
Networked Control Systems

Richard M. Murray

Control and Dynamical Systems

California Institute of Technology

DRAFT v1.0a, 10 March 2008
c© California Institute of Technology

All rights reserved.

This manuscript is for review purposes only and may not be reproduced, in whole or in
part, without written consent from the author.



Chapter 1

Introduction

Modern control theory is largely based on the abstraction that information
(“signals”) are transmitted along perfect communication channels and that
computation is either instantaneous (continuous time) or periodic (discrete
time). This abstraction has served the field well for 50 years and has led to
many success stories in a wide variety of applications.

Future applications of control will be much more information-rich than
those of the past and will involve networked communications, distributed
computing, and higher levels of logic and decision-making (see [Mur03] for
a recent analysis of future directions in this area). New theory, algorithms,
and demonstrations must be developed in which the basic input/output
signals are data packets that may arrive at variable times, not necessarily
in order, and sometimes not at all. Networks between sensors, actuation,
and computation must be taken into account, and algorithms must address
the tradeoff between accuracy and computation time. Progress will require
significantly more interaction between information theory, computer science,
and control than ever before.

An emerging framework for networked control systems is shown in Fig-
ure 1.1. This architecture separates the traditional elements of sensing,
estimation, control, and actuation for a given system across a network and
also allows sharing of information between systems. As we will see in the
examples below, careful decisions need to be made on how the individual
components in this architecture are implemented and how the communica-
tions across the networked elements is managed. This architecture can be
used to model either a single system (using either half of the diagram) or
multiple systems that interact through the network.

One example of the use of this architecture is autonomous operations for
sensor-rich systems, such as unmanned, autonomous vehicles. As part of
the 2004 and 2005 DARPA Grand Challenges, Caltech has developed two
such vehicles (“Bob” and “Alice”) that each make use of a networked control
systems architecture. Alice, the 2005 vehicle, has six cameras, 4 LADAR
units, an inertial meaurement unit (IMU), a GPS navigation system, and
numerous internal temperature and vibration sensors. The raw data rate for
Alice is approximately 1–3 Gb/s, which must be processed and acted upon
at rates of up to 100 Hz in order to insure safe operation at high driving
speeds.

The control system for Alice makes use of the architecture depicted in



2

Estimation/

Sensor Fusion

Optimization-

Based Control

Process 1

Sensing

Estimation/

Sensor Fusion

Optimization-

Based Control

External Environment

Process 2

Sensing

Figure 1.1: Emerging framework for networked control systems. Signals between
control system modules for multiple processes are transmitted through a commu-
nication network.

Figure 1.1, with distributed data fusion to determine elevation maps (for the
height of the terrain in front of the vehicle), multiple optimization-based con-
trollers to plan possible routes for the vehicle, and online modeling, fault
management, and decision making to provide reliable and reconfigurable op-
eration. Eight onboard computers distribute the computational load, shar-
ing information at mixed rates across a 1 Gb/s switched network. System
specifications call for reliable operation in the presence of up to 1 computer
failure and 2 sensor failures, requiring careful coordination between compu-
tational elements.

A major challenge in Alice is determining how to send information be-
tween nodes. Because of the high data rates and computational loads on
the CPUs, packets sent across the network are not always received and the
system must be robust to various networking effects. The choice of proto-
cols and design of the overall messaging system is currently informal and
based on trial and error. As an example of the issues that must be resolved,
certain packets of data are very important, such as packets containing raw
sensor information from a portion of the terrain that is scanned only once.
Other data can be dropped if needed, such as commanded trajectories (the
old trajectory can be used for several sampling periods). Data from the
inertial measurement unit must be received with minimum latency, while
other data (a change in the temperature of the vehicle) is much less time



3

Figure 1.2: The Caltech Multi-Vehicle Wireless Testbed. The left figure shows
the layout of the testbed area, including overhead cameras and fixed communi-
cation nodes (crosses and hexagons). The right picture is the current laboratory,
with two vehicles shown.

critical. Substantial effort has been put into trying to make sure that the
computations and network protocols complement each other and that loss
of data and data latency does not degrade the performance of the system.

Another example of a networked control system is illustrated by the Cal-
tech Multi-Vehicle Wireless Testbed (MVWT, shown in Figure 1.2), which
consists of a collection of 8-12 vehicles performing cooperative tasks. The
MVWT represents a slightly different instantiation of the architecture in
Figure 1.1: each vehicle has a single processor with full access to local sens-
ing and actuation, but information between vehicles must be sent across
the network. The wireless commmuncation channels can exhibit significant
degredation when multiple vehicles are attempting to communication and
packet loss rates of 5-15% are not uncommon.

The issues in desiging a cooperative control policy for the MVWT vehi-
cles faces many of the same challenges as those seen in Alice. Information
communicated between vehicles can be dropped, reordered or sent with vari-
able delay. Sensor information required for overall situational awareness can
be fused at multiple levels and/or in a distributed fashion. Again, the cur-
rently available protocols for network communications are not well tuned to
operation in this type of environment. For example, bit errors in packets can
result in losing the entire data packet, rather than passing the information
to the applications layer where partial (lossy) information could still be used
effectively.

A more detailed architecture for a networked control system is shown in
Figure 1.3. At the top of the figure, the standard elements for a control
system are present: actuation, system dynamics, sensing and environmental
disturbances and noise. For many networked control systems, the amount
of sensory information available is very large, requiring care in how this
information is transmitted. Alice, for example, had between 1 and 3 giga-
bits/second (Gb/s) raw data rate, depending on the sensor suite taht was
used. Another difference with traditional control systems is that the actua-



4

Tracking

Controller
Trajectory

Generation

State

Estimation

Actuation System

Environment

Sensing

Online Model

Mode/Traj

Supervisory Control

Selection

Figure 1.3: A detailed architecture for a networked control system, based on the
control system for Alice [?].

tion subsystems are themselves embedded systems, capable of some amount
of computation and local memory storage.

The primary control loop in a networked control system consists of state
estimation, trajectory generation, and trajectory tracking. These elements
can all represent relatively substantial computations (depending on the ap-
plication) and are linked to each other through a number of network ports.
In Alice, for example, the state estimation modules included a traditional
inertial state estimator (combining GPS data with gryos and accelerometer
measurements) as well as four computers that were estimating terrain infor-
mation and computing a fused “speed map” that described the maximum
allowable velocity that could be used in a given area of the terrain in front
of it (more details on the software for Alice is given in Appendix ??).

The information from the state estimators is used by trajectory gener-
ation algorithms that compute the desired state and inputs for the system
to accomplish a task or minimize a cost function. The trajectory genera-
tion algorithms are responsible for taking into account actuator and state
constraints on the sytem, as well as the nonlinear nature of the underlying
process dynamics. A typical approach for these algorithms is to perform
optimization-based control, in which one attempts to minimize a cost func-
tion subject to satisfying the constraints and dynamics. With the advances
in computational power, it is often possible to run these optimization-based
planners quickly enough that they can recompute the path from the current
location in a “receding horizon” fashion, allowing feedback at the planner
level. This is particularly useful to manage uncertainty in the cost function,
for example when the cost is determined in real-time (as in the case of Alice,
where the cost is based no the terrain that is being traversed).



5

As in the case of state estimation, networked control systems often use
more than one trajectory generation algorithm running simultaneously. Since
the physical system can only track one trajectory, some level of mode man-
agement and trajectory selection is required. This mode or trajectory se-
lection logic is often under the control of higher levels of decision making
(supervisory control).

The last element of the primary control loop is the trajectory tracking
module, which is responsible for high frequency disturbance rejection and
tracking. This module is itself a feedback system, using the state estimate
and the desired trajectory to compute the actuation commands. In the con-
text of a networked control system, the primary difference with traditional
trajectory tracking algorithms is the need to run in a asynchronous execu-
tion environment, where reference trajectories and sensory measurements
may come in at varying rates, including short periods where no inputs may
arrive (due to network delays, computational delays or fault handling in one
of the other modules).

In addition to the elements of the primary control loop, networked control
systems can also contain a number of modules responsible for higher levels of
decision making. We loosely refer to these modules as “supervisory control”:
they are responsible for implementing various control system functions that
involve choosing parameters used by the primary control loop (such as cost
functions and communication rates), dealing with failures of hardware and
software components, maintaining an online model of the system dynamics,
and adapting the performance of the system based on observed behaviors
and memory. While these elements are critical for the operation of a net-
worked control systems, in this text we focus on the primary control loop,
where the network effects are most directly relevant.


