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Chapter 2
State Estimation and Sensor Fusion

In this chapter, we provide an overview of Kalman filter and linear quadratic Gaus-
sian (LQG) control. We will first provide a quick summary of basic theories of
probability and stochastic process, which will be used to derive the Kalman filter
equations. Some properties of Kalman filter and its steady-state error covariance
matrix will also be provided. After that, we will introduce LQG control and derive
the optimal control law using a dynamic programming approach.

The material of this chapter will be the foundation of most subsequent chapters
including Chapters 4, 6 and 8. In particular, Chapter 6 considers the effect of
data packet drops on Kalman filtering and LQG control and Chapter 8 considers
distributed Kalman filtering.

2.1 Review of Probability and Random Process

We assume the readers have some exposure to the theory of probability and random
process. The material presented in this section only serves as a quick review of some
basic concepts and tools from probability and random process that will be helpful to
understand and derive some important results in subsequent sections and chapters.
Good introductory books on probability and random process are [GS01] and [LG93].

Random Variables

Consider an experiment with many (possibly infinite) outcomes. All these outcomes
form the sample space Ω. A subset A ⊂ Ω is called an event. Two events A1, A2 are
called mutually disjoint if A1∩A2 = ∅. The complement of an event A is defined as
Ā = Ω \ A. A probability measure P (·) is a mapping from Ω into the interval [0, 1]
such that the following axioms of probability are satisfied:

1. P (A) ≥ 0 for all A ⊂ Ω.

2. P (Ω) = 1.

3. If {Ai, i = 1, 2, . . .} is a collection of disjoint members of F , i.e., Ai ∩ Aj = ∅
for all i, j, then P (∪Ai) =

∑
i P (Ai).

From the axioms of probability, it follows that

P (A) ≤ 1, P (∅) = 0, P (Ā) = 1 − P (A), P (∪Ai) ≤
∑

i

P (Ai).

The joint probability of two events A and B is P (A∩B) which is often written as
P (AB) for simplicity. The conditional probability of A given B i.e., the probability
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that A occurs if B occurs in an experiment is

P (A|B) =
P (AB)

P (B)
, assuming P (B) (= 0.

A and B are mutually independent if

P (AB) = P (A)P (B).

If P (B) (= 0, the conditional probability P (A|B) can be calculated from Bayes’
Rule as

P (A|B) =
P (B|A)P (A)

P (B)
.

If Ai, i = 1, 2, . . . are mutually disjoint and ∪Ai = Ω, then

P (B) =
∑

i

P (B|Ai)P (Ai)

and

P (Aj |B) =
P (B|Aj)P (Aj)∑
i P (B|Ai)P (Ai)

.

A random variable is a function X : Ω → R. The cumulative distribution func-
tion of a random variable X is a function FX : R → [0, 1] given by

FX(x) = P (X ≤ x).

The cumulative distribution function F has the following properties

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

2. If x ≤ y, then FX(x) ≤ FX(y).

3. FX is right-continuous.

When FX is differentiable, we can define the associated probability density function
pX(x) as

pX(x) =
dFX(x)

dx
.

The joint cumulative distribution function of two random variables X and Y ,
denoted as FXY (x, y), is given by

FXY (x, y) = P (X ≤ x) ∩ P (Y ≤ y).

If its derivative exists, the associated joint probability density function is given by

pXY (x, y) =
∂2

∂x∂y
FXY (x, y).

Given FXY (x, y), the marginal distribution functions of X and Y can be calcu-
lated as

FX(x) = P (X ≤ x) = FXY (x,∞), FY (y) = P (Y ≤ y) = FXY (∞, y).
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It follows that the marginal density functions of X and Y are

pX(x) =

∫ ∞

−∞
FXY (x, y)dy, pY (y) =

∫ ∞

−∞
FXY (x, y)dx.

The conditional density function of X given Y is given by

pX|Y (x|y) =
pXY (x, y)

pY (y)
.

The density function of X can also be calculated as

pX(x) =

∫ ∞

−∞
pX|Y (x|y)pY (y)dy.

If X and Y are independent random variables, then the following statements holds
and are equivalent to each other:

1. FXY (x, y) = FX(x)FY (y).

2. pXY (x, y) = pX(x)pY (y).

3. pX|Y (x|y) = pX(x).

A random variable X is completely specified by its distribution function FX(x)
or density function pX(x). In many situations, FX(x) or pX(x) are difficult to
obtain. It turns out the mean µX and variance σ2

X may provide us enough (useful)
information about X. The mean and variance of a random variable X are defined
as follows:

µX = E[X] =

∫ ∞

−∞
xpX(x)dx,

σ2
X = E

[
(X − E[X])2

]
=

∫ ∞

−∞
(X − E[X])2pX(x)dx.

We denote E[·] as the expectation operator. Since E[·] is a linear operator, σ2
X can

also be calculated as

σ2
X = E[X2] −

(
E[X]

)2
.

If X is a zero-mean random variable, i.e., E[X] = 0, then σX = E[X2]. The kth
moment of X is mk = E[Xk] and the kth central moment is µk = E

[
(X −E[X])k

]
.

The covariance of two random variables X and Y is defined as E
[
(X−E[X])(Y −

E[Y ])
]
. X and Y are uncorrelated if E[XY ] = E[X]E[Y ]. If X and Y are uncorre-

lated, it is easy to verify that the covariance of X and Y is equal to zero. Clearly if
X and Y are independent, then they are uncorrelated. However the converse does
not hold in general.

The conditional expectation of X given Y = y is

E[X|Y = y] =

∫ ∞

−∞
xpX|Y (x|y)dx
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which is a number that depends on the value of y. Similarly, the conditional expec-
tation of X given Y is

E[X|Y ] =

∫ ∞

−∞
xpX|Y (x|Y )dx

which is also a random variable that depends on Y , i.e., it is a function of the random
variable Y . The following property is very important and has great practical value
in evaluating E[X]:

E[X] = EY

[
EX [X|Y ]

]
,

i.e., we first find the conditional expectation of X (conditioned on Y ), and then re-
move the condition by taking the expectation with respect to Y . From this property,
one can easily verify that if X and Y are independent, then

E[X|Y ] = E[X].

Furthermore if X and Y are jointly independently of Z, then

E[XY |Z] = E[X|Z]E[Y |Z].

Random Processes

A random process X(t) is a generalization of a random variable. For a random
variable, each experiment leads to a number (or a vector), while for a random
process, each experiment leads to a function. For a fixed outcome ω ∈ Ω, one
obtains the function X(t,ω), which is also called the sample path or sample func-
tion of the process. For a fixed t, X(t,ω) is a random variable with the underly-
ing probability space Ω. The mean process of X(t) is the time function E[X(t)].
The autocorrelation of X(t) is E[X(t1)X(t2)T ] and the autocovariance of X(t) is

E
[(

X(t1) − m(t1)
)(

X(t2) − m(t2)
)T ]

.
A random process X(t) is called a Gaussian random process if for any finite

set {t1, t2, . . . , tN}, the random variables {X(t1),X(t2), . . . ,X(tN )} have a joint
Gaussian distribution, i.e., their joint probability density function is given by

pX(x) =
1

(2π)N/2
√

det[CX ]
exp

[
−1

2
(x − mX)TC−1

X (x − mX)

]
(2.1)

where mX = [mX(t1) mX(t2) . . . mX(tN )]T is the mean vector and CX =
[
cov

(
X(ti),X(tj)

)]

is the covariance matrix. Gaussian processes have the following properties.

Theorem 2.1. Let X(t) be a Gaussian process. Then X(t) is completely determined
by mX and CX .

Theorem 2.2. Let X and Y have a joint Gaussian distribution with mean and
covariance given by

µ =

[
x̄
ȳ

]
and Σ =

[
Σx Σxy

Σyx Σy

]
.

Then X conditioned on Y = y is Gaussian with mean and covariance given by

µX|Y =y = x̄ + ΣxyΣ
−1
y (y − ȳ) and ΣX|Y =yΣx − ΣxyΣ

−1
y Σyx.
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In other words,
E[X|Y = y] = x̄ + ΣxyΣ

−1
y (y − ȳ). (2.2)

The proof can be found in Anderson and Moore [AM90].

Stability of stochastic systems

Consider the following system dynamics:

xk+1 = f(xk, wk), (2.3)

where x0 and wk are random vectors. System (2.3) is said to be

1. second moment stable if
lim

k→∞
E[||xk||2] = 0,

2. almost sure stable if
P ( lim

k→∞
||xk|| = 0]) = 1,

where the expectation is taken with respect to x0 and wi, i = 0, . . . , k.
For a convex function f , x1, . . . , xn in its domain, and positive weights αi,

Jensen’s inequality can be stated as:

f

(∑
αixi∑
αi

)
≤

∑
αif(xi)∑

αi
. (2.4)

Jensen’s inequality can also be stated in probabilistic form. Let X be a random
variable and f be a convex function. Then

f (E[X]) ≤ E (f(X)) . (2.5)

The above two inequalities are reversed if f is concave.

Markov Chains

2.2 Optimal Estimation

Minimum mean square error estimator

Suppose we wish to know some quantity X, and we are not able to make a direct
and accurate measurement of X. However we can make some indirect measurement
Y that is related to X. Our task is to get an “optimal” estimate of X from Y .

One question that immediately arises before we attempt to solve the estimation
problem is: what is a good estimate and when an estimate is “optimal”?

Intuitively a “good” estimate should make the estimation error X̂ −X “small”
since we wish to reconstruct X as perfectly as possible. An “optimal” estimate
should make X̂−X the “smallest” among all other estimates. Many metrics can be
used to define the size of the error X̂ −X (hence we are able to say if it is “small”
or not). Since X̂ − X is typically a random variable, the metric that we shall use
throughout the book is the following mean squared error (MSE)

E[(X̂ − X)T (X̂ − X)].
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Therefore given Y = y (i.e., the measurement that we take), our task is to construct
the optimal estimate X̂ that minimizes

E[(X̂ − X)T (X̂ − X)|Y = y].

It turns out that the optimal X̂ has a very simple form, given in the following
theorem.

Theorem 2.3. The optimal estimate X̂∗ that minimizes

E[(X̂ − X)T (X̂ − X)|Y = y]

is given by the following conditional expectation of X

X̂∗ = E[X|Y = y].

Proof. We can rewrite E[(X̂ − X)T (X̂ − X)|Y = y] as follows

E[(X̂ − X)T (X̂ − X)|Y = y]

= E[XT X|Y = y] − 2X̂T
E[X|Y = y] + X̂T X̂

=
(
X̂ − E[X|Y = y]

)T (
X̂ − E[X|Y = y]

)
+ E

[
XT X − E[X]T E[XT ]|Y = y

]
.

Since E
[
XT X − E[X]T E[XT ]|Y = y

]
is independent of X̂, we conclude that

X̂∗ = E[X|Y = y].

X̂∗ = E[X|Y = y] is also called the minimum mean squared error (MMSE)
estimate of X.

Example 2.1 Estimate a Gaussian random variable
Consider the following equation

Y = X + N (2.6)

where X and N are both scalar zero-mean Gaussian random variables with covari-
ances σx and σn respectively. Further assume X and N are uncorrelated. Suppose
we make a measurement of X and get y. The MMSE estimate of X is then given
by

X̂ = E[X|Y = y] =
σx

σx + σn
y.

∇

Sampling of a continuous-time system

A wide variety of physical systems are modeled in the continuous-time domain. In
this book, we focus on continuous-time systems with dynamics of the form

dx

dt
= Acx + Bcu + w, y = Cc + v, (2.7)
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where x(t) ∈ Rn is the state vector with unknown initial value x(0), u(t) ∈ Rp

is the input vector, y(t) ∈ Rm is the observation vector, and w(t) and v(t) are
process disturbance and measurement noise. We assume w(t) and v(t) are mutually
uncorrelated zero-mean Gaussian processes with autocovariances

E[w(s)w(t)T ] = δstΣwc, E[v(s)v(t)T ] = δstΣvc,

where δst = 1 if s = t and δst = 0 otherwise.
As more and more controllers are implemented digitally, we need a procedure to

convert the continuous-time system (2.7) into an equivalent discrete-time system.
This procedure is called sampling or discretization. A frequently seen approach to
implement the control law on a digital computer is to use a digital to analogue
converter that holds the analog signal until the next time step, called zero-order-
hold control.

Consider the following periodic sampling scheme: we sample the system (2.7) at
time instances t = kτ, k = 0, 1, . . ., where τ > 0 is the sampling period. It can be
shown (see Astrom-Wittenmark) that the equivalent discrete-time system of (2.7)
is given by

xk+1 = Axk + Buk + wk, yk = Cxk + vk, (2.8)

where xk and yk correspond to x(t) and y(t) at time t = kτ , and A,B and C are
given by

A = eAcτ , B =

∫ τ

0
eActdtBc, C = Cc. (2.9)

In the discrete-time setting, the process and measurement noises are also uncorre-
lated zero-mean Gaussian random processes with covariance

E[wswk] = δskΣw, E[vsv
T
k ] = δskΣv,

where

Σw =

∫ τ

0
eActΣwce

AT
c tdt, Σv = Σvc.

Computing Σw directly from the above formula is sometimes difficult due to
the integral of matrix exponentials. An easier approach to compute it is given as
follows. Define M and N as

M =

[
−Ac Σwc

0 AT
c

]
τ, N = eM .

Then can be shown that

N =

[
∗ X−1Σw

0 XT

]
.

Therefore Σw can be computed from

Σw = (XT )T X−1Σw,

i.e., Σw is obtained by multiplying the transpose of the lower-right submatrix of N
with the upper-right submatrix of N .
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Most of the results developed in this book also extend to cases where the sensor
measurement yk involves a direct input term, i.e.,

yk = Cxk + Duk + vk. (2.10)

For simplicity, we shall use the system model as described by (2.8) for the remainder
of the book unless otherwise explicitly stated.

Kalman filtering

Consider the following system as described by equation(2.8):

xk+1 = Axk + Buk + wk, yk = Cxk + vk, (2.11)

where xk ∈ Rn is the state vector with unknown initial value x0, uk ∈ Rp is the
input vector, yk ∈ Rm is the observation vector, and wk and vk are process and
measurement noises (or disturbances).

Clearly nothing can be said on any estimator without defining a structure on
wk and vk. In this book, we are particularly interested in wk and vk that have the
following properties:

• wk and vk are zero-mean Gaussian random vectors;

• E[wkwT
j ] = δkjΣw with Σw ≥ 0;

• E[vkvT
j ] = δkjΣv with Σv > 0;

• E[wkvT
j ] = 0 ∀j, k,

where δkj = 0 if k (= j and δkj = 1 otherwise. We also assume the initial value x0

of system (2.11) is a zero-mean Gaussian random vector that is uncorrelated with
wk and vk for all k ≥ 0. The covariance of x0 is given by Π0 ≥ 0. Furthermore we
assume (A,

√
Q) is stabilizable.

Let Yk = {y0, y1, . . . , yk} be the measurements available at time k and Uk =
{u0, u1, . . . , uk} be the input applied to the system up to time k. We are interested
in looking for the MMSE x̂k of xk at each time k ≥ 0 given Yk and Uk−1. From
Theorem 2.3, we know that x̂k is given by

x̂k = E[xk|Yk, Uk−1], (2.12)

and the corresponding error covariance Pk is given by

Pk = E[(xk − x̂k)(xk − x̂k)T |Yk, Uk−1]. (2.13)

Calculating x̂k and Pk according to equation (2.12) and (2.13) is not trivial and is
computationally intensive as k increases. The celebrated Kalman filter provides a
simple and elegant way to compute x̂k and Pk recursively.

The Kalman filter [Kal60] is a well-established methodology for model-based
fusion of sensor data [GA93, Gus00, May79, KSH00, AM90] that has played a
central role in systems theory and has found wide applications in many fields such
as control, signal processing, and communications.
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Assume that x̂k−1 and Pk−1 defined as in equation (2.12) and (2.13) are avail-
able. Consider the one-step state prediction x̂k|k−1 (also called the a priori state
estimate) given by

x̂k|k−1 = E[xk|Yk−1, Uk−1]

and the associated estimation error covariance (also called the a priori error co-
variance) Pk|k−1 given by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Yk−1, Uk−1].

From (2.11), we have

x̂k|k−1 = E[xk|Yk−1, Uk−1]

= E[Axk−1 + Buk−1 + wk−1|Yk−1, Uk−1]

= Ax̂k−1 + Buk−1, (2.14)

where we use the fact that wk−1 is independent of any yt (t ≤ k − 1) and the
expectation operator is linear. Consequently,

Pk|k−1 = APk−1A
T + Σw. (2.15)

Now consider yk conditioned on Yk−1 and Uk−1 which has mean

E[yk|Yk−1, Uk−1] = E[Cxk + vk|Yk−1, Uk−1] = Cx̂k|k−1

and covariance

E
[(

yk − E[yk]
)(

yk − E[yk]
)T |Yk−1, Uk−1

]
= CPk|k−1C

T + Σv,

where we have used the fact that vk is independent of Yk−1. The cross covariance
of xk and yk conditioned on Yk−1 and Uk−1 is given by

E
[(

xk − E[xk]
)(

yk − E[yk]
)T |Yk−1, Uk−1

]
= Pk|k−1C

T .

From the above analysis, we see that the random vector [x′
k y′

k]′ conditioned on
Yk−1 and Uk−1 is Gaussian with mean and covariance

[
x̂k|k−1

Cx̂k|k−1

]
and

[
Pk|k−1 Pk|k−1C

T

CPk|k−1 CPk|k−1C
T + Σv

]
.

Therefore from Theorem 2.2, xk conditioned on yk (and on Yk−1 and Uk−1, i.e.,
conditioned on Yk and Uk−1) has mean

E[xk|Yk, Uk−1] = x̂k|k−1 + Kk(yk − Cx̂k|k−1)

and covariance
(I − KkC)Pk|k−1

where Kk = Pk|k−1C
T [CPk|k−1C

T + Σv]−1 is the so-called Kalman gain.
Let us summarize what we have said so far. Given the system (2.11), the MMSE

estimate x̂k of xk is given by x̂k = E[xk|Yk, Uk−1], which can be computed recur-
sively as follows
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1. time update:

x̂k|k−1 = Ax̂k−1 + Buk−1,

Pk|k−1 = APk−1A
T + Σw.

2. measurement update:

Kk = Pk|k−1C
T [CPk|k−1C

T + Σv]−1,

x̂k = x̂k|k−1 + Kk(yk − Cx̂k|k−1),

Pk = (I − KkC)Pk|k−1.

The initial values of the recursion are set as x̂0 = 0 and P0 = Π0. The Kalman
filter essentially consists of the above two update steps.

Lemma 2.1. The Kalman gain Kk and the error covariance Pk satisfy

Kk = PkCTΣ−1
v . (2.16)

Proof. Since Pk = (I − KkC)Pk|k−1, it suffices to show

(I − KkC)Pk|k−1C
TΣ−1

v = Kk

which is equivalent to

Pk|k−1C
TΣ−1

v = Kk(I + CPk|k−1C
TΣ−1

v )

⇐⇒ Pk|k−1C
TΣ−1

v = Pk|k−1C
T [CPk|k−1C

T + Σv]−1(I + CPk|k−1C
TΣ−1

v )

⇐= Σv = (I + CPk|k−1C
TΣ−1

v )−1(CPk|k−1C
T + Σv)

⇐⇒ Σv = Σv(Σv + CPk|k−1C
T )−1(CPk|k−1C

T + Σv)

where the last equation holds trivially.

Let Sn
+ be the set of n by n positive semi-definite matrices. To simplify the

analysis, define the function h : Sn
+ → Sn

+ as

h(X) ! AXAT + Σw, (2.17)

and g̃ : Sn
+ → Sn

+ as

g̃(X) ! X − XCT [CXCT + Σv]−1CX. (2.18)

Further define g : Sn
+ → Sn

+ as

g(X) ! h ◦ g̃ = AXAT + Σw − AXCT [CXCT + Σv]−1CXA. (2.19)

For functions f, f1, f2 : Sn
+ → Sn

+, f1 ◦ f2 is defined as

f1 ◦ f2(X) ! f1

(
f2(X)

)
, (2.20)

and f t is defined as
f t(X) ! f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

t times

(X). (2.21)
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With these definitions, it can be verified that in the Kalman filter time update
and measurement update equations, Pk+1|k and Pk+1 satisfy

Pk+1|k = h(Pk),

Pk+1|k = g(Pk|k−1),

Pk+1 = g̃(Pk+1|k),

Pk+1 = g̃ ◦ h(Pk).

The equation g(X) = X or

AXAT + Σw − AXCT [CXCT + Σv]−1CXA = X (2.22)

is called the discrete-time algebraic Riccati equation (DARE). When (A,
√
Σw) is

stabilizable and (A,C) is detectable, Pk converges to a unique positive semi-definite
matrix P which satisfies P = g̃ ◦h(P ). P is called the steady-state error covariance,
and it reflects how well the estimate x̂k approximates xk in the steady state.

Properties of the Kalman filter

We first introduce a few well-known lemmas without proofs.

Lemma 2.2 (Matrix Inversion Lemma). Let X > 0. If X = B−1 + CD−1C ′, then
the inverse of X can be written as

X−1 = B − BC(D + C ′BC)−1C ′B.

The second lemma is the Schur Complement lemma. It provides a set of equiv-
alent relationships for a positive definite matrix M .

Lemma 2.3 (Schur Complement). Let

M =

[
A B
C D

]
.

Then the following three conditions are equivalent to each other.

1. M > 0.

2. A > 0 and SA ! D − CA−1B > 0.

3. D > 0 and SD ! A − BD−1C > 0.

The last one is the Block Matrix Inversion lemma, which, as its name suggests,
inverts a block matrix using the Schur complement of the matrix.

Lemma 2.4 (Block Matrix Inversion). Let

M =

[
A B
C D

]
> 0.

Then M−1 can be computed as

M−1 =

[
A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
,
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or it can be computed as

M−1 =

[
S−1

D −S−1
D BD−1

−D−1CS−1
D D−1 + D−1CS−1

D BD−1

]
.

Many useful properties of the functions h, g̃ and g are presented below.

Lemma 2.5. For any X,Y ∈ Sn
+, and X ≤ Y ,

1. h(X) ≤ h(Y ).

2. g(X) ≤ g(Y ).

3. g̃(X) ≤ g̃(Y ).

4. g̃(X) ≤ X.

5. g(X) ≤ h(X).

When the measurement matrix C is invertible, the function g exhibits a very
nice property. When we apply g to any X ≥ 0, we have a bounded value. The
following lemma gives this bound.

Lemma 2.6. Assume C−1 exists and let M = C−1RC−1′

. Then for any X ≥
0, g̃(X) ≤ M .

Proof. For any t > 0, we have g̃(tM) = t
t+1M ≤ M . For all X ≥ 0, since M > 0, it

is clear that there exists t1 > 0 such that t1M > X. Therefore g̃(X) ≤ g̃(t1M) ≤
M .

The steady-state error covariance P has the following property.

Lemma 2.7. P ≤ h(P ).

Proof. Let P ∗ satisfy P ∗ = g(P ∗). Then one can verify that P = g̃(P ∗). Since
g = h ◦ g̃, we have

P = g̃(P ∗) ≤ P ∗ = g(P ∗) = h ◦ g̃(P ∗) = h(P ).

Let 0 ≤ λ ≤ 1. Consider the following modified DARE.

gλ(X) ! AXAT + Σw − λAXCT [CXCT + Σv]−1CXA = X. (2.23)

The modified DARE will be studied in detail in Chapter 6 and the parameter λ will
represent data packet arrival rate. Some preliminary results on the modified DARE
are stated in the following lemmas. The proofs are omitted and can be found in the
appendix of [SSS+03].

Lemma 2.8. Let the operator

φ(K,X) = (1 − λ)(AXA′ + Σw) + λ(FXF ′ + V ) (2.24)

where F = A + KC, V = Σw + KΣvK ′. Assume X ∈ Sn
+, Σv > 0, Σw ≥ 0, and

(A,Σ
1
2
w) is controllable. Then the following facts are true:
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1. With KX = −AXC ′ (CXC ′ + Σv)−1, gλ(X) = φ(KX ,X)

2. gλ(X) = minK φ(K,X) ≤ φ(K,X), ∀K

3. If X ≤ Y , then gλ(X) ≤ gλ(Y )

4. If λ1 ≤ λ2 then gλ1
(X) ≥ gλ2

(X)

5. If α ∈ [0, 1], then
gλ(αX + (1 − α)Y ) ≥ αgλ(X) + (1 − α)gλ(Y )

6. gλ(X) ≥ (1 − λ)AXA′ + Σw

7. If X̄ ≥ gλ(X̄), then X̄ > 0

8. If X is a random variable, then
(1 − λ)AE[X]A′ + Σw ≤ E[gλ(X)] ≤ gλ(E[X])

The next two Lemmas show that when the modified DARE has a solution P̂ , this
solution is also stable, i.e., every sequence based on the difference Riccati equation
Pt+1 = gλ(Pt) converges to P̂ for all initial positive semidefinite conditions P0 ≥ 0.

Lemma 2.9. Define the linear operator

L(Y ) = (1 − λ)(AY A′) + λ(FY F ′)

Suppose there exists Y > 0 such that Y > L(Y ).

1. For all W ≥ 0,

lim
k→∞

Lk(W ) = 0

2. Let U ≥ 0 and consider the linear system

Yk+1 = L(Yk) + U initialized at Y0.

Then, the sequence Yk is bounded.

Lemma 2.10. Consider the operator φ(K,X) defined in equation (6.28). Suppose
there exists a matrix K and a positive definite matrix Z such that

Z > 0 and Z > φ(K,Z).

Then, for any P0, the sequence Pt = gt
λ(P0) is bounded, i.e., there exists MP0

≥ 0
dependent of P0 such that

Pt ≤ M for all t.



2-14 CHAPTER 2. STATE ESTIMATION AND SENSOR FUSION

2.3 Linear Quadratic Optimal Control

The optimal linear quadratic regulator problem is posed as follows. Consider the
process

xk+1 = Axk + Buk

with the initial condition x0, where xk ∈ Rn is the state and uk ∈ Rm is the control
input that needs to be designed to minimize the cost

JK =
K∑

k=0

(
xT

k Qxk + uT
k Ruk

)
+ xT

k+1Pk+1xk+1,

with Q > 0 and R ≥ 0. If the parameter K is finite, the problem is termed the
finite horizon LQR problem. The case when K → ∞ is termed the infinite horizon
LQR problem. We shall assume that the par (A,B) is controllable. In general, the
results given below extend to the case when the matrices A, B, Q and R are time
varying.

The solution to the finite horizon problem can be obtained through standard
dynamic programming arguments. The following theorem summarizes the results.

Theorem 2.4. Consider the finite horizon LQR problem posed above. The optimal
control law is a linear function of the state

uk = −
(
BT Pk+1B + R

)−1
BT Pk+1Axk,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = AT Pk+1A + Q − AT Pk+1B
(
BT Pk+1B + R

)−1
BT Pk+1A

with the initial condition Pk+1. Moreover, the achieved cost is given by xT
0 P0x0.

Proof. We begin by rewriting the cost function JK to identify terms in the cost
that depend on xk and uk:

JK =
K−1∑

k=1

(
xT

k Qxk + uT
k Ruk

)
+ Tk

Tk = xT
k Qxk + uT

k Ruk + xT
k+1Pk+1xk+1.

The only term in the cost that can be affected by the choice of uk is Tk. To choose
uk, we minimize Tk by a completion of squares argument. We obtain

Tk = xT
k Qxk + uT

k Ruk + (Axk + Buk)T Pk+1(Axk + Buk)

= xT
k Pkxk + (uk + S−1

k BT Pk+1Axk)T Sk(uk + S−1
k BT Pk+1Axk),

where

Sk = BT Pk+1B + R

Pk = Q + AT Pk+1A − AT Pk+1BS−1
k BT Pk+1A.
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Thus, the optimal choice of uk is

uk = −S−1
k BT Pk+1xk.

With the optimal choice of uk the term Tk reduces to xT
k Pkxk. Thus, the cost

function JK can be rewritten as

JK =
K−2∑

k=1

(
xT

k Qxk + uT
k Ruk

)
+ TK−1

TK−1 = xT
K−1QxK−1 + uT

K−1RuK−1 + xT
k Pkxk.

Thus, the problem of choosing uK−1 is formally identical to the problem that we
solved above for choosing uk, and the same argument can be repeated at any time
step recursively. At a general time k, the control input uk given rk = i is given by

uk = −
(
BT Pk+1B + R

)−1
BT Pk+1Axk,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = AT Pk+1A + Q − AT Pk+1B
(
BT Pk+1B + R

)−1
BT Pk+1A

with the final condition Pk+1. Moreover, the cost J0 obtained through this procedure
equals xT

0 P0x0.

For the infinite horizon case, we provide the solution without proof below.

Theorem 2.5. Consider the infinite horizon LQR problem posed above. The opti-
mal control law is a linear function of the state

uk = −
(
BT PB + R

)−1
BT PAxk,

where the matrix P is the unique positive semi-definite solution of the Riccati equa-
tion

P = AT PA + Q − AT PB
(
BT PB + R

)−1
BT PA.

Moreover, the achieved cost is given by xT
0 Px0.

2.4 LQG Problem

The finite horizon Linear Quadratic Guassian optimal control problem is posed as
follows. Consider the process

xk+1 = Axk + Buk + wk

with the initial condition x0 as zero mean Gaussian, where xk ∈ Rn is the state,
uk ∈ Rm is the control input that needs to be designed, and wk is the process noise
modeled Gaussian and white with mean zero and covariance Σw > 0. The process
is observed using a sensor that generates measurements of the form

yk = Cxk + vk,
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where the sensor noise vk is modeled Gaussian and white with mean zero and
covariance Σv > 0. The noise sequences {w(j)}, {v(j)} and the initial condition x0

are assumed to be independent. The cost function that needs to be minimized is

JK =
K∑

k=0

E[
(
xT

k Qxk + uT
k Ruk

)
] + E[xT

k+1Pk+1xk+1],

with Q > 0 and R ≥ 0. The expectation is taken with respect to all the random
parameters in the system. The controller at time k is allowed access to the mea-
surements until time k and control inputs until time k − 1. If the parameter K is
finite, the problem is termed the finite horizon LQG problem. As K → ∞, the cost
would necessarily diverge. Thus, the infinite horizon LQG problem considers the
cost

J∞ = lim
K→∞

1

K
JK .

We shall assume that the par (A,B) is controllable and (A,C) is observable. In
general, the results given below extend to the case when the matrices A, B, C, Q
and R are time varying.

The solution to the finite horizon problem is provided by the separation prin-
ciple. The principle essentially states that the optimal control input is calculated
as the input in the LQR problem, but with the state xk replaced by the minimum
mean squared error (MMSE) estimate of the state xk based on the measurements
until time k and control inputs until time k− 1. Note that the estimate can be cal-
culated recursively through the Kalman filter. The following theorem summarizes
the results.

Theorem 2.6. Consider the finite horizon LQG problem posed above. The optimal
control law is a linear function of the state

uk = −
(
BT Pk+1B + R

)−1
BT Pk+1Ax̂k,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = AT Pk+1A + Q − AT Pk+1B
(
BT Pk+1B + R

)−1
BT Pk+1A

with the final condition Pk+1, and x̂k is the MMSE estimate of the state xk based
on the measurements until time k and control inputs until time k − 1, calculated,
e.g., using a Kalman filter.

Proof. The proof again follows dynamic programming arguments. We begin by
rewriting the cost function JK to identify terms in the cost that depend on xk and
uk:

JK = E[
K−1∑

k=1

(
xT

k Qxk + uT
k Ruk

)
] + Tk

Tk = E[xT
k Qxk + uT

k Ruk + xT
k+1Pk+1xk+1].

The only term in the cost that can be affected by the choice of uk is Tk. To choose
uk, we minimize Tk by a completion of squares argument. We obtain

Tk = E[xT
k Qxk + uT

k Ruk + (Axk + Buk + wk)T Pk+1(Axk + Buk + wk)]

= E[xT
k Pkxk + wT

k Pk+1wk + (uk + S−1
k BT Pk+1Axk)T Sk(uk + S−1

k BT Pk+1Axk)],
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where we have used the fact that the process noise is white (hence wk is independent
of both xk and uk) and zero mean, and have defined

Sk = BT Pk+1B + R

Pk = Q + AT Pk+1A − AT Pk+1BS−1
k BT Pk+1A.

Note that the controller does not have access to xk and hence the quadratic term
cannot be minimized to zero. Instead, the controller estimates (based on the mea-
surements until time k and control inputs until time k−1) the term S−1

k BT Pk+1Axk

in the MMSE sense. Thus, the optimal choice of uk is

uk = −S−1
k BT Pk+1x̂k.

Denote by Λe,k the error covariance thus obtained. Since the controller utilizes all
control inputs until time K − 1 while calculating uk, Λe,k does not depend on the
choice of control inputs u0, · · · , uK−1. With the optimal choice of uk, the term Tk

reduces to Tk = E[xT
k Pkxk + wT

k Pk+1wk +Λe,k]. Thus, the cost function JK can be
rewritten as

JK = E[
K−2∑

k=1

(
xT

k Qxk + uT
k Ruk

)
] + TK−1 + wT

k Pk+1wk + Λe,k

TK−1 = E[xT
K−1QxK−1 + uT

K−1RuK−1 + xT
k Pkxk].

Now note that the terms wT
k Pk+1wk and Λe,k are not impacted by the choice of

u[K − 1] and hence may be dropped from the minimization problem. Thus, the
problem of choosing u[K − 1] is formally identical to the problem that we solved
above for choosing uk, and the same argument can be repeated at any time step
recursively. At a general time k, the control input uk given r[k] = i is given by

uk = −
(
BT Pk+1B + R

)−1
BT Pk+1Ax̂k,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = AT Pk+1A + Q − AT Pk+1B
(
BT Pk+1B + R

)−1
BT Pk+1A

with the final condition Pk+1.

The separation principle also holds for the infinite horizon case. In particular,
under the assumptions above, both the backward Riccati recursion in the control
calculation and the forward Riccati recursion in the Kalman filter are replaced by
the corresponding Riccati equations.

2.5 Further Reading

Exercises

2.1 Show E[X|Y = y] = σx

σx+σn
y in Example 2.1.
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