRV [k]FT. (7.3)

The matrix P [k] is the covariance of the state matrix and we see that its value
can be computed recursively starting with P [0] = E(X[0]XT[0]) and then applying
equation (7.3). Equations (7.2) and (7.3) are the equivalent of Proposition 5.2 for
continuous-time processes. If we additionally assume that V is stationary and focus
on the steady state response, we obtain the following.

Proposition 7.1 (Steady state response to white noise). For a discrete-time, time-
invariant, linear system driven by white noise, the correlation matrices for the state
and output converge in steady state to

RX(d) = RX(k, k + d) = PAd, RY (d) = CRX(d)CT,

where P satisfies the algebraic equation

APAT + FRV F
T = 0, P > 0. (7.4)

7.2. KALMAN FILTERS IN DISCRETE TIME (FBS2E) 7-3

7.2 Kalman Filters in Discrete Time (FBS2e)

We now consider the optimal estimator in discrete time. This material is presented
in FBS2e in slightly simplified (but consistent) form.

Consider a discrete time, linear system with input, having dynamics

X[k + 1] = AX[k] +Bu[k] + FV [k],

Y [k] = CX[k] +W [k],
(7.5)

where V [k] and W [k] are Gaussian, white noise processes satisfying

E(V [k]) = 0 E(W [k]) = 0

E(V [k]V T[j]) =

{
0 k 6= j

RV k = j
E(W [k]WT[j]) =

{
0 k 6= j

RW k = j

E(V [k]WT[j]) = 0.

(7.6)

We assume that the initial condition is also modeled as a Gaussian random variable
with

E(X[0]) = x0 E(X[0]XT[0]) = P [0]. (7.7)

We wish to find an estimate X̂[k] that gives the minimum mean square error
(MMSE) for E((X̂[k] −X[k])(X̂[k] −X[k])T) given the measurements {Y [l] : 0 ≤
l ≤ k}. We consider an observer of the form

X̂[k + 1] = AX̂[k] +Bu[k]− L[k](CX̂[k]− Y [k]). (7.8)

The following theorem summarizes the main result.

Theorem 7.2. Consider a random process X[k] with dynamics (7.5) and noise
processes and initial conditions described by equations (7.6) and (7.7). The observer
gain L that minimizes the mean square error is given by

L[k] = AP [k]CT(RW + CP [k]CT)−1,

where
P [k + 1] = AP [k]AT + FRV F

T −AP [k]CTR−1
ε CP [k]AT

P [0] = E(X[0]XT[0]).
(7.9)

Proof. We wish to minimize the mean square of the error, E((X̂[k]−X[k])(X̂[k]−
X[k])T). We will define this quantity as P [k] and then show that it satisfies the
recursion given in equation (7.9). Let E[k] = CX̂[k]−Y [k] be the residual between
the measured output and the estimated output. By definition,

P [k + 1] = E(E[k + 1]ET[k + 1])

= (A− LC)P [k](A− LC)T + FRV F
T + LRWL

T

= AP [k]AT −AP [k]CTLT − LCP [k]AT+

L(RW + CP [k]CT)LT + FRV F
T.

7-4 CHAPTER 7. SENSOR FUSION

Letting Rε = (RW + CP [k]CT), we have

P [k + 1] = AP [k]AT −AP [k]CTLT − LCP [k]AT + LRεL
T + FRV F

T

= AP [k]AT +
(
L−AP [k]CTR−1

ε

)
Rε
(
L−AP [k]CTR−1

ε

)T
−AP [k]CTR−1

ε CP [k]AT + FRV F
T.

In order to minimize this expression, we choose L = AP [k]CTR−1
ε and the theorem

is proven.

Note that the Kalman filter has the form of a recursive filter: given P [k] =
E(E[k]E[k]T) at time k, can compute how the estimate and covariance change.
Thus we do not need to keep track of old values of the output. Furthermore, the
Kalman filter gives the estimate X̂[k] and the covariance P [k], so we can see how
reliable the estimate is. It can also be shown that the Kalman filter extracts the
maximum possible information about output data: the correlation matrix for the
estimation error of the filter is

RE [j, k] = Rδjk.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

In the special case when the noise is stationary (RV , RW constant) and if P [k]
converges, then the observer gain is constant:

L = APCT(RW + CPCT)−1,

where P satisfies

P = APAT + FRV F
T −APCT

(
RW + CPCT

)−1
CPAT.

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is solved
by the dlqe command in MATLAB and python-control.

7.3 Predictor-Corrector Form

The Kalman filter can be written in a two-step form by separating the correction
step (where we make use of new measurements of the output) and the prediction
step (where we compute the expected state and covariance at the next time instant).

We make use of the notation X̂[k|j] to represent the estimated state at time
instant k given the information up to time j (where typically j = k−1). Using this
notation, the filter can be solved using the following algorithm:

Step 0: Initialization.
k = 1,

X̂[0|0] = E(X[0]),

P [0|0] = E(X[0]XT[0]).

7.3. PREDICTOR-CORRECTOR FORM 7-5

Step 1: Prediction. Update the estimates and covariance matrix to account for all
data taken up to time k − 1:

X̂[k|k−1] = AX̂[k−1|k−1] +Bu[k − 1],

P [k|k−1] = AP [k−1|k−1]AT + FRV [k − 1]FT.

Step 2: Correction. Correct the estimates and covariance matrix to account for the
data taken at time step k:

L̃[k] = P [k|k−1]CT(RW + CP [k|k−1]CT)−1,

X̂[k|k] = X̂[k|k−1]− L̃[k](CX̂[k|k−1]− Y [k]),

P [k|k] = P [k|k−1]− L̃[k]CP [k|k−1].

(We use L̃[k] to distinguish the optimal gain in this form from that given in Theo-
rem 7.2, as discussed briefly at the end of this section.)

Step 3: Iterate. Set k to k + 1 and repeat steps 1 and 2.

Note that the correction step reduces the covariance by an amount related to the
relative accuracy of the measurement, while the prediction step increases the co-
variance by an amount related to the process disturbance.

This form of the discrete-time Kalman filter is convenient because we can reason
about the estimate in the case when we do not obtain a measurement on every
iteration of the algorithm. In this case, we simply update the prediction step
(increasing the covariance) until we receive new sensor data, at which point we call
the correction step (decreasing the covariance).

The following lemma will be useful in the sequel:

Lemma 7.3. The optimal gain L̃[k] satisfies

L̃[k] = P [k|k]CTR−1
W .

Proof. L̃[k] is defined as

L̃[k] = P [k|k−1]CT(RW + CP [k|k−1]CT)−1.

Multiplying through by the inverse term on the right and expanding, we have

L̃[k](RW + CP [k|k−1]CT) = P [k|k−1]CT,

L̃[k]RW + L̃[k]CP [k|k−1]CT = P [k|k−1]CT,

and hence
L̃[k]RW = P [k|k−1]CT − L̃[k]CP [k|k−1]CT,

= (I − L̃[k]C)P [k|k−1]CT = P [k|k]CT.

The desired results follows by multiplying on the right by R−1
W .

It can be shown that the predictor-corrector form matches the form in Theo-
rem 7.2 if we define x̂[k] = x̂[k|k − 1], P [k] = P [k|k − 1] and L̃[k] = AL[k].

7-6 CHAPTER 7. SENSOR FUSION

u
Estimator

Sensor 1

Sensor 2

Process

y1

y2

x̂

Figure 7.1: Sensor fusion. Multiple sensors report on data from a single process.
The estimator fusions this information from the sensors to obtain an estimate of
the state of the system. Depending on the use case, the input (dashed line) may
not be available to the estimator.

7.4 Sensor Fusion

We now return to the main topic of the chapter: sensor fusion. Consider the
situation described in Figure 7.1, where we have an input/output dynamical system
with multiple sensors capable of taking measurements. The problem of sensor fusion
involves deciding how to best combine the measurements from the individual sensors
in order to accurately estimate the process state X. Since different sensors may
have different noise characteristics, evidently we should combine the sensors in a
way that places more weight on sensors with lower noise. In addition, in some
situations we may have different sensors available at different times, so that not all
information is available on each measurement update.

While sensor fusion can be used for estimation of the state of a system being
controlled, another common application is to sense the state of a system in the
environment. A difference for this use case is that the input to the system in the
environment is often not available, requiring the estimator to use a model for the
system in which the input is modeled by a random process.

Sensor weighting

To gain more insight into how the sensor data are combined, we investigate the
functional form of L[k]. Suppose that each sensor takes a measurement of the form

Y i = CiX +W i, i = 1, . . . , p,

where the superscript i corresponds to the specific sensor. Let W i be a zero mean,
white noise process with covariance σ2

i = RW i(0). It follows from Lemma 7.3 that

L[k] = P [k|k]CTR−1
W .

First note that if P [k|k] is small, indicating that our estimate of X is close to the
actual value (in the MMSE sense), then L[k] will be small due to the leading P [k|k]
term. Furthermore, the characteristics of the individual sensors are contained in
the different σ2

i terms, which only appears in RW . Expanding the gain matrix, we
have

L[k] = P [k|k]CTR−1
W , R−1

W =

1/σ2
1

. . .

1/σ2
p

 .

7.5. IMPLEMENTATION IN PYTHON 7-7

We see from the form of R−1
W that each sensor is inversely weighted by its covariance.

Thus noisy sensors (σ2
i � 1) will have a small weight and require averaging over

many iterations before their data can affect the state estimate. Conversely, if σ2
i �

1, the data is “trusted” and is used with higher weight in each iteration.

Information filters

An alternative formulation of the Kalman filter is to make use of the inverse of
the covariance matrix, called the information matrix, to represent the error of the
estimate. It turns out that writing the state estimator in this form has several
advantages both conceptually and when implementing distributed computations.
This form of the Kalman filter is known as the information filter.

We begin by defining the information matrix I and the weighted state estimate
Ẑ:

I[k|j] = P−1[k|j], Ẑ[k|j] = P−1[k|j]X̂[k|j].

In this form, it can be shown that the correction step of the Kalman filter for the
multi-sensor case can be written as

I[k|k] = I[k|k−1] +

p∑
i=1

(Ci)TR−1
W i [k|k]Ci,

Ẑ[k|k] = Ẑ[k|k−1] +

p∑
i=1

(Ci)TR−1
W i [k|k]Y i.

The advantage of using the information filter version of the equation is that it
allows a simple addition operation for the correction step, corresponding to adding
the “information” obtained through the acquisition of new data. We also see the
clear relationship between the information content in each sensor channel and the
inverse covariance of that sensor.

Another feature of the information filter formulation is that it allows some effi-
ciencies when implementing distributed estimation across networks. In particular,
the information carried in the individual sensors can be simply added together
through the updates of I[k|k−1]. This is helpful especially when the sensors have
variable sampling rate and the measurement packets arrive at different times. New
information is incorporated whenever it arrives and then a global update of I[k|k−1]
at a centralized node is used to integrate all sensor measurements (which can the
be rebroadcast out to the sensors). The information form also makes clear how
to handle missing data: if no data arrives for a given sensor then no information
is added and only the time update is applied, hence the measurement update is
skipped.

7.5 Implementation in Python

Steady state gains for a discrete time Kalman filter can be computed using the dlqe

command:

L, P, E = ct.dlqe(A, F, C, Qv, Qw, C=C_sensors),

7-8 CHAPTER 7. SENSOR FUSION

where A, F, and C are the (discrete-time) system matrices and Qv and Qw are the
disturbance and noise covariance matrices.

The create_estimator_iosystem function can be used to implement a discrete-
time Kalman filter in the form given in Theorem 7.2. This function creates an
input/output system that implements a discrete-time state estimator of the form

x̂[k + 1] = Ax[k] +Bu[k]− L(Cx̂[k]− y[k]),

P [k + 1] = APAT + FQNF
T −APCTR−1

ε CPA,

L = APCTR−1
ε , Rε = RN + CPCT .

To create the estimator system, using the command

estim = ct.create_estimator_iosystem(sys, Qv, Qw)

where sys is the process dynamics and Qv and Qw are the covariance of the dis-
turbance noise and sensor noise. The function returns the estimator estim as I/O
system with a parameter correct that can be used to turn off the correction term
in the estimation (for forward predictions).

Sensor fusion can be implemented by passing create_estimator_iosystem a sys-
tem with full state output and then using the C keyword to define the measured
values to be used by the estimator:

estim = ct.create_estimator_iosystem(sys, Qv, Qw, C=C_sensors)

The matrix C_sensors can have as many rows as there are sensors, with the matrix
Qw describing the noise covariance (and cross-correlation, if diagonal entries are
non-zero).

As described in Section 6.4, the create_statefbk_iosystem function can be used
to create an I/O system that includes an estimator and state feedback to form a
dynamic compensator.

7.6 Additional Topics

Unscented Kalman filter1

Consider a nonlinear system

Ẋ = f(X,u, V), X ∈ Rn, u ∈ Rm,
Y = h(X) +W, Y ∈ Rp,

(7.10)

where V and W are Gaussian white noise processes with covariance matrices RV
and RW . We saw in Chapter 6 how to extend the Kalman filter to this case by
using the local linearization of the dynamics. In some cases this approximation
is not a very good one, especially if there are strong nonlinearities in the update
function f or output function h.

ChatGPT prompt: Explain how an unscented Kalman filter works, in the form
of a textbook.

1This section was written by ChatGPT on 20 Feb 2023 and (lightly) edited by Richard Murray.

7.6. ADDITIONAL TOPICS 7-9

Response: The unscented Kalman filter (UKF) is a variant of the Kalman filter
that can be used for nonlinear systems. In this [subsection], I’ll assume that you’re
already familiar with the Kalman filter and its notation.

The basic idea behind the UKF is to approximate the probability distribution of
the state variables using a set of sample points, called sigma points. These sample
points are carefully chosen to capture the mean and covariance of the distribution,
and are propagated through the nonlinear system to obtain a predicted distribution
for the next time step.

At each time step, the UKF goes through two main steps: the prediction step
and the update step.

Prediction step. In the prediction step, the UKF generates a set of sigma points
from the current estimate of the state distribution. These sigma points are chosen
to capture the mean and covariance of the distribution. The number of sigma points
required is typically twice the number of state variables plus one.

Once the sigma points are generated, they are propagated through the nonlinear
system dynamics to obtain a predicted mean and covariance for the next time step.
This is done by passing each sigma point through the nonlinear function, and then
computing the mean and covariance of the resulting set of points.

The predicted mean and covariance are then used to generate a predicted dis-
tribution for the state variables at the next time step.

Update step. In the update step, the UKF uses new measurements of the system
to correct the predicted distribution generated in the prediction step.

First, a set of sigma points is generated from the predicted distribution, in
the same way as in the prediction step. These sigma points are then propagated
through the measurement function to obtain the predicted measurement values
corresponding to each sigma point.

The predicted measurement mean and covariance are then computed from the
resulting set of predicted measurement values. This predicted measurement dis-
tribution is compared to the actual measured values, and the difference is used to
correct the predicted state distribution.

Finally, the corrected state distribution is used as the new estimate for the state
variables at the current time step.

In summary, the UKF approximates the distribution of the state variables using
a set of carefully chosen sample points, and propagates these points through the
nonlinear system dynamics and measurement function to generate predicted distri-
butions. The predicted distributions are then updated with new measurements to
obtain a corrected estimate of the state variables at each time step.

ChatGPT prompt: Show me the equations for an unscented Kalman filter.

1. Initialization: initialize state estimate and covariance matrix:

• x̂0 : initial state estimate

• P0 : initial covariance matrix

2. Prediction step:

• Generate sigma points:

7-10 CHAPTER 7. SENSOR FUSION

– X0 = x̂k,

– Xi = x̂k +
(√

(n+ λ)Pk

)
i
, i = 1, ..., n,

– Xi = x̂k −
(√

(n+ λ)Pk

)
, i = n+ 1, ..., 2n.

• Propagate sigma points through nonlinear function f(x):

– Yi = f(Xi), i = 0, 1, ..., 2n.

• Compute predicted state mean and covariance:

– x̂k|k−1 =
∑2n
i=0 w

m
i Yi,

– Pk|k−1 =
∑2n
i=0 w

c
i (Yi − x̂k|k−1)(Yi − x̂k|k−1)T +Qk,

where n is the dimensionality of the state, λ is a scaling parameter, Pk is
the covariance matrix of the state at time k, wmi and wci are weight coef-
ficients that depend on n and λ, and Qk is the process noise covariance
matrix.

3. Update step:

• Generate sigma points from predicted state distribution:

– X0 = x̂k|k−1,

– Xi = x̂k|k−1 +
(√

(n+ λ)Pk|k−1

)
i
, i = 1, ..., n,

– Xi = x̂k|k − 1−
(√

(n+ λ)Pk|k−1

)
i−n , i = n+ 1, ..., 2n.

• Propagate sigma points through measurement function h(x):

– Zi = h(Xi), i = 0, 1, ..., 2n.

• Compute predicted measurement mean and covariance:

– ẑk|k−1 =
∑2n
i=0 w

m
i Zi,

– Sk =
∑2n
i=0 w

c
i (Zi − ẑk|k − 1)(Zi − ẑk|k − 1)T +Rk,

where Rk is the measurement noise covariance matrix.

• Compute cross-covariance matrix:

– Px,z,k =
∑2n
i=0 w

c
i (Xi − x̂k|k − 1)(Zi − ẑk|k − 1)T .

• Compute Kalman gain:

– Kk = Px,z,kS
−1
k .

Compute updated state estimate and covariance:

– x̂k = x̂k|k − 1 +Kk(zk − ẑk|k−1),

– Pk = Pk|k−1 −KkSkK
T
k .

where zk is the measurement at time k, ẑk|k−1 is the predicted measure-
ment, Kk is the Kalman gain, Px,z,k is the cross-covariance matrix, and
Pk is the updated covariance matrix.

The weight coefficients are defined as follows:

• wm0 = λ
n+λ ,

• wc0 = λ
n+λ + (1− α2 + β),

• wmi = wci = 1
2(n+λ) , i = 1, ..., 2n,

where α, β, and κ are tuning parameters that determine the spread of the
sigma points. Typically, α = 0.9, β = 2, and κ = 3− n are used in practice.

7.6. ADDITIONAL TOPICS 7-11

Ensemble Kalman filtering2

ChatGPT prompt: Write a section for a textbook on the ensemble Kalman filter,
with equations.

Introduction. The ensemble Kalman filter (EnKF) is a popular data assimilation
algorithm that is widely used in numerical weather prediction, oceanography, and
other fields. It is a variant of the Kalman filter that replaces the Gaussian assump-
tions about the prior and posterior probability distributions with a set of Monte
Carlo samples, or “ensemble members”. The EnKF is particularly useful in high-
dimensional problems where the computational cost of a full Kalman filter update
becomes prohibitive.

Algorithm. The EnKF algorithm proceeds as follows:

1. Initialization: Generate an initial ensemble ofN state vectors xi0, i = 1, . . . , N ,
with mean x̂0 and covariance matrix P0.

2. Forecast step: Perturb each ensemble member using a random draw from a
distribution with mean zero and covariance matrix Qk, the process noise:

• xik = f(xik−1) + εik

Evaluate the forecast ensemble mean and covariance:

• x̂k|k−1 = 1
N

∑N
i=1 x

i
k

• Pk|k−1 = 1
N−1

∑N
i=1(xik − x̂k|k−1)(xik − x̂k|k−1)T +Qk

3. Analysis step: Obtain a set of M observations yk and the associated obser-
vation operator h.

• Perturb each ensemble member using a random draw from a distribution
with mean zero and covariance matrix Rk, the observation error:

– yik = h(xik) + δik

Evaluate the forecast ensemble mean and covariance:

– ŷk|k−1 = 1
M

∑M
i=1 y

i
k

– Sk = 1
M−1

∑M
i=1(yik − ŷk|k−1)(yik − ŷk|k−1)T +Rk

• Compute the cross-covariance matrix between the forecast state and the
observations:

– Pk|k−1 = 1
N−1

∑N
i=1(xik − x̂k|k−1)(yik − ŷk|k−1)T

• Compute the Kalman gain:

– Kk(yk − ŷk|k−1)

• Update the state ensemble using the Kalman gain:

– xik = xik|k−1 +Kk(yk − h(xik|k−1))

• Evaluate the updated ensemble mean and covariance:

– x̂k = 1
N

∑N
i=1 x

i
k

2This section was written by ChatGPT on 20 Feb 2023 and (lightly) edited by Richard Murray.

7-12 CHAPTER 7. SENSOR FUSION

– Pk = 1
N−1

∑N
i=1(xik − x̂k)(xik − x̂k)T

where εik and δik are random vectors drawn from the process and obser-
vation noise distributions, respectively.

The EnKF algorithm also requires specification of the process noise covariance
matrix Qk and the observation error covariance matrix Rk. These matrices can be
estimated using statistical methods or by tuning them through trial and error.

One advantage of the EnKF over the traditional Kalman filter is that it is
easily parallelizable. The forecast step and analysis step can be performed inde-
pendently for each ensemble member, allowing the algorithm to take advantage of
distributed computing architectures. However, the EnKF can suffer from sampling
errors, particularly in the presence of nonlinearities or non-Gaussian distributions.
Various modifications to the basic EnKF algorithm have been proposed to address
these issues, such as the Local ensemble transform Kalman filter (LETKF) and the
ensemble square root filter (ESRF).

Moving horizon estimation

The various extensions and variations of the Kalman filter equations all assume that
the system disturbances and measurement noise can be modeled by Gaussian pro-
cesses, in which the (potentially time-varying) mean and covariance of the signals
are sufficient to model the underlying sources of uncertainty. In many cases, this
is not a good assumption, for example when there are bounded, non-symmetric, or
multi-modal sources of disturbances and noise.

Consider a nonlinear system with discrete time dynamics of the form

X[k + 1] = f(X[k], u[k], V [k]), Y [k] = h(X[k]) +W [k], (7.11)

where X[k] ∈ Rn, u[k] ∈ Rm, and Y [k] ∈ Rp, and V [k] ∈ Rq and W [k] ∈ Rp
represent random processes that are not necessarily Gaussian white noise processes.
The estimation problem that we wish to solve is to find the estimate x̂[·] that
matches the measured outputs y[·] with “likely” disturbances and noise.

For a fixed horizon of length N , this problem can be formulated as an optimiza-
tion problem where we define the likelihood of a given estimate (and the resulting
noise and disturbances predicted by the model) as a cost function. Suppose we
model the likelihood using a conditional probability density function p

(
x[0], . . . , x[N] |

y[0], . . . , y[N−1]
)
. Then we can pose the state estimation problem as

x̂[0], . . . , x̂[N] = arg max
x̂[0],...,x̂[N]

p
(
x̂[0], . . . , x̂[N] | y[0], . . . , y[N−1]

)
(7.12)

subject to the constraints given by equation (7.11). The result of this optimization
gives us the estimated state for the previous N steps in time, including the “current”
time x[N]. The basic idea is thus to compute the state estimate that is most
consistent with our model and penalize the noise and disturbances according to
how likely the are (based on a some sort of stochastic system model for each).

Given a solution to this fixed horizon, optimal estimation problem, we can
create an estimator for the state over all times by applying repeatedly applying the
optimization problem (7.12) over a moving horizon. At each time k, we take the

7.6. ADDITIONAL TOPICS 7-13

measurements for the last N time steps along with the previously estimated state at
the start of the horizon, x[k −N] and reapply the optimization in equation (7.12).
This approach is known as a moving horizon estimator (MHE).

The formulation for the moving horizon estimation problem is very general
and various situations can be captured using the conditional probability function
p(x[0], . . . , x[N] | y[0], . . . , y[N−1]. We start by noting that if the disturbances are
independent of the underlying states of the system, we can write the conditional
probability as

p
(
x[0], . . . , x[N] | y[0], . . . , y[N−1]

)
=

pX[0](x[0])

N−1∏
k=0

pV
(
y[k]− h(x[k])

)
p
(
x[k + 1] | x[k]

)
.

This expression can be further simplified by taking the log of the expression and
maximizing the function

log pX[0](x[0]) +

N−1∑
k=0

log pW
(
y[k]− h(x[k])

)
+ log pV (v[k]). (7.13)

The first term represents the likelihood of the initial state, the second term captures
the likelihood of the noise signal, and the final term captures the likelihood of the
disturbances.

If we return to the case where V and W are modeled as Gaussian processes,
then it can be shown that maximizing equation (7.13) is equivalent to solving the
optimization problem given by

min
x[0],{v[0],...,v[N−1]}

‖x[0]− x̄[0]‖P−1
0

+

N−1∑
k=0

‖y[k]− h(xk)‖2
R−1
W

+ ‖v[k]‖2
R−1
V

. (7.14)

Note that here we only compute the estimated initial state x̂[0], but we can now
reconstruct the entire history of estimated states using the system dynamics:

x̂[k + 1] = F (x̂[k], u[k], v[k]), k = 0, . . . , N − 1,

and we can implement the estimator in receding horizon fashion by repeatedly
solving the optimization of a window of length N backwards in time.

One of the simpler cases where the moving horizon formulation is useful is when
we have a priori knowledge that our disturbances are bounded. In this case, we
simply add a constraint in the optimization in equation (7.14), for example requiring
that v[k] ∈ [vmin, vmax].

This functionality is implemented in python-control using the solve_oep() and
create_mhe_iosystem() functions. An example demonstrating the implementation
is available via the course website.

Exercises

7.1. Consider the problem of estimating the position of an autonomous mobile vehi-
cle using a GPS receiver and an IMU (inertial measurement unit). The continuous
time dynamics of the vehicle are given by

7-14 CHAPTER 7. SENSOR FUSION

x

l

φ

θ
y ẋ = cos θ v

ẏ = sin θ v

θ̇ =
1

`
tan δ v,

We assume that the vehicle is disturbance free, but that we have noisy measure-
ments from the GPS receiver and IMU and an initial condition error.

(a) Rewrite the equations of motion in discrete time, assuming that we update the
dynamics at a sample time of h = 0.005 sec and that we can take ẋ to be roughly
constant over that period. Run a simulation of your discrete time model from initial
condition (0, 0, 0) with constant input δ = π/8, v = 5 and compare your results
with the continuous time model.

(b) Suppose that we have a GPS measurement that is taken every 0.1 seconds and
an IMU measurement that is taken every 0.01 seconds. Write a MATLAB program
that that computes the discrete time Kalman filter for this system, using the same
disturbance, noise and initial conditions as Exercise 6.5.

7.2. Consider the problem of estimating the position of a car operating on a road
whose dynamics are modeled as described in Example 2.3. We assume that the car
is executing a lane change manuever and we wish to estimate its position using a
set of available sensors:

• A stereo camera pair, which relatively poor longitudinal (x) accuracy but
good lateral position (y) accuracy. We model the covaraiance of the sensor
noise as Rlat = diag(1, 0.1).

• An automotive grade radar, which has good longitudinal position (x) accuracy
but poor lateral (y) accuracy, with Rlon = diag(0.1, 1).

• We assume the radar can also measure the longitudinal velocity (ẋ) as an
optional measurement, with Rvel = 1.

In this problem we assume that the detailed model of the system is not known and
also that the inputs to the vehicle (throttle and steering) are not known. We use a
variety of system models to explore how these different measurements can be fused
to obtain estimates and predictions of the vehicle position.

(a) Consider a model of the vehicle consisting of a particle in 2D, with the velocity
of particle in the x and y direction taken as the input:

ẋ = u1, ẏ = u2

A discrete-time version of the system dynamics is given by

x[k + 1] = x[k] + u1[k] ∗ Ts, y[k + 1] = y[k] + u2[k] ∗ Ts,

7.6. ADDITIONAL TOPICS 7-15

where Ts = 0.1 s is the sampling time between sensor measurements.

Construct an estimator for the system using a combination of the stereo pair and
the radar (position only). Estimate the state and covariance of the system during
the lane change manuever from Example 2.3 and predict the state for the next 4
seconds.

(b) Assume now that we now add (noisy) measurement of the velocity from the
radar as an approximation of the input u1. Update your Kalman filter to utilize
this measurement (with no filtering), and replot the estimate and prediction for the
system.

(c) To provide a better prediction, we can increase the complexity of our model
so that it includes the velocity of the vehicle as a state, allowing us to model the
acceleration as the input. In continuous time, this model is given by

ẍ = u1, ẏ = u2

(note that we are still modeling the lateral position using a single integrator).

Convert this model to discrete time and construct an estimator for the system using
a combination of the stereo pair and the radar (position and velocity). Estimate
the state and covariance of the system during the lane change manuever and predict
the state for the next 4 seconds.

Note: in this problem you have quite a bit of freedom in how you model the dis-
turbances, which should model the unknown inputs to the vehicle being observed.
Make sure to provide some level of justification for how you chose these distur-
bances.

7.3. The form of the optimal feedback for a discrete time Kalman filter differes
slightly depending on whether we use the form in Theorem 7.2 or the predictor-
corrector form in Section 7.3.

(a) Show that the predictor-corrector form of the optimal estimator for a linear
process driven by white noise matches the form in Theorem 7.2 if we define x̂[k] =
x̂[k|k − 1], P [k] = P [k|k = 1] and L̃[k] = AL[k].

(b) Alternatively, show that if we formulate the optimal estimate using an estimator
of the form

X̂[k + 1] = AX̂[k] + L[k](Y [k + 1]− CAX̂[k])

that we recover the update law in the predictor-corrector form.

7.4. The unscented Kalman filter (UKF) equations created by ChatGPT are con-
vincing, but they are incorrect. Find and fix the errors.

7.5. Consider the discrete time linear system

X[k + 1] =

0.5 1 0
0 −0.8 1
0 0 0.5

X[k] +

0
0
1

u+

0
1
0

V, Y [k] = sin(
[
1 0 0

]
X) +W,

7-16 CHAPTER 7. SENSOR FUSION

where V is a discrete time, white noise process with covariance 0.01 and W is a
discrete time, white noise process with covariance 10−4. Let u[k] = sin(2πk/5) and
assume that P [0] = E(X[0]XT[0]) = 0.5I.

(a) Construct an optimal estimator (Kalman filter) for the system linearized about
the origin and plot the state estimate and covariance of each state (using error bars)
for a trajectory starting at the origin and for a duration of K = 20.

(b) Construct a moving horizon estimator for the system using time windows of
length N = 1, N = 3, and N = 6 and compare the state estimate to the result
from (a).

(c) Change the penalty on the initial state in the window from P [0] to the value of
P obtained from the steady state estimator for the linearized system and compare
the performance for the three horizon lengths in (b).

(d) Suppose that the disturbance V is constrained to take values in the the range
-0.1 to 0.1. Compare the steady state optimal estimator for the linearized system
to a moving horizon estimator with appropriate horizon that takes the constraints
into account. How does the moving horizon estimator compare to the linearized
estimator?

Bibliography

[AF06] M. Athans and P. L. Falb. Optimal Control: An Introduction to the Theory
and Its Applications. Dover, 2006. Originally published in 1963.

[AM90] B. D. O. Anderson and J. B. Moore. Optimal Control Linear Quadratic
Methods. Prentice Hall, Englewood Cliffs, NJ, 1990. Republished by Dover
Publications, 2007.

[ÅM08] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008. Available at
http://fbsbook.org.

[ÅM21] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, second edition, 2021.
Available at http://fbsbook.org.

[Åst06a] K. J. Åström. Introduction to Stochastic Control Theory. Dover, New York,
2006. Originally published by Academic Press, New York, 1970.

[Åst06b] K. J. Åström. Introduction to Stochastic Control Theory. Dover, New York,
2006. Originally published by Academic Press, New York, 1970.

[BBM17] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and
Hybrid Systems. Cambridge University Press, 2017.

[BBvB+01] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mallor, Ken Shwaber, and Jeff Sutherland.
The Agile Manifesto. Technical report, The Agile Alliance, 2001. Available
at http://agilemanifesto.org.

[BdTH+07] J. W. Burdick, N. du Toit, A. Howard, C. Looman, J. Ma, R. M. Murray, and
T. Wongpiromsarn. Sensing, navigation and reasoning technologies for the
darpa urban challenge. Technical report, California Institute of Technology,
2007. Available from https://apps.dtic.mil/sti/citations/ADA475619.

[BH75] A. E. Bryson, Jr. and Y.-C. Ho. Applied Optimal Control: Optimization,
Estimation, and Control. Wiley, New York, 1975.

[Bro81] R. W. Brockett. Control theory and singular Riemannian geometry. In New
Directions in Applied Mathematics, pages 11–27. Springer-Verlag, New York,
1981.

[CHHR22] N. Correll, B. Hayes, C. Heckman, and A. Roncone. Introduction to Au-
tonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms. MIT
Press, Cambridge, MA, 1st edition, 2022.

[dB78] C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

B-1

http://fbsbook.org
http://fbsbook.org
http://agilemanifesto.org
https://apps.dtic.mil/sti/citations/ADA475619

B-2 BIBLIOGRAPHY

[Dra55] C. S. Draper. Flight control. Journal Royal Aeronautical Society,
59(July):451–477, 1955. 45th Wilber Wright Memorial Lecture.

[FGM+21] S. Fuller, B. Greiner, J. Moore, R. Murray, R. van Paassen, and R. Yorke.
The python control systems library (python-control). In Proc. IEEE Control
and Decision Conference, 2021.

[FLMR92] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat non-
linear systems. Comptes Rendus des Séances de l’Académie des Sciences,
315:619–624, 1992. Serie I.

[FLMR95] M. Fliess, J. Levine, P. Martin, and P. Rouchon. Flatness and defect of non-
linear systems: Introductory theory and examples. International Journal of
Control, 61(6):1327–1361, 1995.

[Fri04] B. Friedland. Control System Design: An Introduction to State Space Meth-
ods. Dover, New York, 2004.

[GMSW] P. E. Gill, W. Murray, M. A. Saunders, and M. Wright. User’s Guide for
NPSOL 5.0: A Fortran Package for Nonlinear Programming. Systems Opti-
mization Laboratory, Stanford University, Stanford, CA 94305.

[GS01] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes.
Oxford University Press, third edition, 2001.

[HO01] J. Hauser and H. Osinga. On the geometry of optimal control: The inverted
pendulum example. In American Control Conference, 2001.

[Isi89] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 2nd edition, 1989.

[Jad01] A. Jadbabaie. Nonlinear Receding Horizon Control: A Control Lyapunov
Function Approach. PhD thesis, California Institute of Technology, Control
and Dynamical Systems, 2001.

[JSK99] M. Jankovic, R. Sepulchre, and P. V. Kokotović. CLF based designs with
robustness to dynamic input uncertainties. Systems Control Letters, 37:45–
54, 1999.

[JYH01] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding horizon control of
nonlinear systems. IEEE Transactions on Automatic Control, 46(5):776–783,
2001.

[Kal64] R. E. Kalman. When is a linear control system optimal? J. Basic Engrg.
Trans. ASME Ser. D, 86:51–60, 1964.

[Kel17] M. Kelly. An introduction to trajectory optimization: How to do your own
direct collocation. SIAM Review, 59(4):849–904, 2017.

[KKK95] M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive
Control Design. Wiley, 1995.

[KKM91] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse. Systematic design of
adaptive controllers for feedback linearizable systems. IEEE Transactions on
Automatic Control, 36(11):1241–1253, 1991.

[KV86] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification,
and Adaptive Control. Prentice Hall, Inc., 1986.

[LAMK17] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-
based motion planning for quadrotors using linear quadratic minimum time
control. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2872–2879, 2017.

BIBLIOGRAPHY B-3

[Lév10] Jean Lévine. On necessary and sufficient conditions for differential flat-
ness. Applicable Algebra in Engineering, Communication and Computing,
22(1):47–90, 2010.

[Lib10] D. Liberzon. Calculus of variations and optimal control theory: A concise
introduction. Online notes, 2010. Retrieved, 16 Jan 2022.

[LM67] E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Robert
E. Krieger Publishing Company, 1967.

[LP15] A. Lindquist and G. Picci. Linear Stochastic Systems: A Geometric Ap-
proach to Modeling, Estimation and Identification. Springer, Berlin, Heidel-
berg, 2015.

[LS95] F. L. Lewis and V. L. Syrmos. Optimal Control. Wiley, second edition, 1995.

[Lue97] D. G. Luenberger. Optimization by Vector Space Methods. Wiley, New York,
1997.

[LVS12] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos. Optimal Control. John Wiley
& Sons, Ltd, 2012.

[MA73] P. J. Moylan and B. D. O. Anderson. Nonlinear regulator theory and
an inverse optimal control problem. IEEE Trans. on Automatic Control,
18(5):460–454, 1973.

[MDP94] P. Martin, S. Devasia, and B. Paden. A different look at output tracking—
Control of a VTOL aircraft. Automatica, 32(1):101–107, 1994.

[MFHM05] M. B. Milam, R. Franz, J. E. Hauser, and R. M. Murray. Receding horizon
control of a vectored thrust flight experiment. IEE Proceedings on Control
Theory and Applications, 152(3):340–348, 2005.

[MHJ+03] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam, N. Petit, W. B. Dunbar,
and R. Franz. Online control customization via optimization-based control.
In T. Samad and G. Balas, editors, Software-Enabled Control: Information
Technology for Dynamical Systems. IEEE Press, 2003.

[Mil03] M. B. Milam. Real-Time Optimal Trajectory Generation for Constrained
Dynamical Systems. PhD thesis, California Institute of Technology, 2003.

[MM99] M. B. Milam and R. M. Murray. A testbed for nonlinear flight control tech-
niques: The Caltech ducted fan. In Proc. IEEE International Conference on
Control and Applications, 1999.

[MM02] M. Milam and R. M. Murray et al. NTG: Nonlinear Trajectory Generation
library. http://github.com/murrayrm/ntg, 2002. Retrieved, 28 Jan 2023.

[MRRS00] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–
814, 2000.

[Mur96] R. M. Murray. Trajectory generation for a towed cable flight control system.
In Proc. IFAC World Congress, 1996.

[Mur97] R. M. Murray. Nonlinear control of mechanical systems: A Lagrangian per-
spective. Annual Reviews in Control, 21:31–45, 1997.

[PBGM62] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko. The Mathematical Theory of Optimal Processes. Wiley-
Interscience, 1962. (translated from Russian).

[PND99] J. A. Primbs, V. Nevistić, and J. C. Doyle. Nonlinear optimal control: A
control Lyapunov function and receding horizon perspective. Asian Journal
of Control, 1(1):1–11, 1999.

http://github.com/murrayrm/ntg

BIBLIOGRAPHY I-1

[QB97] S. J. Qin and T. A. Badgwell. An overview of industrial model predictive
control technology. In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors,
Fifth International Conference on Chemical Process Control, pages 232–256,
1997.

[RM98] M. Rathinam and R. Murray. Configuration flatness of Lagrangian systems
underactuated by one control. SIAM Journal of Control and Optimization,
36(1):164–179, 1998.

[RMD17] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, 2017.

[Rug90] W. J. Rugh. Analytical framework for gain scheduling. In Proc. American
Control Conference, pages 1688–1694, 1990.

[SC92] R. Shishko and R. G. Chamberlain. NASA systems engineering handbook.
Technical report, National Aeronautics and Space Administration, 1992.

[Sha90] J. S. Shamma. Analysis of gain scheduled control for nonlinear plants. IEEE
Transactions on Automatic Control, 35(12):898–907, 1990.

[SJK97] R. Sepulchre, M. Jankovic, and P. V. Kokotović. Constructive Nonlinear
Control. Springer, London, 1997.

[Son83] E. D. Sontag. A Lyapunov-like characterization of asymptotic controllability.
SIAM Journal of Control and Optimization, 21:462–471, 1983.

[vNM98] M. J. van Nieuwstadt and R. M. Murray. Rapid hover to forward flight
transitions for a thrust vectored aircraft. Journal of Guidance, Control, and
Dynamics, 21(1):93–100, 1998.

[vNRM98] M. van Nieuwstadt, M. Rathinam, and R. M. Murray. Differential flatness and
absolute equivalence. SIAM Journal of Control and Optimization, 36(4):1225–
1239, 1998.

Index

actuator
saturation, 1-3

algebraic Riccati equation, 3-13

bang-bang control, 3-10
binomial distribution, 5-3

control Lyapunov function, 4-5
cost function, 3-1
costate variables, 3-6

decision-making layer, 1-9
defect, for a differentially flat system, 2-15
design V, 1-2
differential flatness, 2-8

defect, 2-15
dynamic programming, 3-18

error system, 2-3
events, 5-1
expectation, 5-7
exponential distribution, 5-4
extended Kalman filter, 6-5
extremum, 3-4

feasible trajectory, 3-5
feedback regulation layer, 1-8
feedforward, 2-4
final cost, 3-5
finite horizon, 3-5
flat flag, 2-8

gain scheduling, 2-4
Gaussian distribution, 5-4

Hamilton-Jacobi-Bellman equation, 3-18
Hamiltonian, 3-6
hardware-in-the-loop simulation (HIL), 1-3
Harrier AV-8B aircraft, 3-16

infinite horizon, 3-5
information filter, 7-7
information matrix, 7-7

innovations process, 6-4
integral cost, 3-5

Kalman filter
recursive form, 6-2

Lagrange multipliers, 3-3
linear quadratic, 3-5
linear quadratic Gaussian control problem,

6-6
linearization, 2-3
locally positive definite, 4-5

matrix differential equation, 3-12
mean, 5-4, 5-7
mechanical systems, 2-15
motion primitive, 2-18
moving horizon estimator, 7-13

noise intensity, 5-14
normal distribution, 5-4

operating envelope, 1-8
optimal control problem, 3-4
optimal value, 3-1
optimization, 3-1
Ornstein-Uhlenbeck process, 5-13

Poisson distribution, 5-3
positive definite function, 4-5
probability distribution, 5-1
probability mass function, 5-2
probability measure, 5-2

random process, 5-8
random variable, 5-2
receding horizon control, 2-3, 4-2
regression analysis, 1-3
residual random process, 6-3
Riccati ODE, 3-12

sample space, 5-1
smoothness, 1-3

I-2

INDEX I-3

stabilizable, 4-6
standard deviation, 5-4

terminal cost, 3-5
trajectory generation layer, 1-8
two point boundary value problem, 3-12

uniform distribution, 5-4

I-4 INDEX

	1 Introduction
	1.1 System and Control Design
	1.2 The Control System ``Standard Model''
	1.3 Layered Control Systems
	1.4 The Python Control Systems Library

	2 Trajectory Generation and Tracking
	2.1 Two Degree of Freedom Design
	2.2 Trajectory Tracking and Gain Scheduling
	2.3 Trajectory Generation and Differential Flatness
	2.4 Implementation in Python
	2.5 Other Methods for Generating Trajectories
	2.6 Further Reading

	3 Optimal Control
	3.1 Review: Optimization
	3.2 Optimal Control of Systems
	3.3 Examples
	3.4 Implementation in Python
	3.5 Linear Quadratic Regulators
	3.6 Choosing LQR weights
	3.7 Advanced Topics
	3.8 Further Reading

	4 Receding Horizon Control
	4.1 Overview
	4.2 Receding Horizon Control with Terminal Cost
	4.3 Implementation in Python
	4.4 Receding Horizon Control Using Differential Flatness
	4.5 Choosing Cost Functions
	4.6 Implementation on the Caltech Ducted Fan
	4.7 Further Reading

	5 Stochastic Systems
	5.1 Brief Review of Random Variables
	5.2 Introduction to Random Processes
	5.3 Continuous-Time, Vector-Valued Random Processes
	5.4 Linear Stochastic Systems with Gaussian Noise
	5.5 Random Processes in the Frequency Domain
	5.6 Implementation in Python
	5.7 Further Reading

	6 Kalman Filtering
	6.1 Linear Quadratic Estimators
	6.2 Extensions of the Kalman Filter
	6.3 LQG Control
	6.4 Implementation in Python
	6.5 Application to a Thrust Vectored Aircraft
	6.6 Further Reading

	7 Sensor Fusion
	7.1 Discrete-Time Stochastic Systems
	7.2 Kalman Filters in Discrete Time (FBS2e)
	7.3 Predictor-Corrector Form
	7.4 Sensor Fusion
	7.5 Implementation in Python
	7.6 Additional Topics

	Bibliography
	Index

