
Networked Sensing, Estimation and Control
Systems

Vijay Gupta

University of Notre Dame

Richard M. Murray

California Institute of Technology

Ling Shi
Hong Kong University of
Science and Technology

Bruno Sinopoli

Carnegie Mellon University

DRAFT v1.1b, 11 January 2010
c© V. Gupta, R. M. Murray, L. Shi and B. Sinopoli

All rights reserved.

This manuscript is for review purposes only and may not be reproduced, in whole or in
part, without written consent from the author. Permission is granted for individual,

non-commercial use.



Chapter 4
Markovian Jump Linear Systems

In this chapter, we present a short overview of Markovian jump linear systems. A
more thorough and complete treatment is given in books such as [?]. As in other
chapters, our focus will be on the Linear Quadratic Gaussian (LQG) control of
such systems. As we shall see, even though such systems are non-linear, they can
be analyzed using tools that are similar to those used in linear system analysis.

4.1 Introduction to Markovian Jump Linear Systems

A useful category of system models are those in which the system operates in
multiple modes. Although each of the individual modes in linear, the switching
between these modes introduces non-linearity into the overall system description.
A general theory of such systems is developed in the hybrid systems community.
However, much tighter results can be developed if a further assumptions holds,
that the mode switches are governed by a stochastic process that is statistically
independent from the state values. In the case when the stochastic process can be
described by a Markov chain, the system is called a Markovian jump linear system.
Although the individual modes of such systems may be continuous or discrete, we
will concentrate on the latter case here.

More formally, consider a discrete time discrete state Markov process with state
rk ∈ {1, 2, · · · ,m} at time k. Denote the transition probability P (rk+1 = j|rk = i)
by qij , and the resultant transition probability matrix by Q. We will assume that
the Markov chain is irreducible and recurrent. Also denote

P (rk = j) = πj,k,

with πj,0 as given. The evolution of a Markovian jump linear system (MJLS),
denoted by S1 for future reference, can be described by the following equations

xk+1 = Ark
xk + Brk

uk + Frk
wk

yk = Crk
xk + Grk

vk,
(4.1)

where wk is zero mean white Gaussian noise with covariance Rw, vk is zero mean
white Gaussian noise with covariance Rv and the notation Xrk

implies that the
matrix X ∈ {X1,X2, · · · ,Xm} with the matrix Xi being chosen when rk = i.
The initial state x0 is assumed to be a zero mean Gaussian random variable with
variance Π0. For simplicity, we will consider Frk

= Grk
≡ I for all values of rk in the

sequel. We also assume that x0, {wk}, {vk} and {rk} are mutually independent. The
particular case when qij = qj ,∀i, j (i.e., the random process governing the switching
of the modes is a Bernoulli process) is sometimes referred to as a Bernoulli jump
linear system.
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Such systems have been studied for a long time in the fault isolation community,
and have received new impetus with the advent of networked control systems. We
now consider some examples of applicability of Markovian jump linear systems.

Example 4.1
Consider the following example of a failure prone production system, which is the
discrete time equivalent of the model presented in [AK86]. Consider a manufactur-
ing system producing a single commodity. There is a constant demand rate d for
the commodity, and the goal of the manufacturing system is to try to meet this
demand. The manufacturing system is, however, subject to occasional breakdowns
and so at any time k, the system can be in one of two states: a functional (rk = 1)
state and a breakdown (rk = 2) state. The transitions between these two states are
usually modeled to occur as a Markov chain with given mean time between failures
and mean repair time. When the manufacturing system is in the breakdown state it
cannot produce the commodity, while if it is in the functional state it can produce
at any rate u up to a maximum production rate r > d > 0. Let xk be the inventory
of the commodity at time k, i.e., xk = (total production up to time k) - (total
demand up to time k). Then the system is a Markovian jump linear system that
evolves as

xk+1 =

{
xk + uk − d rk = 1

xk − d rk = 2,

where uk is the controlled production rate. A negative xk denotes backlog, and uk

satisfies a saturation constraint. ∇

Example 4.2
Consider a linear process evolving as

xk+1 = Axk + Buk + wk,

and being observed by a sensor of the form

yk = Cxk + vk.

The measurements from the sensor are transmitted to an estimator across an analog
erasure link. At any time k, the estimator receives measurement yk with probability
1−p, and with a probability p no measurement is received. As discussed in another
chapter, this is a common model for a dynamic process being estimated across an
analog erasure channel. This is a Bernoulli jump linear system with two modes rk ∈
{0, 1}. For both the modes, the system matrices A0 = A1 = A and B0 = B1 = B.
Mode 0 corresponds to no measurement being received and for this case C0 = 0.
Mode 1 corresponds to measurement being received, and for this case C1 = C. ∇

4.2 Stability of Markovian jump linear systems

In this section, we discuss the stability of autonomous Markovian jump linear sys-
tems. We will see that the necessary and sufficient condition for stability can be
presented an algebraic condition in terms of the spectral radius of a suitable matrix.
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Since an Markovian jump linear systems is a stochastically varying system,
numerous notions of stability may be defined. We will primarily be interested in
mean square stability. Thus, define the state covariance Ck = E[xkxT

k ], where the
expectation is taken with respect to the initial state, process and measurement
noise, and the discrete modes till time k. The system is stable if the steady state
covariance is bounded, i.e., if limk→∞ Ck < C!, where C! is a constant matrix, and
the inequality is understood in the positive definite sense.

The stability condition for Markovian jump linear systems is given by the fol-
lowing result.

Theorem 4.1. Consider the system S1 with the control input uk = 0. The system
is stable if and only if the condition

ρ
(
(QT ⊗ I)diag(Ai ⊗ Ai)

)
< 1

holds, where ρ(M) is the spectral radius of matrix M , Q is the transition probability
matrix of the Markov chain governing the mode switches of the system, ⊗ denotes
the Kronecker product, I is the identity matrix of suitable dimensions, and diag(Ai⊗
Ai) denotes a block diagonal matrix formed by using the matrices Ai⊗Ai for various
mode values i.

Proof. Consider the term

Ci
k = E[xkxT

k |rk = i]πi,k,

so that the covariance is given by

Ck =
m∑

i=1

Ci
k.

We will study the evolution of terms Ci
k. Conditioning on the state value at time

k − 1 yields

Ci
k =

m∑

j=1

P (rk−1 = j|rk = i)πi,k]E[xkxT
k |rk = i, rk−1 = j]

=
m∑

j=1

P (rk = i|rk−1 = j)πj,k−1E[xkxT
k |rk = i, rk−1 = j]

=
m∑

j=1

qjiπj,k−1E[xkxT
k |rk−1 = j],

where in the second line we have used the Bayes law, and in the third line we
have used the fact that given the Markov mode at time k − 1, xk is conditionally
independent of the Markov mode at time k. Now given the Markov mode at time
k− 1, the covariance of the state at time k can be related to the covariance at time
k − 1. Thus, we obtain

Ci
k =

m∑

j=1

qjiπj,k−1

(
AjE[xk−1x

T
k−1|rk−1 = j]AT

j + Rw

)

=
m∑

j=1

qjiAjC
j
k−1A

T
j +

m∑

j=1

qjiπj,k−1Rw.
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We can vectorize this equation and use the identity

vec(ABC) = (CT ⊗ A)vec(B)

to obtain

vec(Ci
k) =

m∑

j=1

qji(Aj ⊗ Aj)vec(Cj
k−1) + πi,kvec(Rw). (4.2)

For values of i = 1, · · · , m, these coupled linear equations define the stability of
Ck. We can stack the vectors vec(Ci

k) for various values of i, and obtain that the
dynamical system recursion is governed by the matrix

(
(QT ⊗ I)diag(Ai ⊗ Ai)

)
.

Thus, we need to consider the spectral radius of this matrix.

For a Bernoulli jump linear system, the condition reduces to the following simple
form.

Theorem 4.2. Consider the system S1 with the control input uk = 0 and the
additional assumption that the Markov transition probability matrix is such that for
all states i and j, qij = qi. The system is stable if and only if the condition

ρ (E[Ai ⊗ Ai]) < 1

holds, where the expectation is taken over the probabilities {qi}.

Proof. In this case, we have qij = qj ,∀i. Moreover, rk and xk are independent, so
that Ci

k = Ckπi,k = Ckqi,k. Thus, (4.2) yields

vec(Ck) =
m∑

j=1

(Aj ⊗ Aj)vec(Ck−1)qj,k + vec(Rw)

= E[Ai ⊗ Ai]vec(Ck−1) + vec(Rw),

which yields the desired stability condition.

4.3 LQG control

We will develop the LQG controller of Markovian jump linear systems in three
steps. We will begin by considering the optimal linear quadratic regulator. We will
then consider the optimal estimation problem for Markovian jump linear systems
in the minimum mean squared error (MMSE). Finally, we will present a separation
principle that will allow us to solve the LQG problem as a combination of the above
filters.

Optimal Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) problem for the system S1 is posed by
assuming that the noises wk and vk are not present. Moreover, the matrix Crk

≡ I
for all choices of the mode rk. The problem aims at designing the control input uk

to minimize the finite horizon cost function

JLQR(K) =
K∑

k=1

(
E{rj}K

j=k+1

[
xT

k Qxk + uT
k Ruk

])
+ xT

K+1PK+1xK+1,
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where the expectation at time k is taken with respect to the future values of the
Markov state realization, and PK+1, Q and R are all assumed to be positive definite.
The controller at time k has access to control inputs {uj}k−1

j=0 , state values {xj}k
j=0

and the Markov state values {rj}k
j=0. Finally, the system is said to be stabilizable

if the infinite horizon cost function J∞
def
= limK→∞

JLQR

K is finite.
The solution to this problem can readily be obtained through dynamic program-

ming arguments. The optimal control is given by the following result.

Theorem 4.3. Consider the LQR problem posed above for the system S1.

1. At time k, if rk = i, then the optimal control input is given by

uk = −
(
R + BT

i Pi,k+1Bi

)−1
BT

i Pi,k+1Aixk,

where for j = 1, 2, · · · ,m,

Pj,k =
m∑

t=1

qtj

(
Q + AT

t Pt,k+1At

− AT
t Pt,k+1Bt

(
R + BT

t Pt,k+1Bt

)−1
BT

t Pt,k+1At

)
, (4.3)

and Pj,K+1 = PK+1,∀j = 1, 2, · · · ,m.

2. Assume that the Markov states reach a stationary probability distribution. A
necessary and sufficient condition for stabilizability of the system is that there
exist m positive definite matrices X1, X2, · · · , Xm and m2 matrices K1,1,
K1,2, · · · , K1,m, K2,1, · · · , Km,m such that for all j = 1, 2, · · · ,m,

Xj >
m∑

i=1

qij

(
(AT

i + Ki,jB
T
i )Xi(A

T
i + Ki,jB

T
i )T + Q + KijRKT

ij

)
.

3. A necessary condition for stabilizability is that

qi,iρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unstabilizable modes of the process in the i-th mode.

Proof. The proof follows by standard dynamic programming arguments. We begin
by rewriting the cost function JLQR to identify terms in the cost that depend on
xk and uk:

JLQR(K) =
K−1∑

k=1

(
E{rj}K

j=k+1

[
xT

k Qxk + uT
k Ruk

])
+ TK

TK = ErK

[
xT [K]QxK + uT

KRuK

]
+ xT

K+1PK+1xK+1.

We rewrite TK by explicitly conditioning it on the value of rK .

TK =
m∑

i=1

πi,K

(
xT [K]QxK + uT

KRuK + xT
K+1Pi,K+1xK+1|rK = i

)
,
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where Pi,K+1 = PK+1,∀i. At the time of calculation of uK , the mode rK is known.
To choose the control input for any value of the mode, we complete the square of
each of the terms in the summation. For the i-th term we obtain
(
xT [K]QxK + uT

KRuK + xT
K+1Pi,K+1xK+1|rK = i

)

= xT [K]QxK + uT
KRuK + (AixK + BiuK)T Pi,K+1(AixK + BiuK)

= xT [K]Mi,KxK + (uK + S−1
i,KBT

i Pi,K+1AixK)T Si,K(UK + S−1
i,KBT

i Pi,K+1AixK),

where

Si,K = R + BT
i Pi,K+1Bi

Mi,K = Q + AT
i Pi,K+1Ai − AT

i Pi,K+1BiS
−1
i,KBT

i Pi,K+1Ai.

Thus, the optimal choice of uK for the case rK = i is

uK = −S−1
i,KBT

i Pi,K+1xK .

With the optimal choice of uK for all values of i = 1, · · · ,m, the term TK reduces
to

TK =
m∑

i=1

πi,K

(
xT

KMi,KxK |rK = i
)

=
m∑

i=1

πi,K

m∑

j=1

qji

(
xT

KMi,KxK |rK = i, rK−1 = j
)

=
m∑

j=1

m∑

i=1

πi,Kqji

(
xT

KMi,KxK |rK−1 = j
)

=
m∑

j=1

(

xT
K(

m∑

i=1

πi,KqjiMi,K)xK |rK−1 = j

)

=
m∑

j=1

(
xT

Kπj,K−1Pj,KxK |rK−1 = j
)

= ErK−1

[
xT

KPj,KxK

]
,

where

πj,K−1Pj,K =
m∑

i=1

πi,KqjiMi,K .

Thus, the cost function JLQR can be rewritten as

JLQR(K) =
K−2∑

k=1

(
E{rj}

K−1

j=k+1

[
xT

k Qxk + uT
k Ruk

])
+ TK−1

TK−1 = ErK−1

[
xT

K−1QxK−1 + uT
K−1RUK−1 + xT

KPi,KxK

]
.

If we rewrite TK by explicitly conditioning it on the value of rK−1,

TK−1 =
m∑

i=1

πi,K−1

(
xT

K−1QxK−1 + uT
K−1RUK−1

+ xT
KPi,KxK |rK−1 = i

)
,
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we see that the problem of choosing UK−1 is formally identical to the problem that
we solved above for choosing uK . Thus, the same argument can be repeated at any
time step recursively. At a general time k, the control input uk given rk = i is given
by

uk = −S−1
i,k BT

i Pi,k+1xk,

where

Si,k = R + BT
i Pi,k+1Bi

πj,k−1Pj,k =
m∑

i=1

πi,kqjiMi,k

Mi,k = Q + AT
i Pi,k+1Ai − AT

i Pi,k+1BiS
−1
i,k BT

i Pi,k+1Ai,

with boundary value Pi,K+1 = PK+1∀i. This proves the first part of the theorem.
To prove the second and third parts, we need to study the stability of the terms

Pi,0 as the horizon K → ∞.

The above conditions reduce to simpler form for Bernoulli jump linear systems.
For this case, the LQR and stabilizability problems can be solved to yield the
following result.

Theorem 4.4. Consider system S1 with the additional assumption that the Markov
transition probability matrix is such that for all states i and j, qij = qi (in other
words, the states are chosen independently and identically distributed from one time
step to the next). Consider the LQR problem posed above for the system S1.

1. At time k, if rk = i, then the optimal control input is given by

uk = −
(
R + BT

i Pk+1Bi

)−1
BT

i Pk+1Aixk,

where

Pk =
m∑

t=1

qt

(
Q + AT

t Pk+1At − AT
t Pk+1Bt

(
R + BT

t Pk+1Bt

)−1
BT

t Pk+1At

)
.

2. Assume that the Markov states reach a stationary probability distribution.
A sufficient condition for stabilizability of the system is that there exists a
positive definite matrix X, and m matrices K1, K2, · · · , Km such that

X >
m∑

i=1

qi

(
(AT

i + KiB
T
i )X(AT

i + KiB
T
i )T + Q + KiRKT

i

)
.

3. A necessary condition for stabilizability is that

qiρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unstabilizable modes of the process in the i-th mode.

Proof. The result follows readily from the LQR solution of Markovian jump linear
systems. Specifically, if we substitute qtj = qj∀t in (4.3), we see that all matrices Pj,k

are identical for j = 1, · · · , m. If we denote this value by Pk, we obtain the desired
form of the LQR control law. Similarly the stability conditions in the theorem also
follow from those for Markovian jump linear systems in Theorem 4.3.
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Optimal Minimum Mean Squared Error Estimator

The minimum mean squared error estimate problem for the system S1 is posed by
assuming that the control urk

is identically zero. The objective is to identify at
every time step k, an estimate x̂k+1 of the state xk+1 that minimizes the mean
squared error covariance

Πk+1 = E{w(j)},{v(j)},x0

[
(xk+1 − x̂k+1)(xk+1 − x̂k+1)

T
]
,

where the expectation is taken with respect to the process and measurement noises,
and the initial state value (but not the Markov state realization). The estimator at
time k has access to observations {y(j)}k

j=0 and the Markov state values {rj}k
j=0.

Moreover, the error covariance is said to be stable if the expected steady state error
covariance limk→∞ E{rj}

k−1
j=0

[Πk] is bounded, where the expectation is taken with

respect to the Markov process.
Since the estimator has access to the Markov state values till time k, the optimal

estimate can be calculated through a time-varying Kalman filter. Thus, if at time
k, rk = i, the estimate evolves as

x̂k+1 = Aix̂k + Kk (yk − Cix̂k) ,

where

Kk = AiΠkCT
i

(
CiΠkCT

i + Rv

)−1

Πk+1 = AiΠkAT
i + Rw − AiΠkCT

i

(
CiΠkCT

i + Rv

)−1
CiΠkAT

i .

The error covariance Πk is available through the above calculations. However, cal-
culating E{rj}

k−1
j=0

[Πk] seems to be intractable. Instead, the normal approach is to

consider an upper bound to this quantity1 that will also help in obtaining sufficient
conditions for the error covariance to be stable.

The intuition behind obtaining the upper bound is simple. The optimal estima-
tor presented above optimally utilizes the information about the Markov states till
time k. Consider an alternate estimator that at every time step k, averages over
the values of the Markov states r0, · · · , rk−1. Such an estimator is sub-optimal and
the error covariance for this estimator forms an upper bound for E{rj}

k−1
j=0

[Πk]. A

more formal derivation for the upper bound is presented below.

Theorem 4.5. The term E{rj}
k−1
j=0

[Πk] obtained from the optimal estimator is upper

bounded by Mk =
∑m

j=1 Mj,k where

Mj,k =
m∑

t=1

qtj

(
Rw + AtMt,k−1A

T
t

− AtMt,k−1C
T
t

(
Rv + CtMt,k−1C

T
t

)−1
CtMt,k−1A

T
t

)
,

with Mj,0 = Π0 ∀j = 1, 2, · · · ,m. Moreover, assume that the Markov states reach
a stationary probability distribution. A sufficient condition for stabilizability of the

1We say that A is upperbounded by B if B − A is positive semi-definite.
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system is that there exist m positive definite matrices X1, X2, · · · , Xm and m2

matrices K1,1, K1,2, · · · , K1,m, K2,1, · · · , Km,m such that for all j = 1, 2, · · · ,m,

Xj >
m∑

i=1

qij

(
(Ai + Ki,jCi)Xi(Ai + Ki,jCi)

T + Rw + KijRvKT
ij

)
.

Finally, a necessary condition for stabilizability is that

qi,iρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics of
unobservable modes of the process in the i-th mode.

Proof. We begin by defining

Mj,k = πj,k−1E [Πk|rk−1 = j] ,

so that

E [Πk] =
m∑

i=1

Mj,k.

Now we can bound each term Mj,k as follows.

Mj,k+1 = πj,k

m∑

i=1

E [Πk+1|rk = j, rk−1 = i]P (rk−1 = i|rk = j)

=
m∑

i=1

E
[
AjΠkAT

j + Rw − AjΠkCT
j (CjΠkCT

j + Rv)−1CjΠkAT
j |rk−1 = i

]
qijπi,k−1,

since given rk−1, Πk and rk are independent. Further, note that the Riccati operator

fj(M) = AjMAT
j + Rw − AjMCT

j (CjMCT
j + Rv)−1CjMAT

j

is both concave and increasing. Since it is concave, Jensen’s inequality yields

Mj,k+1 ≤
m∑

i=1

(
AjE[Πk|rk−1 = i]AT

j + Rw

−AjE[Πk|rk−1 = i]CT
j (CjE[Πk|rk−1 = i]CT

j + Rv)−1·
CjE[Πk|rk−1 = i]AT

j

)
qijπi,k−1.

Now from the definition of Mi,k−1 and the fact that fj(.) is an increasing operator,
we obtain the required bound.

The special case of a Bernoulli jump linear systems can be obtained from the
above result by substituting qij = qj∀i. We state the result below.

Theorem 4.6. Consider the estimation problem posed above for the system S1 with
the additional assumption that the Markov transition probability matrix is such that
for all states i and j, qij = qi (in other words, the states are chosen independently
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and identically distributed from one time step to the next). The term E{rj}
k−1
j=0

[Πk]

obtained from the optimal estimator is upper bounded by Mk where

Mk =
m∑

t=1

qt

(
Rw + AtMk−1A

T
t

− AtMk−1C
T
t

(
Rv + CtMk−1C

T
t

)−1
CtMk−1A

T
t

)
,

with M0 = Π0. Further, a sufficient condition for stabilizability of the system is that
there exists a positive definite matrix X, and m matrices K1, K2, · · · , Km such
that

X >
m∑

i=1

qi

(
(Ai + KiCi)X(Ai + KiCi)

T + Rw + KiRvKT
i

)
.

Finally, a necessary condition for stabilizability is that

qiρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics of
unobservable modes of the process in the i-th mode.

Linear Quadratic Gaussian Control

Given the optimal linear quadratic regulator and minimum mean squared error
estimator, the solution of the linear quadratic Gaussian control problem can be
solved by utilizing a separation principle. The Linear Quadratic Gaussian (LQG)
problem for the system S1 aims at designing the control input uk to minimize the
finite horizon cost function

JLQG = E

[
K∑

k=1

(
xT

k Qxk + uT
k Ruk

)
+ xT

K+1PK+1xk+1

]

,

where the expectation at time k is taken with respect to the future values of the
Markov state realization, the measurement and process noises, and the initial state.
Further, the matrices PK+1, Q and R are all assumed to be positive definite. The
controller at time k has access to control inputs {uj}k−1

j=0 , measurements {y(j)}k
j=0

and the Markov state values {rj}k
j=0. The system is said to be stabilizable if the

infinite horizon cost function J∞
def
= limK→∞

JLQG

K is finite.
The solution to this problem is provided by Theorems 4.3 and 4.5 because of

the following separation principle.

Theorem 4.7. Consider the LQG problem for the system S1. At time k, if rk = i,
then the optimal control input is given by

uk = −
(
R + BT

i Pi,k+1Bi

)−1
BT

i Pi,k+1Aix̂k,

where for Pi,k is calculated as in Theorem 4.3 and x̂k is calculated using a time-
varying Kalman filter.
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Given this separation principle, the stabilizability conditions provided in The-
orems 4.3 and 4.5 can then be combined to yield the stabilizability conditions for
the LQG case as well. Finally, we note that a similar separation principle also holds
for Bernoulli jump linear systems. Thus, the LQG problem can be solved for this
case as well.

4.4 Further Resources
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