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Preface

The area of “Networked Control Systems” has emerged over the past decade
as a subdiscipline in control theory in which the flow of information in a sys-
tem takes place across a communication network. Unlike traditional control
systems, where computation and communications are usually ignored, the
approaches that have been developed for networked control systems explic-
itly take into account various aspects of the communication channels that
interconnect different parts of the overall system and the nature of the dis-
tributed computation that follows from this structure. This leads to a new
set of tools and techniques for analysis and design of networked control sys-
tems that builds on the rich frameworks of communication theory, computer
science and control theory.

This book is based on a series of courses that the authors have developed
over the past several years, starting with a joint course taught at Caltech
in Spring 2006. These courses were typically taken by students who have a
good grounding in the basic techniques of control systems but may not have
a strong background in computer science or some aspects of communication
theory. While the level of mathematical detail in the book should allow it to
be accessible to juniors or seniors in engineering, the treatment is tuned for
first and second year graduate students in engineering or computer science.
Some tutorial material on estimation theory is included, as well as a brief
review of key concepts in graph theory that are needed primarily in the
second half of the text.

The book is intended for researchers who are interested in the analysis
and design of sensing, estimation and control systems in a networked set-
ting. We focus primary on the effects of the network on the stability and
performance of the system, including the effects of packet loss, time delay
and distributed computation. We have attempted to provide a broad view
of the field, in the hope that the text will be useful to a wide crossection of
researchers. Most of the results are presented in the discrete time setting,
with references to the literature for the continuous time analogs. We have
also attempted to include a review of the current literature at the end of
each chapter, with an emphasis on papers that are frequently referenced by
others, along with some directions for future research, when appropriate.
To keep the material focused, we have chosen to only touch on material
on optimization-based control (e.g., receding horizon control) or protocols
for distributed systems, although these are often an integral part of complex



vi PREFACE

networked control systems. References to the literature are given for readers
interested in these important topics.

The book is organized into two main parts: a set of background chap-
ters and the core material. Chapter 1 gives an introduction to the topic
of networked control systems, including some driving application examples.
Chapters 2–4 cover a collection of topics that are used throughout the re-
mainder of the text. We assume familiarity with standard topics in estima-
tion and control theory, including random processes, Kalman filtering and
linear state space control theory, and provide only a quick review of this ma-
terial in Chapter 2 to define the notation we will use and present some of the
basic definitions and formulas. Chapters 3 and 4 complete the background
chapters by giving concise overviews of the relevant results in information
theory and Markovian jump linear systems, on which many of the later re-
sults of the book are built. These background chapters can be reviewed
quickly for students and researchers already familiar with this material.

The core material on networked control systems is presented in Chap-
ters 5 through 9. We begin by looking at the case of sensing, estimation
and control of a single process across a communication channel, beging with
the effects of rate limits in the channel in Chapter 5 and then the effects of
packet loss in Chapter 6. Both of these chapters considers the cases where
the communication channel affects on the measurements received from the
sensor and where the channel affects both the measurements and the actu-
ation commands. In Chapter 7 we begin to look at the problem of control
over a graph, starting with an introduction to graph theory and the prob-
lem of consensus. Chapters 8 and 9 then go on to consider the distributed
estimation and control problems, where one can have multiple processes,
sensors, actuators, estimators and controllers distributed over a communi-
cations network. In each of these chapters on the core material we have
attempted to present a unified view of many of the most recent and relevant
results in network control, with the goal of establishing a foundation on
which more specialized results of interest to specific groups can be covered.

The topics in the text have been taught by the authors and our colleagues
in a variety of formats. In a semester-long, graduate course, it should be
possible to cover most of the material in the book, assuming the students
have good working knowledge of random processes, estimation theory and
linear control systems. We have also used the material in the text for week-
long short courses for masters and PhD students, where we cover the results
in the background chapters in four 90 minute lectures, then spend 1–2 lec-
tures on each of the remaining chapters. The material is fairly modular, so
that the order of teaching the material can be varied according to the tastes
of the instructor. The dependencies of the chapters are shown in Figure 1.
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Chapter 1
Introduction

Networked control is an emerging area of control theory driven by the in-
creasing design, implementation and operation of control systems that makes
use of communication networks to send information between the sensors, ac-
tuators and computational elements that make up a control system. In this
chapter we provide an introduction to networked control systems (NCS),
including a description of what is different about networked control versus
traditional control design, some of the applications that are driving net-
worked control systems research and engineering, and a list of some of the
key subproblems in networked control that are the focus on the material in
this text.

1.1 Overview of Networked Control Systems

Modern control theory is largely based on the abstraction that information
(“signals”) are transmitted along perfect communication channels and that
computation is either instantaneous (continuous time) or periodic (discrete
time). This abstraction has served the field well for 50 years and has led to
many success stories in a wide variety of applications.

Future applications of control will be much more information-rich than
those of the past and will involve networked communications, distributed
computing, and higher levels of logic and decision-making (see [Mur03] for
a recent analysis of future directions in this area). New theory, algorithms,
and demonstrations must be developed in which the basic input/output
signals are data packets that may arrive at variable times, not necessarily
in order, and sometimes not at all. Networks between sensors, actuation,
and computation must be taken into account, and algorithms must address
the tradeoff between accuracy and computation time. Progress will require
significantly more interaction between information theory, computer science,
and control than ever before.

An emerging framework for networked control systems is shown in Fig-
ure 1.1. This architecture separates the traditional elements of sensing,
estimation, control, and actuation for a given system across a network and
also allows sharing of information between systems. As we will see in the
examples below, careful decisions need to be made on how the individual
components in this architecture are implemented and how the communica-
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Estimation/

Sensor Fusion

Optimization-

Based Control

Process 1

Sensing

Estimation/

Sensor Fusion

Optimization-

Based Control

External Environment

Process 2

Sensing

Figure 1.1: Emerging framework for networked control systems. Signals between
control system modules for multiple processes are transmitted through a commu-
nication network.

tions across the networked elements is managed. This architecture can be
used to model either a single system (using either half of the diagram) or
multiple systems that interact through the network.

1.2 Application Examples

Embedded Systems

One example of the use of this architecture is autonomous operations for
sensor-rich systems, such as unmanned, autonomous vehicles. As part of
the 2004 and 2005 DARPA Grand Challenges, Caltech has developed two
such vehicles (“Bob” and “Alice”) that each make use of a networked control
systems architecture. Alice, the 2005 vehicle, has six cameras, 4 LADAR
units, an inertial meaurement unit (IMU), a GPS navigation system, and
numerous internal temperature and vibration sensors. The raw data rate for
Alice is approximately 1–3 Gb/s, which must be processed and acted upon
at rates of up to 100 Hz in order to insure safe operation at high driving
speeds.

The control system for Alice makes use of the architecture depicted in
Figure 1.1, with distributed data fusion to determine elevation maps (for the
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Figure 1.2: A detailed architecture for a networked control system, based on the
control system for Alice [?].

height of the terrain in front of the vehicle), multiple optimization-based con-
trollers to plan possible routes for the vehicle, and online modeling, fault
management, and decision making to provide reliable and reconfigurable op-
eration. Eight onboard computers distribute the computational load, shar-
ing information at mixed rates across a 1 Gb/s switched network. System
specifications call for reliable operation in the presence of up to 1 computer
failure and 2 sensor failures, requiring careful coordination between compu-
tational elements.

A major challenge in Alice is determining how to send information be-
tween nodes. Because of the high data rates and computational loads on
the CPUs, packets sent across the network are not always received and the
system must be robust to various networking effects. The choice of proto-
cols and design of the overall messaging system is currently informal and
based on trial and error. As an example of the issues that must be resolved,
certain packets of data are very important, such as packets containing raw
sensor information from a portion of the terrain that is scanned only once.
Other data can be dropped if needed, such as commanded trajectories (the
old trajectory can be used for several sampling periods). Data from the
inertial measurement unit must be received with minimum latency, while
other data (a change in the temperature of the vehicle) is much less time
critical. Substantial effort has been put into trying to make sure that the
computations and network protocols complement each other and that loss
of data and data latency does not degrade the performance of the system.

A more detailed architecture for a networked control system is shown in
Figure 1.2. At the top of the figure, the standard elements for a control
system are present: actuation, system dynamics, sensing and environmental
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disturbances and noise. For many networked control systems, the amount
of sensory information available is very large, requiring care in how this
information is transmitted. Alice, for example, had between 1 and 3 giga-
bits/second (Gb/s) raw data rate, depending on the sensor suite taht was
used. Another difference with traditional control systems is that the actua-
tion subsystems are themselves embedded systems, capable of some amount
of computation and local memory storage.

The primary control loop in a networked control system consists of state
estimation, trajectory generation, and trajectory tracking. These elements
can all represent relatively substantial computations (depending on the ap-
plication) and are linked to each other through a number of network ports.
In Alice, for example, the state estimation modules included a traditional
inertial state estimator (combining GPS data with gryos and accelerometer
measurements) as well as four computers that were estimating terrain infor-
mation and computing a fused “speed map” that described the maximum
allowable velocity that could be used in a given area of the terrain in front
of it (more details on the software for Alice is given in Appendix ??).

The information from the state estimators is used by trajectory gener-
ation algorithms that compute the desired state and inputs for the system
to accomplish a task or minimize a cost function. The trajectory genera-
tion algorithms are responsible for taking into account actuator and state
constraints on the sytem, as well as the nonlinear nature of the underlying
process dynamics. A typical approach for these algorithms is to perform
optimization-based control, in which one attempts to minimize a cost func-
tion subject to satisfying the constraints and dynamics. With the advances
in computational power, it is often possible to run these optimization-based
planners quickly enough that they can recompute the path from the current
location in a “receding horizon” fashion, allowing feedback at the planner
level. This is particularly useful to manage uncertainty in the cost function,
for example when the cost is determined in real-time (as in the case of Alice,
where the cost is based no the terrain that is being traversed).

As in the case of state estimation, networked control systems often use
more than one trajectory generation algorithm running simultaneously. Since
the physical system can only track one trajectory, some level of mode man-
agement and trajectory selection is required. This mode or trajectory se-
lection logic is often under the control of higher levels of decision making
(supervisory control).

The last element of the primary control loop is the trajectory tracking
module, which is responsible for high frequency disturbance rejection and
tracking. This module is itself a feedback system, using the state estimate
and the desired trajectory to compute the actuation commands. In the con-
text of a networked control system, the primary difference with traditional
trajectory tracking algorithms is the need to run in a asynchronous execu-
tion environment, where reference trajectories and sensory measurements
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Figure 1.3: The Caltech Multi-Vehicle Wireless Testbed. The left figure shows
the layout of the testbed area, including overhead cameras and fixed communi-
cation nodes (crosses and hexagons). The right picture is the current laboratory,
with two vehicles shown.

may come in at varying rates, including short periods where no inputs may
arrive (due to network delays, computational delays or fault handling in one
of the other modules).

In addition to the elements of the primary control loop, networked control
systems can also contain a number of modules responsible for higher levels of
decision making. We loosely refer to these modules as “supervisory control”:
they are responsible for implementing various control system functions that
involve choosing parameters used by the primary control loop (such as cost
functions and communication rates), dealing with failures of hardware and
software components, maintaining an online model of the system dynamics,
and adapting the performance of the system based on observed behaviors
and memory. While these elements are critical for the operation of a net-
worked control systems, in this text we focus on the primary control loop,
where the network effects are most directly relevant.

Sensor networks

Process Control

Cooperative Control

Another example of a networked control system is illustrated by the Cal-
tech Multi-Vehicle Wireless Testbed (MVWT, shown in Figure 1.3), which
consists of a collection of 8-12 vehicles performing cooperative tasks. The
MVWT represents a slightly different instantiation of the architecture in
Figure 1.1: each vehicle has a single processor with full access to local sens-
ing and actuation, but information between vehicles must be sent across
the network. The wireless commmuncation channels can exhibit significant
degredation when multiple vehicles are attempting to communication and
packet loss rates of 5-15% are not uncommon.

The issues in desiging a cooperative control policy for the MVWT vehi-
cles faces many of the same challenges as those seen in Alice. Information
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communicated between vehicles can be dropped, reordered or sent with vari-
able delay. Sensor information required for overall situational awareness can
be fused at multiple levels and/or in a distributed fashion. Again, the cur-
rently available protocols for network communications are not well tuned to
operation in this type of environment. For example, bit errors in packets can
result in losing the entire data packet, rather than passing the information
to the applications layer where partial (lossy) information could still be used
effectively.

1.3 NCS Subproblems



Chapter 2
State Estimation and Sensor Fusion

2.1 Review of Probability and Random Process

We assume the readers have some exposure to the theory of probability and
random process. The material presented in this section only serves as a quick
review of some basic concepts and tools from probability and random process
that will be helpful to understand and derive some important results in
subsequent sections and chapters. Good introductory books on probability
and random process are:

Random Variables

Probability Space

Consider an experiment with many (possibly infinite) outcomes. All these
outcomes form the sample space Ω. A subset A ⊂ Ω is called an event. Two
events A1, A2 are called mutually disjoint if A1 ∩ A2 = ∅. The complement
of an event A is defined as Ā = Ω \A.

A collection F of subsets of Ω is called a σ−field if it satisfies the fol-
lowing conditions:

1. ∅ ∈ F .

2. if Ai ∈ F , i = 1, 2, . . ., then ∪∞
i=1Ai ∈ F .

3. if A ∈ F , then Ā ∈ F .

A probability measure P (·) is a mapping from a σ−field F into the
interval [0, 1] such that the following axioms of probability are satisfied:

1. P (A) ≥ 0 for all A ⊂ Ω.

2. P (Ω) = 1.

3. If {Ai, i = 1, 2, . . .} is a collection of disjoint members of F , i.e., Ai ∩
Aj = ∅ for all i, j, then P (∪Ai) =

∑
i P (Ai).

The triple (Ω,F , P ) is called a probability space. From the axioms of prob-
ability, it follows that

P (A) ≤ 1, P (∅) = 0, P (Ā) = 1 − P (A), P (∪Ai) ≤
∑

i

P (Ai).
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Conditional Probability, Independence, and Bayes’ Rule

The joint probability of two events A and B is P (A ∩ B) which is often
written as P (AB) for simplicity. The conditional probability of A given B
i.e., the probability that A occurs if B occurs in an experiment is

P (A|B) =
P (AB)

P (B)
, assuming P (B) 6= 0.

A and B are mutually independent if

P (AB) = P (A)P (B).

If P (B) 6= 0, the conditional probability P (A|B) can be calculated from
Bayes’ Rule as

P (A|B) =
P (B|A)P (A)

P (B)
.

If Ai, i = 1, 2, . . . are mutually disjoint and ∪Ai = Ω, then

P (B) =
∑

i

P (B|Ai)P (Ai)

and

P (Aj |B) =
P (B|Aj)P (Aj)∑
i P (B|Ai)P (Ai)

.

Random Variable

A random variable is a function X : Ω → R with the property that

{ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R.

The cumulative distribution function of a random variable X is a function
FX : R→ [0, 1] given by

FX(x) = P (X ≤ x).

The cumulative distribution function F has the following properties

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

2. If x ≤ y, then FX(x) ≤ FX(y).

3. FX is right-continuous.

When FX is differentiable, we can define the associated probability density
function pX(x) as

pX(x) =
dFX(x)

dx
.

The joint cumulative distribution function of two random variables X
and Y , denoted as FXY (x, y), is given by

FXY (x, y) = P (X ≤ x) ∩ P (Y ≤ y).
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If its derivative exists, the associated joint probability density function is
given by

pXY (x, y) =
∂2

∂x∂y
FXY (x, y).

The definition and results extend trivially to three or more random variables.
Given FXY (x, y), the marginal distribution functions of X and Y can be

calculated as

FX(x) = P (X ≤ x) = FXY (x,∞), FY (y) = P (Y ≤ y) = FXY (∞, y).

It follows that the marginal density functions of X and Y are

pX(x) =

∫ ∞

−∞
FXY (x, y)dy, pY (y) =

∫ ∞

−∞
FXY (x, y)dx.

The conditional density function of X given Y is given by

pX|Y (x|y) =
pXY (x, y)

pY (y)
.

The density function of X can also be calculated as

pX(x) =

∫ ∞

−∞
pX|Y (x|y)pY (y)dy.

If X and Y are independent random variables, then the following statements
holds and are equivalent to each other:

1. FXY (x, y) = FX(x)FY (y).

2. pXY (x, y) = pX(x)pY (y).

3. pX|Y (x|y) = pX(x).

Statistical Properties of a Random Variable

A random variable X is completely specified by its distribution function
FX(x) or density function pX(x). In many situations, FX(x) or pX(x) are
difficult to obtain. It turns out the mean µX and variance σ2

X may provide us
enough (useful) information about X. The mean and variance of a random
variable X are defined as follows:

µX = E[X] =

∫ ∞

−∞
xpX(x)dx,

σ2
X = E

[
(X − E[X])2

]
=

∫ ∞

−∞
(X − E[X])2pX(x)dx.

We denote E[·] as the expectation operator. Since E[·] is a linear operator,
σ2
X can also be calculated as

σ2
X = E[X2] −

(
E[X]

)2
.
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If X is a zero-mean random variable, i.e., E[X] = 0, then σX = E[X2].
The kth moment of X is mk = E[Xk] and the kth central moment is µk =
E
[
(X − E[X])k

]
.

The covariance of two random variables X and Y is defined as E
[
(X −

E[X])(Y − E[Y ])
]
. X and Y are uncorrelated if E[XY ] = E[X]E[Y ]. If X

and Y are uncorrelated, it is easy to verify that the covariance of X and
Y is equal to zero. Clearly if X and Y are independent, then they are
uncorrelated. However the converse does not hold in general.

The conditional expectation of X given Y = y is

E[X|Y = y] =

∫ ∞

−∞
xpX|Y (x|y)dx

which is a number that depends on the value of y. Similarly, the conditional
expectation of X given Y is

E[X|Y ] =

∫ ∞

−∞
xpX|Y (x|Y )dx

which is also a random variable that depends on Y , i.e., it is a function of
the random variable Y . The following property is very important and has
great practical value in evaluating E[X]:

E[X] = EY

[
EX [X|Y ]

]
,

i.e., we first find the conditional expectation of X (conditioned on Y ), and
then remove the condition by taking the expectation with respect to Y .
From this property, one can easily verify that if X and Y are independent,
then

E[X|Y ] = E[X].

Furthermore if X and Y are jointly independently of Z, then

E[XY |Z] = E[X|Z]E[Y |Z].

Random Processes

A random process X(t) is a generalization of a random variable. For a
random variable, each experiment leads to a number (or a vector), while for
a random process, each experiment leads to a function. For a fixed outcome
ω ∈ Ω, one obtains the function X(t, ω), which is also called the sample path
or sample function of the process. For a fixed t, X(t, ω) is a random variable
with the underlying probability space Ω. The mean process of X(t) is the
time function E[X(t)]. The autocorrelation of X(t) is E[X(t1)X(t2)

T ] and

the autocovariance of X(t) is E
[(
X(t1) −m(t1)

)(
X(t2) −m(t2)

)T ]
.
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Gaussian Random Variable and Random Process

A random process X(t) is called a Gaussian random process if for any finite
set {t1, t2, . . . , tN}, the random variables {X(t1), X(t2), . . . , X(tN )} have a
joint Gaussian distribution, i.e., their joint probability density function is
given by

pX(x) =
1

(2π)N/2
√

det[CX ]
exp

[
−1

2
(x−mX)TC−1

X (x−mX)

]
(2.1)

where mX = [mX(t1) mX(t2) . . . mX(tN )]T is the mean vector and CX =[
cov
(
X(ti), X(tj)

)]
is the covariance matrix. Gaussian processes have the

following properties.

Theorem 2.1. Let X(t) be a Gaussian process. Then

1. X(t) is completely determined by mX and CX .

Theorem 2.2. Let X and Y have a joint Gaussian distribution with mean
and covariance given by

µ =

[
x̄
ȳ

]
and Σ =

[
Σx Σxy

Σyx Σy

]
.

Then X conditioned on Y = y is Gaussian with mean and covariance given
by

µX|Y=y = x̄+ ΣxyΣ
−1
y (y − ȳ) and ΣX|Y=yΣx − ΣxyΣ

−1
y Σyx.

In other words,
E[X|Y = y] = x̄+ ΣxyΣ

−1
y (y − ȳ). (2.2)

The proof can be found in AndersonMoore1979.

Stability of stochastic systems

Sampling of a Continuous-time System

A wide variety of physical systems are modeled in the continuous-time do-
main. In this book, we focus on continuous-time systems with dynamics of
the form

dx

dt
= Acx+Bcu+ w, y = Cc + v, (2.3)

where x(t) ∈ R
n is the state vector with unknown initial value x(0), u(t) ∈

R
p is the input vector, y(t) ∈ R

m is the observation vector, and w(t) and
v(t) are process disturbance and measurement noise. We assume w(t) and
v(t) are mutually uncorrelated zero-mean Gaussian processes with autoco-
variances

E[w(s)w(t)T ] = δstΣwc, E[v(s)v(t)T ] = δstΣvc,

where δst = 1 if s = t and δst = 0 otherwise.
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As more and more controllers are implemented digitally, we need a proce-
dure to convert the continuous-time system (2.3) into an equivalent discrete-
time system. This procedure is called sampling or discretization. A fre-
quently seen approach to implement the control law on a digital computer
is to use a digital to analogue converter that holds the analog signal until
the next time step, called zero-order-hold control.

Consider the following periodic sampling scheme: we sample the sys-
tem (2.3) at time instances t = kτ, k = 0, 1, . . ., where τ > 0 is the sam-
pling period. It can be shown (see Astrom-Wittenmark) that the equivalent
discrete-time system of (2.3) is given by

xk+1 = Axk +Buk + wk, yk = Cxk + vk, (2.4)

where xk and yk correspond to x(t) and y(t) at time t = kτ , and A,B and
C are given by

A = eAcτ , B =

∫ τ

0
eActdtBc, C = Cc. (2.5)

In the discrete-time setting, the process and measurement noises are also
uncorrelated zero-mean Gaussian random processes with covariance

E[wswk] = δskΣw, E[vsv
T
k ] = δskΣv,

where

Σw =

∫ τ

0
eActΣwce

AT
c tdt, Σv = Σvc.

Computing Σw directly from the above formula is sometimes difficult due
to the integral of matrix exponentials. An easier approach to compute it is
given as follows. Define M and N as

M =

[
−Ac Σwc

0 ATc

]
τ, N = eM .

Then it is straightforward to show that

N =

[
∗ X−1Σw

0 XT

]
.

Therefore Σw can be computed from

Σw = (XT )TX−1Σw,

i.e., Σw is obtained by multiplying the transpose of the lower-right submatrix
of N with the upper-right submatrix of N .

Most of the results developed in this book also extend straightforward to
cases where the sensor measurement yk involves a direct input term, i.e.,

yk = Cxk +Duk + vk. (2.6)

For simplicity, we shall use the system model as described by (2.4) for the
remainder of the book unless otherwise explicitly stated.
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Markov Chains

2.2 Optimal Estimation

Minimum Mean Square Error Estimator

Suppose we wish to know some quantity X, and we are not able to make a
direct and accurate measurement of X. However we can make some indirect
measurement Y that is related to X. Our task is to get an “optimal”
estimate of X from Y .

One question that immediately arises before we attempt to solve the
estimation problem is: what is a good estimate and when an estimate is
“optimal”?

Intuitively a “good” estimate should make the estimation error X̂ −
X “small” since we wish to reconstruct X as perfectly as possible. An
“optimal” estimate should make X̂ − X the “smallest” among all other
estimates. Many metrics can be used to define the size of the error X̂ −X
(hence we are able to say if it is “small” or not). Since X̂ −X is typically
a random variable, the metric that we shall use throughout the book is the
following mean squared error (MSE)

E[(X̂ −X)T (X̂ −X)].

Therefore given Y = y (i.e., the measurement that we take), our task is to

construct the optimal estimate X̂ that minimizes

E[(X̂ −X)T (X̂ −X)|Y = y].

It turns out that the optimal X̂ has a very simple form, given in the following
theorem.

Theorem 2.3. The optimal estimate X̂∗ that minimizes

E[(X̂ −X)T (X̂ −X)|Y = y]

is given by the following conditional expectation of X

X̂∗ = E[X|Y = y].

Proof. We can rewrite E[(X̂ −X)T (X̂ −X)|Y = y] as follows

E[(X̂ −X)T (X̂ −X)|Y = y]

= E[XTX|Y = y] − 2X̂T
E[X|Y = y] + X̂T X̂

=
(
X̂ − E[X|Y = y]

)T (
X̂ − E[X|Y = y]

)
+ E

[
XTX − E[X]TE[XT ]|Y = y

]
.

Since E
[
XTX −E[X]TE[XT ]|Y = y

]
is independent of X̂, we conclude that

X̂∗ = E[X|Y = y].
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X̂∗ = E[X|Y = y] is also called the minimum mean squared error
(MMSE) estimate of X.

Example 2.1 Estimate a Gaussian random variable

Consider the following equation

Y = X +N (2.7)

where X and N are both scalar zero-mean Gaussian random variables with
covariances σx and σn respectively. Further assume X and N are uncor-
related. Suppose we make a measurement of X and get y. The MMSE
estimate of X is then given by

X̂ = E[X|Y = y] =
σx

σx + σn
y.

∇

Kalman Filtering

Consider the following discrete-time linear time-invariant system

xk+1 = Axk +Buk + wk, yk =Cxk + vk, (2.8)

where xk ∈ R
n is the state vector with unknown initial value x0, uk ∈ R

p

is the input vector, yk ∈ R
m is the observation vector, and wk and vk are

process and measurement noises (or disturbances).
Clearly nothing can be said on any estimator without defining a structure

on wk and vk. In this book, we are particularly interested in wk and vk that
have the following properties:

• wk and vk are zero-mean Gaussian random vectors;

• E[wkw
T
j ] = δkjΣw with Σw ≥ 0;

• E[vkv
T
j ] = δkjΣv with Σv > 0;

• E[wkv
T
j ] = 0 ∀j, k,

where δkj = 0 if k 6= j and δkj = 1 otherwise. We also assume the initial
value x0 of system (2.8) is a zero-mean Gaussian random vector that is
uncorrelated with wk and vk for all k ≥ 0. The covariance of x0 is given by
Π0 ≥ 0. Furthermore we assume (A,

√
Q) is stabilizable.

Let Yk = {y0, y1, . . . , yk} be the measurements available at time k and
Uk = {u0, u1, . . . , uk} be the input applied to the system up to time k. We
are interested in looking for the MMSE x̂k of xk at each time k ≥ 0 given
Yk and Uk−1. From Theorem 2.3, we know that x̂k is given by

x̂k = E[xk|Yk, Uk−1], (2.9)

and the corresponding error covariance Pk is given by

Pk = E[(xk − x̂k)(xk − x̂k)
T |Yk, Uk−1]. (2.10)
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Calculating x̂k and Pk according to equation (2.9) and (2.10) is not trivial
and is computationally intensive as k increases. The celebrated Kalman
filter provides a simple and elegant way to compute x̂k and Pk recursively.

Assume that x̂k−1 and Pk−1 defined as in equation (2.9) and (2.10) are
available. Consider the one-step state prediction x̂k|k−1 (also called the a
priori state estimate) given by

x̂k|k−1 = E[xk|Yk−1, Uk−1]

and the associated estimation error covariance (also called the a priori error
covariance) Pk|k−1 given by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Yk−1, Uk−1].

From (2.8), we have

x̂k|k−1 = E[xk|Yk−1, Uk−1]

= E[Axk−1 +Buk−1 + wk−1|Yk−1, Uk−1]

=Ax̂k−1 +Buk−1, (2.11)

where we use the fact that wk−1 is independent of any yt (t ≤ k − 1) and
the expectation operator is linear. Consequently,

Pk|k−1 = APk−1A
T + Σw. (2.12)

Now consider yk conditioned on Yk−1 and Uk−1 which has mean

E[yk|Yk−1, Uk−1] = E[Cxk + vk|Yk−1, Uk−1] = Cx̂k|k−1

and covariance

E
[(
yk − E[yk]

)(
yk − E[yk]

)T |Yk−1, Uk−1

]
= CPk|k−1C

T + Σv,

where we have used the fact that vk is independent of Yk−1. The cross
covariance of xk and yk conditioned on Yk−1 and Uk−1 is given by

E
[(
xk − E[xk]

)(
yk − E[yk]

)T |Yk−1, Uk−1

]
= Pk|k−1C

T .

From the above analysis, we see that the random vector [x′k y′k]
′ conditioned

on Yk−1 and Uk−1 is Gaussian with mean and covariance
[

x̂k|k−1

Cx̂k|k−1

]
and

[
Pk|k−1 Pk|k−1C

T

CPk|k−1 CPk|k−1C
T + Σv

]
.

Therefore from Theorem 2.2, xk conditioned on yk (and on Yk−1 and Uk−1,
i.e., conditioned on Yk and Uk−1) has mean

E[xk|Yk, Uk−1] = x̂k|k−1 +Kk(yk − Cx̂k|k−1)

and covariance
(I −KkC)Pk|k−1

where Kk = Pk|k−1C
T [CPk|k−1C

T + Σv]
−1 is the so-called Kalman gain.
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Let us summarize what we have said so far. Given the system (2.8), the
MMSE estimate x̂k of xk is given by x̂k = E[xk|Yk, Uk−1], which can be
computed recursively as follows

1. time update:

x̂k|k−1 =Ax̂k−1 +Buk−1,

Pk|k−1 =APk−1A
T + Σw.

2. measurement update:

Kk =Pk|k−1C
T [CPk|k−1C

T + Σv]
−1,

x̂k = x̂k|k−1 +Kk(yk − Cx̂k|k−1),

Pk = (I −KkC)Pk|k−1.

The initial values of the recursion are set as x̂0 = 0 and P0 = Π0. The
Kalman filter essentially consists of the above two update steps.

Lemma 2.1. The Kalman gain Kk and the error covariance Pk satisfy

Kk = PkC
TΣ−1

v . (2.13)

Proof. Since Pk = (I −KkC)Pk|k−1, it suffices to show

(I −KkC)Pk|k−1C
TΣ−1

v = Kk

which is equivalent to

Pk|k−1C
TΣ−1

v = Kk(I + CPk|k−1C
TΣ−1

v )

⇐⇒Pk|k−1C
TΣ−1

v = Pk|k−1C
T [CPk|k−1C

T + Σv]
−1(I + CPk|k−1C

TΣ−1
v )

⇐= Σv = (I + CPk|k−1C
TΣ−1

v )−1(CPk|k−1C
T + Σv)

⇐⇒Σv = Σv(Σv + CPk|k−1C
T )−1(CPk|k−1C

T + Σv)

where the last equation holds trivially.

Alternate proof. Kk is defined as

Kk = Pk|k−1C
T (ΣV + CPk|k−1C

T )−1.

Multiplying through by the inverse term on the right and expanding, we
have

Kk(ΣV + CPk|k−1C
T ) = Pk|k−1C

T ,

KkΣV +KkCPk|k−1C
T = Pk|k−1C

T ,

and hence
KkΣV = Pk|k−1C

T −KkCPk|k−1C
T ,

= (I −KkC)Pk|k−1C
T = Pk|kC

T .

The desired results follows by multiplying on the right by ΣV
−1.
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To simplify the notations, let us define h : S
n
+ → S

n
+ as

h(X) , AXAT + Σw, (2.14)

and g̃ : S
n
+ → S

n
+ as

g̃(X) , X −XCT [CXCT + Σv]
−1CX, (2.15)

where S
n
+ is the set of n by n positive semi-definite matrices. Further define

g : S
n
+ → S

n
+ as

g(X) , h ◦ g̃ = AXAT + Σw −AXCT [CXCT + Σv]
−1CXA. (2.16)

For functions f, f1, f2 : S
n
+ → S

n
+, f1 ◦ f2 is defined as

f1 ◦ f2(X) , f1

(
f2(X)

)
, (2.17)

and f t is defined as
f t(X) , f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

t times

(X). (2.18)

With these definitions, it is straightforward to verify that Pk+1|k and
Pk+1 satisfy

Pk+1|k =h(Pk),

Pk+1|k = g(Pk|k−1),

Pk+1 = g̃(Pk+1|k),

Pk+1 = g̃ ◦ h(Pk).
The equation g(X) = X, i.e.,

AXAT + Σw −AXCT [CXCT + Σv]
−1CXA = X (2.19)

is called the Discrete-time Algebraic Riccati Equation (DARE).

Properties of the Kalman filter

2.3 Optimal Control

2.4 Further Reading

Exercises

2.1 Show E[X|Y = y] = σx

σx+σn
y in Example 2.1.
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Chapter 4
Markovian Jump Linear Systems

In this chapter, we present a short overview of Markovian jump linear sys-
tems. A more thorough and complete treatment is given in books such as [?].
As in other chapters, our focus will be on the Linear Quadratic Gaussian
(LQG) control of such systems. As we shall see, even though such systems
are non-linear, they can be analyzed using tools that are similar to those
used in linear system analysis.

4.1 Introduction to Markovian Jump Linear Systems

A useful category of system models are those in which the system oper-
ates in multiple modes. Although each of the individual modes in linear,
the switching between these modes introduces non-linearity into the overall
system description. A general theory of such systems is developed in the
hybrid systems community. However, much tighter results can be developed
if a further assumptions holds, that the mode switches are governed by a
stochastic process that is statistically independent from the state values. In
the case when the stochastic process can be described by a Markov chain, the
system is called a Markovian jump linear system. Although the individual
modes of such systems may be continuous or discrete, we will concentrate
on the latter case here.

More formally, consider a discrete time discrete state Markov process
with state r(k) ∈ {1, 2, · · · ,m} at time k. Denote the transition probability
Prob(r(k + 1) = j|r(k) = i) by qij , and the resultant transition probability
matrix by Q. We will assume that the Markov chain is irreducible and
recurrent. Also denote

Prob(r(k) = j) = πj(k),

with πj(0) as given. The evolution of a Markovian jump linear system
(MJLS), denoted by S1 for future reference, can be described by the following
equations

x(k + 1) = Ar(k)x(k) +Br(k)u(k) + Fr(k)w(k) (4.1)

y(k) = Cr(k)x(k) +Gr(k)v(k),

where w(k) is zero mean white Gaussian noise with covariance Rw, v(k)
is zero mean white Gaussian noise with covariance Rv and the notation
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Xr(k) implies that the matrix X ∈ {X1, X2, · · · , Xm} with the matrix Xi

being chosen when r(k) = i. The initial state x(0) is assumed to be a zero
mean Gaussian random variable with variance Π(0). For simplicity, we will
consider Fr(k) = Gr(k) ≡ I for all values of r(k) in the sequel. We also
assume that x(0), {w(k)}, {v(k)} and {r(k)} are mutually independent.
The particular case when qij = qj ,∀i, j (i.e., the random process governing
the switching of the modes is a Bernoulli process) is sometimes referred to
as a Bernoulli jump linear system.

Such systems have been studied for a long time in the fault isolation
community, and have received new impetus with the advent of networked
control systems. We now consider some examples of applicability of Marko-
vian jump linear systems.

Example 4.1

Consider the following example of a failure prone production system, which
is the discrete time equivalent of the model presented in [AK86]. Consider
a manufacturing system producing a single commodity. There is a constant
demand rate d for the commodity, and the goal of the manufacturing system
is to try to meet this demand. The manufacturing system is, however,
subject to occasional breakdowns and so at any time k, the system can be in
one of two states: a functional (r(k) = 1) state and a breakdown (r(k) = 2)
state. The transitions between these two states are usually modeled to occur
as a Markov chain with given mean time between failures and mean repair
time. When the manufacturing system is in the breakdown state it cannot
produce the commodity, while if it is in the functional state it can produce
at any rate u up to a maximum production rate r > d > 0. Let x(k) be
the inventory of the commodity at time k, i.e., x(k) = (total production up
to time k) - (total demand up to time k). Then the system is a Markovian
jump linear system that evolves as

x(k + 1) =

{
x(k) + u(k) − d r(k) = 1

x(k) − d r(k) = 2,

where u(k) is the controlled production rate. A negative x(k) denotes back-
log, and u(k) satisfies a saturation constraint. ∇
Example 4.2

Consider a linear process evolving as

x(k + 1) = Ax(k) +Bu(k) + w(k),

and being observed by a sensor of the form

y(k) = Cx(k) + v(k).

The measurements from the sensor are transmitted to an estimator across an
analog erasure link. At any time k, the estimator receives measurement y(k)
with probability 1−p, and with a probability p no measurement is received.
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As discussed in another chapter, this is a common model for a dynamic
process being estimated across an analog erasure channel. This is a Bernoulli
jump linear system with two modes r(k) ∈ {0, 1}. For both the modes, the
system matrices A0 = A1 = A and B0 = B1 = B. Mode 0 corresponds to no
measurement being received and for this case C0 = 0. Mode 1 corresponds
to measurement being received, and for this case C1 = C. ∇

4.2 Stability of Markovian jump linear systems

In this section, we discuss the stability of autonomous Markovian jump linear
systems. We will see that the necessary and sufficient condition for stability
can be presented an algebraic condition in terms of the spectral radius of a
suitable matrix. We will also present an equivalent condition in terms of a
linear matrix inequality.

Since an Markovian jump linear systems is a stochastically varying sys-
tem, numerous notions of stability may be defined. We will primarily
be interested in mean square stability. Thus, define the state covariance
C(k) = E[x(k)xT (k)], where the expectation is taken with respect to the
initial state, process and measurement noise, and the discrete modes till
time k. The system is stable if the steady state covariance is bounded, i.e.,
if limk→∞C(k) < C⋆, where C⋆ is a constant matrix, and the inequality is
understood in the positive definite sense.

The stability condition for Markovian jump linear systems is given by
the following result.

Theorem 4.1. Consider the system S1 with the control input u(k) = 0.
The system is stable if and only if the condition

ρ
(
(QT ⊗ I)diag(Ai ⊗Ai)

)
< 1

holds, where ρ(M) is the spectral radius of matrix M , Q is the transition
probability matrix of the Markov chain governing the mode switches of the
system, ⊗ denotes the Kronecker product, I is the identity matrix of suitable
dimensions, and diag(Ai ⊗ Ai) denotes a block diagonal matrix formed by
using the matrices Ai ⊗Ai for various mode values i.

Proof. Consider the term

Ci(k) = E[x(k)xT (k)|r(k) = i]πi(k),

so that the covariance is given by

C(k) =
m∑

i=1

Ci(k).

We will study the evolution of terms Ci(k). Conditioning on the state value
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at time k − 1 yields

Ci(k) =
m∑

j=1

Prob(r(k − 1) = j|r(k) = i)πi(k)E[x(k)xT (k)|r(k) = i, r(k − 1) = j]

=
m∑

j=1

Prob(r(k) = i|r(k − 1) = j)πj(k − 1)E[x(k)xT (k)|r(k) = i, r(k − 1) = j]

=
m∑

j=1

qjiπj(k − 1)E[x(k)xT (k)|r(k − 1) = j],

where in the second line we have used the Bayes law, and in the third line
we have used the fact that given the Markov mode at time k − 1, x(k) is
conditionally independent of the Markov mode at time k. Now given the
Markov mode at time k − 1, the covariance of the state at time k can be
related to the covariance at time k − 1. Thus, we obtain

Ci(k) =
m∑

j=1

qjiπj(k − 1)
(
AjE[x(k − 1)xT (k − 1)|r(k − 1) = j]ATj +Rw

)

=
m∑

j=1

qjiAjC
j(k − 1)ATj +

m∑

j=1

qjiπj(k − 1)Rw.

We can vectorize this equation and use the identity

vec(ABC) = (CT ⊗A)vec(B)

to obtain

vec(Ci(k)) =
m∑

j=1

qji(Aj ⊗Aj)vec(Cj(k − 1)) + πi(k)vec(Rw). (4.2)

For values of i = 1, · · · , m, these coupled linear equations define the sta-
bility of C(k). We can stack the vectors vec(Ci(k)) for various values of i,
and obtain that the dynamical system recursion is governed by the matrix(
(QT ⊗ I)diag(Ai ⊗Ai)

)
. Thus, we need to consider the spectral radius of

this matrix.

For a Bernoulli jump linear system, the condition reduces to the following
simple form.

Theorem 4.2. Consider the system S1 with the control input u(k) = 0 and
the additional assumption that the Markov transition probability matrix is
such that for all states i and j, qij = qi. The system is stable if and only if
the condition

ρ (E[Ai ⊗Ai]) < 1

holds, where the expectation is taken over the probabilities {qi}.
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Proof. In this case, we have qij = qj ,∀i. Moreover, r(k) and x(k) are inde-
pendent, so that Ci(k) = C(k)πi(k) = C(k)qi(k). Thus, (4.2) yields

vec(C(k)) =
m∑

j=1

(Aj ⊗Aj)vec(C(k − 1))qj(k) + vec(Rw)

= E[Ai ⊗Ai]vec(C(k − 1)) + vec(Rw),

which yields the desired stability condition.

Even though the above conditions are simple to write, the calculation of
the spectral value may grow computationally expensive as the number of
Markov states increases. We can present an alternate condition in terms of
a linear matrix inequality as follows.

Theorem 4.3.

Proof.

4.3 LQG control

We will develop the LQG controller of Markovian jump linear systems in
three steps. We will begin by considering the optimal linear quadratic regu-
lator. We will then consider the optimal estimation problem for Markovian
jump linear systems in the minimum mean squared error (MMSE). Finally,
we will present a separation principle that will allow us to solve the LQG
problem as a combination of the above filters.

Optimal Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) problem for the system S1 is posed
by assuming that the noises w(k) and v(k) are not present. Moreover, the
matrix Cr(k) ≡ I for all choices of the mode r(k). The problem aims at
designing the control input u(k) to minimize the finite horizon cost function

JLQR(K) =
K∑

k=1

(
E{r(j)}K

j=k+1

[
xT (k)Qx(k) + uT (k)Ru(k)

])

+ xT (K + 1)P (K + 1)x(K + 1),

where the expectation at time k is taken with respect to the future values
of the Markov state realization, and P (K + 1), Q and R are all assumed to
be positive definite. The controller at time k has access to control inputs
{u(j)}k−1

j=0 , state values {x(j)}kj=0 and the Markov state values {r(j)}kj=0. Fi-
nally, the system is said to be stabilizable if the infinite horizon cost function

J∞
def
= limK→∞

JLQR

K is finite.
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The solution to this problem can readily be obtained through dynamic
programming arguments. The optimal control is given by the following
result.

Theorem 4.4. Consider the LQR problem posed above for the system S1.

1. At time k, if r(k) = i, then the optimal control input is given by

u(k) = −
(
R+BT

i Pi(k + 1)Bi
)−1

BT
i Pi(k + 1)Aix(k),

where for j = 1, 2, · · · ,m,

Pj(k) =
m∑

t=1

qtj

(
Q+ATt Pt(k + 1)At

−ATt Pt(k + 1)Bt
(
R+BT

t Pt(k + 1)Bt
)−1

BT
t Pt(k + 1)At

)
, (4.3)

and Pj(K + 1) = P (K + 1),∀j = 1, 2, · · · ,m.
2. Assume that the Markov states reach a stationary probability distribution.

A necessary and sufficient condition for stabilizability of the system is that
there exist m positive definite matrices X1, X2, · · · , Xm and m2 matrices
K1,1, K1,2, · · · , K1,m, K2,1, · · · , Km,m such that for all j = 1, 2, · · · ,m,

Xj >

m∑

i=1

qij
(
(ATi +Ki,jB

T
i )Xi(A

T
i +Ki,jB

T
i )T +Q+KijRK

T
ij

)
.

3. A necessary condition for stabilizability is that

qi,iρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unstabilizable modes of the process in the i-th mode.

Proof. The proof follows by standard dynamic programming arguments. We
begin by rewriting the cost function JLQR to identify terms in the cost that
depend on x(K) and u(K):

JLQR(K) =
K−1∑

k=1

(
E{r(j)}K

j=k+1

[
xT (k)Qx(k) + uT (k)Ru(k)

])
+ T (K)

T (K) = Er(K)

[
xT (K)Qx(K) + uT (K)Ru(K)

]
+ xT (K + 1)P (K + 1)x(K + 1).

We rewrite T (K) by explicitly conditioning it on the value of r(K).

T (K) =
m∑

i=1

πi(K)
(
xT (K)Qx(K) + uT (K)Ru(K) + xT (K + 1)Pi(K + 1)x(K + 1)|r(K) = i

)
,

where Pi(K + 1) = P (K + 1),∀i. At the time of calculation of u(K), the
mode r(K) is known. To choose the control input for any value of the mode,
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we complete the square of each of the terms in the summation. For the i-th
term we obtain
(
xT (K)Qx(K) + uT (K)Ru(K) + xT (K + 1)Pi(K + 1)x(K + 1)|r(K) = i

)

= xT (K)Qx(K) + uT (K)Ru(K) + (Aix(K) +Biu(K))TPi(K + 1)(Aix(K) +Biu(K))

= xT (K)Mi(K)x(K) + (u(K) + S−1
i (K)BT

i Pi(K + 1)Aix(K))TSi(K)(u(K) + S−1
i (K)BT

i Pi(K + 1)A

where

Si(K) = R+BT
i Pi(K + 1)Bi

Mi(K) = Q+ATi Pi(K + 1)Ai −ATi Pi(K + 1)BiS
−1
i (K)BT

i Pi(K + 1)Ai.

Thus, the optimal choice of u(K) for the case r(K) = i is

u(K) = −S−1
i (K)BT

i Pi(K + 1)x(K).

With the optimal choice of u(K) for all values of i = 1, · · · ,m, the term
T (K) reduces to

T (K) =
m∑

i=1

πi(K)
(
xT (K)Mi(K)x(K)|r(K) = i

)

=
m∑

i=1

πi(K)
m∑

j=1

qji
(
xT (K)Mi(K)x(K)|r(K) = i, r(K − 1) = j

)

=
m∑

j=1

m∑

i=1

πi(K)qji
(
xT (K)Mi(K)x(K)|r(K − 1) = j

)

=
m∑

j=1

(
xT (K)(

m∑

i=1

πi(K)qjiMi(K))x(K)|r(K − 1) = j

)

=
m∑

j=1

(
xT (K)πj(K − 1)Pj(K)x(K)|r(K − 1) = j

)

= Er(K−1)

[
xT (K)Pj(K)x(K)

]
,

where

πj(K − 1)Pj(K) =
m∑

i=1

πi(K)qjiMi(K).

Thus, the cost function JLQR can be rewritten as

JLQR(K) =
K−2∑

k=1

(
E{r(j)}K−1

j=k+1

[
xT (k)Qx(k) + uT (k)Ru(k)

])
+ T (K − 1)

T (K − 1) = Er(K−1)

[
xT (K − 1)Qx(K − 1) + uT (K − 1)Ru(K − 1) + xT (K)Pi(K)x(K)

]
.
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If we rewrite T (K) by explicitly conditioning it on the value of r(K − 1),

T (K − 1) =
m∑

i=1

πi(K − 1)
(
xT (K − 1)Qx(K − 1) + uT (K − 1)Ru(K − 1)

+ xT (K)Pi(K)x(K)|r(K − 1) = i
)
,

we see that the problem of choosing u(K − 1) is formally identical to the
problem that we solved above for choosing u(K). Thus, the same argument
can be repeated at any time step recursively. At a general time k, the control
input u(k) given r(k) = i is given by

u(k) = −S−1
i (k)BT

i Pi(K + 1)x(K),

where

Si(k) = R+BT
i Pi(k + 1)Bi

πj(K − 1)Pj(K) =
m∑

i=1

πi(K)qjiMi(K)

Mi(k) = Q+ATi Pi(k + 1)Ai −ATi Pi(k + 1)BiS
−1
i (k)BT

i Pi(k + 1)Ai,

with boundary value Pi(K + 1) = P (K + 1)∀i. This proves the first part of
the theorem.

To prove the second and third parts, we need to study the stability of
the terms Pi(0) as the horizon K → ∞.

The sufficient condition for stabilizability can also be cast in alternate
forms as linear matrix inequalities, that can be efficiently solved, as follows.

Theorem 4.5.

Proof.

The above conditions reduce to simpler form for Bernoulli jump linear
systems. For this case, the LQR and stabilizability problems can be solved
to yield the following result.

Theorem 4.6. Consider system S1 with the additional assumption that
the Markov transition probability matrix is such that for all states i and
j, qij = qi (in other words, the states are chosen independently and identi-
cally distributed from one time step to the next). Consider the LQR problem
posed above for the system S1.

1. At time k, if r(k) = i, then the optimal control input is given by

u(k) = −
(
R+BT

i P (k + 1)Bi
)−1

BT
i P (k + 1)Aix(k),
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where

P (k) =

m∑

t=1

qt

(
Q+ATt P (k + 1)At

−ATt P (k + 1)Bt
(
R+BT

t P (k + 1)Bt
)−1

BT
t P (k + 1)At

)
.

2. Assume that the Markov states reach a stationary probability distribution.
A sufficient condition for stabilizability of the system is that there exists a
positive definite matrix X, and m matrices K1, K2, · · · , Km such that

X >
m∑

i=1

qi
(
(ATi +KiB

T
i )X(ATi +KiB

T
i )T +Q+KiRK

T
i

)
.

3. A necessary condition for stabilizability is that

qiρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unstabilizable modes of the process in the i-th mode.

Proof. The result follows readily from the LQR solution of Markovian jump
linear systems. Specifically, if we substitute qtj = qj∀t in (4.3), we see that
all matrices Pj(k) are identical for j = 1, · · · , m. If we denote this value
by P (k), we obtain the desired form of the LQR control law. Similarly
the stability conditions in the theorem also follow from those for Markovian
jump linear systems in Theorem 4.4.

Optimal Minimum Mean Squared Error Estimator

The minimum mean squared error estimate problem for the system S1 is
posed by assuming that the control ur(k) is identically zero. The objective
is to identify at every time step k, an estimate x̂(k+1) of the state x(k+1)
that minimizes the mean squared error covariance

Π(k + 1) = E{w(j)},{v(j)},x(0)

[
(x(k + 1) − x̂(k + 1))(x(k + 1) − x̂(k + 1))T

]
,

where the expectation is taken with respect to the process and measurement
noises, and the initial state value (but not the Markov state realization). The
estimator at time k has access to observations {y(j)}kj=0 and the Markov

state values {r(j)}kj=0. Moreover, the error covariance is said to be sta-
ble if the expected steady state error covariance limk→∞E{r(j)}k−1

j=0

[Π(k)] is

bounded, where the expectation is taken with respect to the Markov process.
Since the estimator has access to the Markov state values till time k, the

optimal estimate can be calculated through a time-varying Kalman filter.
Thus, if at time k, rk = i, the estimate evolves as

x̂(k + 1) = Aix̂(k) +K(k) (y(k) − Cix̂(k)) ,
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where

K(k) = AiΠ(k)CTi
(
CiΠ(k)CTi +Rv

)−1

Π(k + 1) = AiΠ(k)ATi +Rw −AiΠ(k)CTi
(
CiΠ(k)CTi +Rv

)−1
CiΠ(k)ATi .

The error covariance Π(k) is available through the above calculations. How-
ever, calculating E{r(j)}k−1

j=0

[Π(k)] seems to be intractable. Instead, the nor-

mal approach is to consider an upper bound to this quantity1 that will also
help in obtaining sufficient conditions for the error covariance to be stable.

The intuition behind obtaining the upper bound is simple. The opti-
mal estimator presented above optimally utilizes the information about the
Markov states till time k. Consider an alternate estimator that at every
time step k, averages over the values of the Markov states r0, · · · , rk−1.
Such an estimator is sub-optimal and the error covariance for this estimator
forms an upper bound for E{r(j)}k−1

j=0

[Π(k)]. A more formal derivation for the

upper bound is presented below.

Theorem 4.7. The term E{r(j)}k−1

j=0

[Π(k)] obtained from the optimal esti-

mator is upper bounded by M(k) =
∑m

j=1Mj(k) where

Mj(k) =
m∑

t=1

qtj

(
Rw +AtMt(k − 1)ATt

−AtMt(k − 1)CTt
(
Rv + CtMt(k − 1)CTt

)−1
CtMt(k − 1)ATt

)
,

with Mj(0) = Π(0) ∀j = 1, 2, · · · ,m. Moreover, assume that the Markov
states reach a stationary probability distribution. A sufficient condition for
stabilizability of the system is that there exist m positive definite matrices
X1, X2, · · · , Xm and m2 matrices K1,1, K1,2, · · · , K1,m, K2,1, · · · , Km,m

such that for all j = 1, 2, · · · ,m,

Xj >
m∑

i=1

qij
(
(Ai +Ki,jCi)Xi(Ai +Ki,jCi)

T +Rw +KijRvK
T
ij

)
.

Finally, a necessary condition for stabilizability is that

qi,iρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unobservable modes of the process in the i-th mode.

Proof. We begin by defining

Mj(k) = πj(k − 1)E [Π(k)|r(k − 1) = j] ,

1We say that A is upperbounded by B if B −A is positive semi-definite.
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so that

E [Π(k)] =
m∑

i=1

Mj(k).

Now we can bound each term Mj(k) as follows.

Mj(k + 1) = πj(k)
m∑

i=1

E [Π(k + 1)|r(k) = j, r(k − 1) = i] Prob(r(k − 1) = i|r(k) = j)

=

m∑

i=1

E
[
AjΠ(k)ATj +Rw −AjΠ(k)CTj (CjΠ(k)CTj +Rv)

−1CjΠ(k)ATj |r(k − 1) = i
]
qijπi(k −

since given r(k− 1), Π(k) and r(k) are independent. Further, note that the
Riccati operator

fj(M) = AjMATj +Rw −AjMCTj (CjMCTj +Rv)
−1CjMATj

is both concave and increasing. Since it is concave, Jensen’s inequality yields

Mj(k+1) ≤
m∑

i=1

(
AjE[Π(k)|r(k − 1) = i]ATj +Rw −AjE[Π(k)|r(k − 1) = i]CTj (CjE[Π(k)|r(k − 1) = i]C

Now from the definition of Mi(k− 1) and the fact that fj(.) is an increasing
operator, we obtain the required bound.

For the stability proof,

The special case of a Bernoulli jump linear systems can be obtained from
the above result by substituting qij = qj∀i. We state the result below.

Theorem 4.8. Consider the estimation problem posed above for the system
S1 with the additional assumption that the Markov transition probability
matrix is such that for all states i and j, qij = qi (in other words, the states
are chosen independently and identically distributed from one time step to
the next). The term E{r(j)}k−1

j=0

[Π(k)] obtained from the optimal estimator is

upper bounded by M(k) where

M(k) =
m∑

t=1

qt

(
Rw +AtM(k − 1)ATt

−AtM(k − 1)CTt
(
Rv + CtM(k − 1)CTt

)−1
CtM(k − 1)ATt

)
,

with M(0) = Π(0). Further, a sufficient condition for stabilizability of the
system is that there exists a positive definite matrix X, and m matrices K1,
K2, · · · , Km such that

X >
m∑

i=1

qi
(
(Ai +KiCi)X(Ai +KiCi)

T +Rw +KiRvK
T
i

)
.
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Finally, a necessary condition for stabilizability is that

qiρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unobservable modes of the process in the i-th mode.

Linear Quadratic Gaussian Control

Given the optimal linear quadratic regulator and minimum mean squared
error estimator, the solution of the linear quadratic Gaussian control prob-
lem can be solved by utilizing a separation principle. The Linear Quadratic
Gaussian (LQG) problem for the system S1 aims at designing the control
input u(k) to minimize the finite horizon cost function

JLQG = E

[
K∑

k=1

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (K + 1)P (K + 1)x(K + 1)

]
,

where the expectation at time k is taken with respect to the future values
of the Markov state realization, the measurement and process noises, and
the initial state. Further, the matrices P (K + 1), Q and R are all assumed
to be positive definite. The controller at time k has access to control inputs
{u(j)}k−1

j=0 , measurements {y(j)}kj=0 and the Markov state values {r(j)}kj=0.
The system is said to be stabilizable if the infinite horizon cost function

J∞
def
= limK→∞

JLQG

K is finite.
The solution to this problem is provided by Theorems 4.4 and 4.7 because

of the following separation principle.

Theorem 4.9. Consider the LQG problem for the system S1. At time k, if
r(k) = i, then the optimal control input is given by

u(k) = −
(
R+BT

i Pi(k + 1)Bi
)−1

BT
i Pi(k + 1)Aix̂(k),

where for Pi(k) is calculated as in Theorem 4.4 and x̂(k) is calculated using
a time-varying Kalman filter.

Proof.

Given this separation principle, the stabilizability conditions provided
in Theorems 4.4 and 4.7 can then be combined to yield the stabilizability
conditions for the LQG case as well. Finally, we note that a similar separa-
tion principle also holds for Bernoulli jump linear systems. Thus, the LQG
problem can be solved for this case as well.

4.4 H∞ Control

Include?
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4.5 Further Resources





Chapter 5
Rate-Limited Estimation and Control

In this chapter, we consider the class of networked control systems in which
the communication channel can be described by a digital noiseless channel.
Such a channel imposes a limit on the number of bits that can be transmitted
across it as a function of time; however, the transmission is perfect. As we
shall see, there is a minimum bit rate required for the existence of encoders
and decoders so that the plant can be stabilized across such a channel.
In that sense, this problem is an analog of the source coding problem in
information theory. However, the results from information theory are not
directly applicable to the control scenario because of their reliance on large
delays for the block codes to work. Nevertheless, concepts and insights from
information theory will be used in the following discussion.

The chapter is organized as follows. We begin by describing the channel
model in the next section.

5.1 Channel Model

By a digital noiseless channel, we will mean the following model. Consider a
finite alphabet S of cardinality M ≥ 1. At every time k, the channel accepts
as input one symbol s(k) ∈ S. With a delay of d time steps, the channel
outputs the symbol r(k + d) = s(k). We will nominally consider the delay
to be 0; however, we mention how the results can be extended to any finite
value of the delay. Since the encoder for such a channel maps a continuous
variable (e.g., the state value or the measurement) to a discrete variable (the
input of the channel), it is often referred to as a quantizer.

An alternate viewpoint is to consider a channel that operates with a
binary alphabet; however, at every time step, it can support a data rate
R = log2M bits per sample. From this perspective, the channel model is
that of a bit rate limited channel. We can also distinguish between channels
that support a rate R at every time step, and those that support an average

rate R = limN→∞
∑N

k=0
R(k)
N , where R(k) refers to the instantaneous rate

(or number of bits supported by the channel) at time k.
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5.2 Single Block Design

Consider a process with state x(k) ∈ Rn that evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k),

where w(k) is process noise modeled as white and in a bounded region
W. The initial state x(0) is also assumed to lie in a bounded region X .
For simplicity, we assume that the sensor can observe the state x(k). The
sensor transmits data to a controller across a digital noiseless channel with
rate 2M bits at every time step. The single block design problem refers to
a situation in which the sensor quantizes the state space using M bits and
transmits them to the controller. The controller aims to calculate a control
input u(k) to minimize the quadratic cost

JT =
T∑

k=0

E[xT (k)Qx(k) + uT (k)Ru(k)] + xT (T + 1)P (T + 1)x(T + 1).

If the infinite horizon cost limT→∞
JT

T is bounded, we say that the process
has been stabilized. Notice that in the single block design paradigm for this
channel implies that the quantizer is given and the system designer specifies
the decoder/controller. However, the quantizer can be of many different
types as long as it satisfies the rate constraint. Some popular choices for
quantizers are uniform or logarithmic with given range and step sizes.

The presence of a digital noiseless channel significantly complicates the
analysis and design of control loops even for the LQG problem. For one,
quantization is inherently a non-linear process and thus converts the prob-
lem to a non-linear control problem. Thus, there are only a limited number
of results about optimal controller design. Another reason is that the quan-
tization error introduced at any time step impacts the state value, and hence
the quantization error, at all future time steps. This relation can become
very complicated for arbitrary quantizers, possibly even leading to the con-
trol having a dual effect. For the cases when process noise is present, the
possibility of state value becoming large enough to fall outside the quantizer
range (termed quantizer overflow) is an additional complication.

The chief approach in single block design is to make a white noise approx-
imation for the quantization error. Under this approximation, the possibility
of quantizer overflow is ignored and each of the n elements in the state vector
are assumed to be quantized independently using a uniform quantizer with
step size δ, where δ is such that the total number of bits transmitted by
the quantizer is M . Moreover, the quantization error q(k) is assumed to be
white and independent of x(k). Since the quantization error for a uniform
quantizer with step size δ has mean 0 and variance δ2/12, the effect of the
above assumptions is to replace the quantizer with a sensor of the form

y(k) = x(k) + v(k),
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where v(k) is sensor noise modeled as bounded and white with mean zero
and variance δ2/12. The controller design problem thus reduces to the design
of a stabilizing controller for a linear system, which can be readily solved.
Since the noises are not Gaussian, the performance optimal controller is
harder to design.

Some initial results when the assumption of quantization error being
either white or independent of the state value is not made are provided for
uniform and logarithmic quantizers in [?]. The chief technical tool is the
following high rate approximation result from source coding theory [?].

Theorem 5.1. Given a scalar quantizer with mean squared error based dis-
tortion measure d(x, y) = ‖x − y‖2, the expected distortion of the random
variable X that is being quantized can be bounded as

d̄ ≥ dL =
1

12N2
E[λ(X)−2],

where λ(X) is the asymptotic quantizer density normalized to unit integral,
while N refers to the number of quantization levels. Further, the lower bound
becomes tighter as the rate of the quantizer becomes high.

Thus, consider the quadratic cost JT for a scalar plant

x(k + 1) = ax(k) + u(k) + w(k),

where the noise w(k) and the initial state x(0) are both bounded. Assume
that there is no quantizer overflow, and that the control input is given by
u(k) = fx̂(k), where x̂(k) is the estimate of the state at the decoder. Then,

for a midpoint based uniform quantizer, dL = δ2

12 where δ is the quantizer
step size. Moreover, as Marco and Neuhoff [?] proved, for a high rate uniform
quantizer,1 E[x(k)δ(k)] ≪ E[δ2(k)] and can thus be approximated by zero.
Thus, at high rates the cost JT evaluates to

JT = (Q+Rf2)E[x2(0)]
T∑

k=0

(a+f)2k+Rf2(T+1)
δ2

12
+

Q+Rf2

1 − (a+ f)2

(
δ2f2

12
+ Σ2

w

) T∑

k=0

(
1 − (a+ f)2k

)
.

The optimal controller can now be evaluated numerically. On the other
hand, if a logarithmic quantizer with ratio g operating over the union of
regions [−a, ǫ] and [ǫ, a] is used, the distortion can be evaluated to be

dL =
(ln g)2

12
E[x2(k)].

Using the Cauchy-Schwarz inequality

−
√
E[δ2(k)]E[x2(k)] ≤ E[δ(k)x(k)] ≤

√
E[δ2(k)]E[x2(k)],

1There are some additional technical conditions required, which hold in this case.
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we can then obtain that

h1E[x2(0)]
1 − gT+1

1

1 − g1
+
h1σ

2(T − 1 + gT+1
1 )

1 − g1
≤ JT ≤ h2E[x2(0)]

1 − gT+1
2

1 − g2
+
h2σ

2(T − 1 + gT+1
2 )

1 − g2
,

where

g1 = (a+ f)2 + cf2 − 2 | f(a+ f) | √c
g2 = (a+ f)2 + cf2 + 2 | f(a+ f) | √c
h1 =Q+Rf2 +Rcf2 − 2Rf2√c
h2 =Q+Rf2 +Rcf2 + 2Rf2√c

and c = (ln g)2

12 .
For a quantizer with large enough rate, either of the above approaches

yield reasonably accurate results. However, analytically, the problem is
largely unsolved since the framework with the above approximations fail
to capture some crucial features of the solution. For one, the white noise
approximation implies that the system can be stabilized by a suitable con-
trol law with any non-zero rate supported by the digital noiseless channel
(provided that the pair (A,B) is stabilizable). However, as we shall see in
the next section, the data rate theorem implies that there is a minimum
data rate that needs to be supported by the channel, otherwise the system
cannot be stabilized even in the two block design paradigm. Moreover, the
assumptions mentioned in this section fail to predict the chaotic nature of
the state space trajectory that was identified by Delchamps.

5.3 Two Block Design

The two block design paradigm involves designing both an encoder at the
input of the channel and a decoder at the output of the channel. As we shall
see, for the digital noiseless channel, encoders and decoders that achieve sta-
bility with the minimum possible bit rate have been identified for a variety of
stability notions and conditions on the encoder structure. However, designs
that minimize a performance cost are largely unknown.

We begin by considering the plant structure with state x(k) ∈ Rn that
evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k), (5.1)

where u(k) ∈ Rm is the control input. The state is observed by a sensor
that generates measurements y(k) ∈ Rp of the form

y(k) = Cx(k) + v(k).

For different notions of stability, we will make different assumptions on the
noises w(k) and v(k), and the initial state x(0). We assume that the pair
(A,B) is controllable and the pair (A,C) is observable.
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The encoder at the input of the channel transmits a symbol s(k) from
the alphabet S (equivalently, M bits) at every time step. The message that
is transmitted is a function of past transmissions and all measurements till
time k, i.e.,

s(k) = γ(k, y(0), y(1), · · · , y(k), s(0), s(1), · · · , s(k − 1)).

The channel transmits the symbol s(k) without distortion, but with a con-
stant delay of d time steps. The decoder generates a control input of the
form

u(k) = δ(k, s(0), s(1), · · · , s(k − d)).

We begin by considering stability in the sense of constraining the state
value to lie within a bounded set. To this end, assume that the noises
w(k) and v(k) are deterministic but unknown sequences constrained to lie
in bounded sets W and V respectively. Moreover assume that the initial
condition x(0) lies in the bounded set X0. Then, we consider the system to
be stable if the worst case cost

J = lim sup
k→∞

{‖x(k)‖ : x(0) ∈ X0, w(j) ∈ W, v(j) ∈ V, j = 0, 1, · · · }

is bounded.

Date Rate Theorem

The basic result in stability across digital noiseless channels is called the data
rate theorem and is stated in terms of the intrinsic entropy of a system.
The intrinsic entropy of a system is a measure of instability of a system
and for the linear process in equation (5.1) is defined by the relation H =∑

i log2(max(|λi(A)|, 1)) where λi(A) is the i-th eigenvalue of the matrix A.
Since any mode of the process whose evolution is governed by an eigenvalue
with magnitude less than 1 is stable and decays to zero even without any
control input, for stabilization purpose, without loss of generality we can
consider A to have all eigenvalues with magnitude strictly larger than 1.

Theorem 5.2 (Date Rate Theorem:). Consider the two block design for-
mulation with a causal encoder and decoder structure as defined above with
the channel supporting a rate R.

1. If R ≤ H and the process noise has non-zero support, then J → ∞ with any
encoder and decoder design.

2. If R > H then

J >
β−1/nλ(W)1/n

1 − 2−(R−H)/n
,

where β is the volume of an n-dimensional sphere with unit radius, and
λ(W) is the measure of W.
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The proof of this theorem relies on considering the rate of increase in the
volume of the set that the norm of the state value x(k) can be in. The volume
increases at every step because of the unstable eigenvalues, and decreases
because of the information passed by the encoder. Note that the control
value simply shifts this set, and cannot alter the volume since all previous
control values are known to the controller. By balancing the rate of increase
and decrease, the two conditions in the data rate theorem are obtained. To
focus on the basic idea of the proof, we prove the data rate theorem for the
special case when the process state is a scalar (n = 1). For this special case,
the result implies:

1. If R ≤ log2(A) and the process noise has non-zero support, then J →
∞ with any encoder and decoder design.

2. If R > log2(A) then

J >
0.5λ(W)

1 − 2−(R−H)
,

for any encoder and decoder design, where λ(W) is the measure of W.

Proof. Define by λ(x(t)) the length of the possibly disconnected region de-
fined by the set of values that the state value can achieve at time t for
various values of control inputs, x(0) and the noise till time t. Also for
given values of the signals transmitted by the encoder, define the region
λ(x(t) : {s(j)}t−1

j=0 = {c(j)}t−1
j=0) similarly. Finally define

m(t) = max
{c(j)}t−1

j=0∈S
λ(x(t) : {s(j)}t−1

j=0 = {c(j)}t−1
j=0).

We wish to study the evolution of m(t). By definition,

m(t+ 1) = max
{c(j)}t

j=0∈S
λ(x(t+ 1) : {s(j)}tj=0 = {c(j)}tj=0)

= max
{c(j)}t

j=0∈S
λ(Ax(t) +Bδ(t, {c(j)}t−dj=0) + w(t) : {s(j)}tj=0 = {c(j)}tj=0).

Now for given symbols {c(j)}t−dj=0, the control value is a constant and hence
cannot affect the measure of the set. Moreover, the Brunn-Minkowski in-
equality implies that λ1/n(a+ b) ≥ λ1/n(a)+λ1/n(b), for any sets a and b in
n-dimensions. Utilizing these two facts, we obtain

m(t+ 1) ≥ A max
{c(j)}t

j=0∈S
λ(x(t) : {s(j)}tj=0 = {c(j)}tj=0) + λ(w(t)). (5.2)

Now, notice that

{x(t) : {s(j)}t−1
j=0 = {c(j)}t−1

j=0} =
⋃

all possible values of c(t)

{x(t) : {s(j)}tj=0 = {c(j)}tj=0}.
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Thus, Brunn-Minkowski inequality yields

λ(x(t) : {s(j)}t−1
j=0 = {c(j)}t−1

j=0) ≤
∑

all possible values of c(t)

λ(x(t) : {s(j)}tj=0 = {c(j)}tj=0)

M max
c(t)∈S

λ(x(t) : {s(j)}tj=0 = {c(j)}tj=0),

where M is the number of symbols in the alphabet S. Using this in (5.2)
yields

m(t+ 1) ≥ A max
{c(j)}t−1

j=0∈S

1

M
λ(x(t) : {s(j)}t−1

j=0 = {c(j)}t−1
j=0) + λ(w(t))

=
A

M
m(t) + λ(w(t))

= 2−(R−H)m(t) + λ(w(t),

since A
M = 2H

2R . If R ≤ H, then as t → ∞, m(t) grows without bound and
J → ∞. If R > H, then we can solve for m(t) explicitly and achieve the
bound stated in the theorem as t → ∞. This, the data rate theorem is
proven for the scalar case.

The proof for the n-dimensional state space is along similar lines by consid-
ering the evolution of the volume of |x(t)|. The technical changes required
are:

• to relate the volume of the set to sup |x(t)| by using the expression

λ(T ) ≤ β(sup |τ | : τ ∈ T )1/n,

for any set T , where β is the volume of the n-dimensional sphere with
unit radius.

• to define m(t) as the 1/n-th root of volume so that Brunn-Minkowski
inequality is applicable.

• to use the relation λ(Ax) = det(A)λ(x).

The proof of the theorem can be easily modified to consider the case when
the rate R is time-varying. By considering the evolution of m(t) in terms of
m(0), we see that the data rate theorem holds if we define R to be the long
term average data rate.

Tightness of Bounds

There are two questions that one can consider regarding the tightness of the
bounds:

1. Is it possible to achieve stability with a data rate R = H + ǫ for any
non-zero ǫ?
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2. Is it possible to achieve the lower bound on the state value when
R > H?

The first question can be answered in affirmative. We construct an encoder
and decoder for the scalar case that achieves stability with rate H + ǫ and
indicate how it can be extended to more general cases. Consider at time
k, the state x(k) to be in a region with support l(k). The encoder uni-
formly quantizes the region using M bits and transmits the symbol related
to the midpoint of the quantization cell containing the state value. The
decoder knows the region being quantized since there is no stochasticity in
the system. Thus, it knows exactly the midpoint of the quantization cell
as transmitted by the encoder. It applies the control that translates the
midpoint to the origin. Using this encoder decoder pair, the length l(k)
evolves as follows. It increases by a factor of A due to the state dynamics,
and decreases by a factor of 2M due to the quantizer. Thus,

l(k + 1) =
1

M
(Al(k) + lw(k)),

where lw(k) is the support of the noise w(k). Thus, the length is bounded
as k → ∞ (in other words stability is achieved) if A

M < 1 or R = H + ǫ for
any non-zero ǫ. For a vector plant, a similar encoder-decoder pair can be
used for each individual mode as identified by a Jordan decomposition. By
allotting bit rates suitably for all unstable modes, stability can be achieved
for any rate R > H.

Regarding the second question, we notice that the lower bound on the
norm of the state in case of R > H is independent of the delay d. Thus,
it can be expected that the bound is quite loose in general. While the
presence of a finite delay cannot affect the stability condition, it does affect
the performance in terms of the achievable norm of the state. One can
modify the above proof by considering the evolution of m(t) in terms of
m(t − d) to more accurately capture the effects of the delay. However, the
effect of the rate R and the delay d do not separate out in a simple manner.

Even if d = 0, in general the bound is not tight for vector plants. For
scalar plants, the encoder-decoder proposed above will achieve the bound
with equality.

Other Notions of Stability

Now we briefly discuss how to consider alternate notions of stability. If
the noises w(k) and v(k) are random variables, then the state x(k) evolves
stochastically. In that case, we might be interested in boundedness of a
particular moment of the state. The most popular notion is that of mean
square stability, i.e., we define the system to be stable if E[x(k)xT (k)] is
bounded as k → ∞. This stability notion can be analyzed using very similar
tools as employed in the data rate theorem. Instead of volume of the set
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in which the state can lie, we consider the evolution of the entropy power
of the state. By using the entropy power inequality instead of the Brunn-
Minkowski inequality, we can follow the same proof as that of the data
rate theorem. Rather surprisingly, the condition on the minimum bit rate
required for stability turns out to be identical to the deterministic case
considered earlier.

However, unlike the deterministic case, a finite memory encoder-decoder
pair is no longer sufficient to provide moment stability if the noise has infinite
support. This result is related to the area over which the quantizer needs to
operate. If the noise has a compact support, then given the region in which
x(k) can lie, the region that needs to be quantized for x(k + 1) is bounded.
The encoder can thus vary its range at every time step and achieve stability.
However, if the noise has unbounded support, then there is always a finite
chance that the state at time k + 1 falls outside the range of the quantizer.
Such quantizer overflow leads to controller saturation. If the plant is un-
stable, the difference between where the state is, and the maximum value
that can be handled by the controller exacerbates and quantizer overflow
happens with increasing probability, ultimately leading to instability.

Stability with noises that have infinite support requires an encoder that
adapts its range to allow the control signal to catch up. Moreover, the
adaptation parameter can depend on the entire history of actions and have
infinite set of values. A typical example of such a quantizer is the zoom in
/ zoom out quantizer. .

If there is no noise in the system, one can also aim for asymptotic stability.
The first result in this direction is the insufficiency of a finite memory encoder
/ decoder pair to achieve asymptotic stability. This is because given any
finite memory encoder / decoder, and a finite data rate, at any time t, the
controller can only distinguish between finitely many state values. In other
words, at any time t, there are a countable number of values for the initial
state x(0), that can be mapped to the origin. For any other value of the
initial state, let, if possible, the system achieve asymptotic stability. This
implies that if there exists a time T , such that for all t > T , the state
value starting from this initial state satisfies |x(t)| < ǫ, then there must
exist some time τ > T such that u(τ) is nonzero. This is simply because
the state value x(t) is non-zero and hence needs to be driven to the origin
by a suitable control input. Now, of the (countably many) distinct possible
values possible for the control input at time τ , let m = min |u(τ)|. Moreover,
choose ǫ = m

1+|a| , where for simplicity we have choosen a scalar system with

system parameter a. Then we can obtain a contradiction by noting that

m ≤ |u(τ)| = |x(τ + 1) − ax(τ)| ≤ |x(τ + 1)| + |ax(τ)| ≤ (1 + |a|)ǫ < m.

Thus, for any finite memory of the encoder and decoder, there are un-
countably many initial values of the state such that the system trajectories
starting from them do not achieve asymptotic stability. There are two chief
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research directions that have emerged in light of this negative result:

1. Loosening the constraint of asymptotic stability to practical stability:
In practical stability, the system satisfies the constraint |x(t)| < ǫ for
any given ǫ for times in the range T1 < t < T2.

2. Considering encoders / decoders with infinite memory: The zoom in
and out quantizers discussed above can achieve asymptotic stability by
varying the region of state space that is quantized. As the state value
moves closer to the origin, the range of the quantizer decreases. The
achievement of increasingly finer quantization levels leads to asymp-
totic stability.

.

5.4 Extensions and Open Questions

The above discussion provides a sketch of the type of problems that have
been analyzed and the results that are available for estimation and control
across a digital noiseless channel. Since this is a research area that continues
to see intense activity, there are a number of aligned problems that have
also been looked at. We provide a discussion on some of these problems and
outline a few open research questions.

Performance. Most of the material presented this far focussed on various
notions of stability. Results on the design of control inputs to minimize a
cost metric are more limited. As an example, consider the case when the
noises are stochastic and Gaussian. One can consider the LQG problem for
this case. The problem is difficult because of the non-linearity introduced
by the quantizer. However, it can be proven that for the class of encoders
that subtract the effect of previous control inputs (thus transmitting an
innovation-like quantity), the certainty equivalence principle holds. Thus,
for this class of encoders, the optimal control law is linear and its form is
obtained by assuming that the controller has access to state information.
However, instead of the state value, an estimate of the state value is used
in the law to obtain the control input value. Moreover, there is no loss of
optimality by restricting attention to this class of encoders.

However, a complete separation principle does not exist because of the
non-linearity introduced by the quantizer. In other words, the estimate at
the controller needs to be calculated for a distortion metric that depends
on the input matrix. Thus, the estimator depends on the control value be-
ing calculated and is hard to characterize analytically. In fact, the LQG
problem, and identifying the optimal controller for general cost functions, is
still largely open. In fact, even the problems of identifying the optimal en-
coder for a given controller and identifying the optimal controller for a given
encoder from a performance perspective do not yet have general solutions.
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Noisy Digital Channels. If the channel is not noiseless, the problem be-
comes much harder. The easiest extension to consider is when the bits are
erased by the channel with a certain probability at every time step. Stabil-
ity conditions for such channels are obtained by extending the results from
this chapter and that of analog erasure channels. Consider the case when
the sensor data for a scalar process with process matrix A is transmitted
to the controller over a channel such that the channel supports a rate of R
bits at every time step, and the data packet is erased with a probability p
in an independent and identically distributed manner at every time step.
Then, a necessary and sufficient condition for existence of causal encoders
and decoders that achieve second moment stability for the plant state is that
pA2 + (1 − p) A

2

22R < 1. Note that in the limit R→ ∞, the condition reduces
to pA2 < 1 that is the stability condition for two block design with analog
erasure channels. Similarly in the limit p = 0, we regain the condition for
digital noiseless channel. The extension of the condition for vector plants is
obtained using Jordan decomposition of the system matrix and considering
each unstable mode separately.

If the noise in the channel can yield bit errors (rather than erasures), then
a binary symmetric channel is more accurate. However, only very limited
results are available even for stability over such channels.

Finite Lp Gain / Nonlinear systems.

Distributed Control. Since performance optimal distributed controllers are
not available for arbitrary connection topologies even for the case of no
limitations in terms of communication channels, it is not surprising that
the problem is open if various components transmit data over digital noise-
less channels. However, the stability problem has been looked at by many
researchers and conditions are available in many different but equivalent
forms.

5.5 Conclusions

In this chapter, we looked at control across a digital noiseless link. Stability
conditions were identified in the two block framework. Some extensions and
open problems were also looked at.





Chapter 6
Packet-Based Estimation and Control

Outline:

• Problem setup and useful lemmas

• Expected value of covariance

• Probabilistic bounds

• Markov models for packet loss (JLMS)

• Multi-channel and/or multi-sensor?

6.1 Introduction

This goal of this chapter is to analyze the problem of state estimation in
the case where observations have to travel through a network to reach the
estimator and may get lost in the process.

Consider the problem of navigating a vehicle based on the sensor web’s
estimate of its current position and velocity. The measurements underlying
this estimate can be lost or delayed due to the unreliability of the wireless
links. The question is, then, what is the amount of data loss that the con-
trol loop can tolerate to reliably perform the navigation task? And, can
communication protocols be designed to satisfy this constraint? Answer-
ing these questions requires a generalization of classical control techniques
that explicitly take into account the stochastic nature of the communication
channel.

In this setting, the sensor network provides observed data that is used to
estimate the state of a controlled system, and this estimate is then in turn
used for control purposes. This chapter and the next one study the effect of
data loss due to the unreliability of the network links.

The current chapter generalizes the most ubiquitous recursive estimation
technique in control—the discrete Kalman filter [?]—modeling the arrival of
an observation as a random process whose parameters are related to the
characteristics of the communication channel, see Figure 6.8. In this setting
the statistical convergence of the expected estimation error covariance is
characterized and analyzed.

The classical theory relies on several assumptions that guarantee con-
vergence of the Kalman filter. Consider the following discrete time linear
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Figure 6.1: Overview of the system. The goal is to study the statistical con-
vergence of the expected estimation error covariance of the discrete-time Kalman
filter, where the observation, travelling over an unreliable communication channel,
can be lost at each time step with probability 1 − γ̄.

dynamical system:

xt+1 =Axt + wt

yt =Cxt + vt, (6.1)

where xt ∈ R
n is the state vector, yt ∈ R

m the output vector, wt ∈ R
p

and vt ∈ R
m are Gaussian random vectors with zero mean and covariance

matrices Q ≥ 0 and R > 0, respectively. wt is independent of ws for s < t.
Assume that the initial state, x0, is also a Gaussian vector of zero mean
and covariance Σ0. Under the hypothesis of stabilizability of the pair (A,Q)
and detectability of the pair (A,C), the estimation error covariance of the
Kalman filter converges to a unique value from any initial condition [?].

The assumptions of the Kalman Filter have been relaxed in various ways.
Extended Kalman filtering [?] attempts to cope with nonlinearities in the
model; particle filtering [?] is also appropriate for nonlinear models and
additionally does not require the noise model to be Gaussian. Recently,
more general observation processes have been studied. In particular, in
[?, ?] the case in which observations are randomly spaced in time according



6.2. RELATED WORK 6-3

to a Poisson process has been studied, where the underlying dynamics evolve
in continuous time. These authors showed the existence of a lower bound
on the arrival rate of the observations below which it is possible to maintain
the estimation error covariance below a fixed value, with high probability.
However, the results were restricted to scalar SISO systems.

A similar approach is taken in this chapter. While the analysis falls within
the framework of discrete time, it provides results for general n-dimensional
MIMO systems. In particular, it considers a discrete-time system in which
the arrival of an observation is a Bernoulli process with parameter 0 < ¯γ < 1,
and, rather than asking for the estimation error covariance to be bounded
with high probability, the study focuses on the asymptotic behavior (in
time) of its average. The main contribution is to show that, depending
on the eigenvalues of the matrix A, and on the structure of the matrix C,
there exists a critical value γc, such that if the probability of arrival of an
observation at time t is γ̄ > γc, then the expectation of the estimation
error covariance is always finite (provided that the usual stabilizability and
detectability hypotheses are satisfied). If γ̄ ≤ γc, then the expectation of the
estimation error covariance is unbounded. The following analysis provides
explicit upper and lower bounds on γc, and shows that they are tight in
some special cases.

Philosophically this result can be seen as another manifestation of the
well known uncertainty threshold principle [?, ?]. This principle states that
optimum long-range control of a dynamical system with uncertainty pa-
rameters is possible if and only if the uncertainty does not exceed a given
threshold. The uncertainty is modeled as white noise scalar sequences acting
on the system and control matrices. In our case, the result is for optimal
estimation, rather than optimal control, and the uncertainty is due to the
random arrival of the observation, with the randomness arising from losses
in the network.

6.2 Related Work

Studies on filtering with intermittent observations can be tracked back to
Nahi [?] and Hadidi [?]. More recently, this problem has been studied using
Jump Linear Systems (JLS) [?]. JLS are stochastic hybrid systems char-
acterized by linear dynamics and discrete regime transitions modeled as
Markov chains. In the work of Costa et al. [?] and Nilsson et al. [?, ?]
the Kalman filter with missing observations is modeled as a JLS switching
between two discrete regimes: an open loop configuration and a closed loop
configuration. Following this approach, these authors obtain convergence
criteria for the expected estimation error covariance. However, they restrict
their formulation to the steady state case, where the Kalman gain is con-
stant, and they do not assume to know the switching sequence. The resulting
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process is wide sense stationary [?], and this makes the exact computation
of the transition probability and state error covariance possible. Other work
on optimal, constant gain filtering can be found in the work of Wang et
al. [?], who included the presence of system parameters uncertainty besides
missing observations, and Smith et al. [?], who considered the fusion of mul-
tiple filters. Instead, we consider the general case of time varying Kalman
gain. In the presence of missing observations, this filter has a smaller linear
minimum mean square error (LMMSE) than its static counterpart, as it is
detailed in Section 6.3.

The general case of time-varying Kalman filter with intermittent obser-
vations was also studied by Fortmann et al. [?], who derived stochastic
equations for the state covariance error. However, they do not statisti-
cally characterize its convergence and provide only numerical evidence of
the transition to instability, leaving a formal characterization of this as an
open problem, which is addressed in this chapter. A somewhat different
formulation was considered in [?], where the observations arrival have a
bounded delay.

Finally, we point out that our analysis can also be viewed as an instance
of Expectation-Maximization (EM) theory. EM is a general framework for
doing Maximum Likelihood estimation in missing-data models [?]. Lau-
ritzen [?] shows how EM can be used for general graphical models. In our
case, however, the graph structure is a function of the missing data, as there
is one graph for each pattern of missing data.

The chapter is organized as follows. In section 6.3 the problem of Kalman
filtering with intermittent observations is formally defined. In section 6.4
upper and lower bounds on the expected estimation error covariance of the
Kalman filter are provided, along with conditions on the observation arrival
probability γ̄ for which the upper bound converges to a fixed point, and for
which the lower bound diverges. Section 6.5 describes some special cases
and gives an intuitive understanding of the results. Section 6.6 compares
the current approach to previous ones [?] based on jump linear systems.

6.3 Problem Formulation

Consider the canonical state estimation problem. The arrival of the obser-
vation at time t is modeled as a binary random variable γt, with probability
distribution pγt

(1) = γ̄, and with γt independent of γs if t 6= s. The output
noise vt is defined in the following way:

p(vt|γt) =

{
N (0, R) : γt = 1

N (0, σ2I) : γt = 0,

for some σ2 . Therefore, the variance of the observation at time t is R if γt
is 1, and σ2I otherwise. In reality the absence of observation corresponds
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to the limiting case of σ → ∞. Following this approach the Kalman filter
equations are re-derived using a “dummy” observation with a given variance
when the real observation does not arrive, and then take the limit as σ → ∞.

First define:

x̂t|t
∆
= E[xt|yt, γt] (6.2)

Pt|t
∆
= E[(xt − x̂t)(xt − x̂t)

′|yt, γt] (6.3)

x̂t+1|t
∆
= E[xt+1|yt, γt] (6.4)

Pt+1|t
∆
= E[(xt+1 − x̂t+1)(xt+1 − x̂t+1)

′|yt, γt] (6.5)

ŷt+1|t
∆
= E[yt+1|yt, γt], (6.6)

where the vectors yt and γt are defined as: yt
∆
= [y0, . . . , yt]

′ and γt
∆
= [γ0, . . . , γt]

′.
It is easy to see that:

E[(yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)
′|yt, γt+1] =CPt+1|t (6.7)

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′|yt, γt+1] =CPt+1|tC

′ + γt+1R+ (1 − γt+1)σ
2I,(6.8)

and it follows that the random variables xt+1 and yt+1, conditioned on the
output yt and on the arrivals γt+1, are jointly gaussian with mean

E[xt+1, yt+1|yt, γt+1] =

(
x̂t+1|t

Cx̂t+1|t

)
,

and covariance

COV (xt+1, yt+1|yt, γt+1) =

=

(
Pt+1|t Pt+1|tC

′

CPt+1|t CPt+1|tC
′ + γt+1R+ (1 − γt+1)σ

2I

)
.

Hence, the Kalman filter equations are modified as follows:

x̂t+1|t =Ax̂t|t (6.9)

Pt+1|t =APt|tA
′ +Q (6.10)

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′(CPt+1|tC

′ + γt+1R+ (1 − γt+1)σ
2I)−1(yt+1 − Cx̂t+1|t)(6.11)

Pt+1|t+1 =Pt+1|t − Pt+1|tC
′(CPt+1|tC

′ + γt+1R+ (1 − γt+1)σ
2I)−1CPt+1|t. (6.12)

Taking the limit as σ → ∞, the update equations (6.11) and (6.12) can be
rewritten as follows:

x̂t+1|t+1 = x̂t+1|t + γt+1Kt+1(yt+1 − Cx̂t+1|t) (6.13)

Pt+1|t+1 =Pt+1|t − γt+1Kt+1CPt+1|t, (6.14)

where Kt+1 = Pt+1|tC
′(CPt+1|tC

′ +R)−1 is the Kalman gain matrix for the
standard ARE. Note that performing this limit corresponds exactly to prop-
agating the previous state when there is no observation update available
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at time t. It is important to point out the main difference from the stan-
dard Kalman filter formulation: both x̂t+1|t+1 and Pt+1|t+1 are now random
variables, being a function of γt+1, which is itself random.

Equations (6.13)-(6.66) give the minimum state error variance filter given
the observations {yt} and their arrival sequence{γt}, i.e. x̂tmt = E[xt|yt, . . . , y1, γt, . . . , γ1].
As a consequence, the filter proposed in this paper is necessarily time-varying
and stochastic since it depends on the arrival sequence. The filters that have
been proposed so far using JLS theory [?, ?] give the minimum state error
variance filters assuming that only the observations {yt} and the knowledge
on the last arrival γt are available, i.e. x̂JLSt = E[xt|yt, . . . , y1, γt]. Therefore,
the filter given by Equations (6.13)-(6.66) gives a better performance than
its JLS counterparts, since it exploits additional information regarding the
arrival sequence.

Given the new formulation, we now study the Riccati equation of the
state error covariance matrix in the specific case when the arrival process of
the observation is time-independent, i.e. γ̄t = γ̄ for all time. This will allow
us to provide deterministic upper and lower bounds on its expectation. We
then characterize the convergence of these upper and lower bounds, as a
function of the arrival probability γ̄ of the observation.

6.4 Convergence conditions and transition to instability

It is easy to verify that the modified Kalman filter formulation in Equations
(6.10) and (6.66) can be rewritten as follows:

Pt+1 = APtA
′ +Q− γtAPtC

′(CPtC
′ +R)−1CPtA

′, (6.15)

where we use the simplified notation Pt = Pt|t−1. Since the sequence {γt}∞0
is random, the modified Kalman filter iteration is stochastic and cannot be
determined off-line. Therefore, only statistical properties can be deduced.

In this section we show the existence of a critical value γc for the arrival
probability of the observation update, such that for γ̄ > γc the mean state
covariance E[Pt] is bounded for all initial conditions, and for γ̄ ≤ γc the
mean state covariance diverges for some initial condition. We also find a
lower bound γmin, and upper bound γmax, for the critical probability γc,
i.e., γmin ≤ γc ≤ γmax. The lower bound is expressed in closed form; the
upper bound is the solution of a linear matrix inequality (LMI). In some
special cases the two bounds coincide, giving a tight estimate. Finally, we
present numerical algorithms to compute a lower bound S̄, and upper bound
V̄ , for limt→∞ E[Pt], when it is bounded.

First, we define the modified algebraic Riccati equation (MARE) for the
Kalman filter with intermittent observations as follows,

gγ̄(X) = AXA′ +Q− γ̄ AXC ′(CXC ′ +R)−1CXA′. (6.16)
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Our results derive from two principal facts: the first is that concavity of the
modified algebraic Riccati equation for our filter with intermittent observa-
tions allows use of Jensen’s inequality to find an upper bound on the mean
state covariance; the second is that all the operators we use to estimate
upper and lower bounds are monotonically increasing, therefore if a fixed
point exists, it is also stable.

We formally state all main results in form of theorems. Omitted proofs
appear in the Appendix. The first theorem expresses convergence properties
of the MARE.

Theorem 6.1. Consider the operator
φ(K,X) = (1 − γ̄)(AXA′ + Q) + γ̄(FXF ′ + V ), where F = A + KC,
V = Q + KRK ′. Suppose there exists a matrix K̃ and a positive definite
matrix P̃ such that

P̃ > 0 and P̃ > φ(K̃, P̃ )

Then,

• for any initial condition P0 ≥ 0, the MARE converges, and the limit is
independent of the initial condition:

lim
t→∞

Pt = lim
t→∞

gtγ̄(P0) = P

• P is the unique positive semidefinite fixed point of the MARE.

The next theorem states the existence of a sharp transition.

Theorem 6.2. If (A,Q
1

2 ) is controllable, (A,C) is detectable, and A is
unstable, then there exists a γc ∈ [0, 1) such that

lim
t→∞

E[Pt] = +∞ for 0 ≤ γ̄ ≤ γc and ∃P0 ≥ 0 (6.17)

E[Pt] ≤MP0
∀t for γc < γ̄ ≤ 1 and ∀P0 ≥ 0 (6.18)

where MP0
> 0 depends on the initial condition P0 ≥ 01.

The next theorem gives upper and lower bounds for the critical proba-
bility γc.

Theorem 6.3. Let

γmin = inf [γ̄ : ∃Ŝ | Ŝ = (1 − γ̄)AŜA′ +Q] = 1 − 1

α2
(6.19)

γmax = inf [γ̄ : ∃(K̂, X̂) | X̂ > φ(K̂, X̂)] (6.20)

where α = maxi |σi| and σi are the eigenvalues of A. Then

γmin ≤ γc ≤ γmax. (6.21)

1We use the notation limt→∞ At = +∞ when the sequence At ≥ 0 is not bounded; i.e., there
is no matrix M ≥ 0 such that At ≤M, ∀t.
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Finally, the following theorem gives an estimate of the limit of the mean
covariance matrix E[Pt], when this is bounded.

Theorem 6.4. Assume that (A,Q
1

2 ) is controllable, (A,C) is detectable and
γ̄ > γmax, where γmax is defined in Theorem 6.3. Then

0 < St ≤ E[Pt] ≤ Vt ∀ E[P0] ≥ 0 (6.22)

where limt→∞ St = S̄ and limt→∞ Vt = V̄ , where S̄ and V̄ are solution of
the respective algebraic equations
S̄ = (1 − γ̄)AS̄A′ +Q and V̄ = gγ̄(V̄ ).

The previous theorems give lower and upper bounds for both the critical
probability γc and for the mean error covariance E[Pt]. The lower bound
γmin is expressed in closed form. We now resort to numerical algorithms for
the computation of the remaining bounds γmax, S̄ and V̄ .

The computation of the upper bound γmax can be reformulated as the it-
eration of an LMI feasibility problem. To establish this we need the following
theorem:

Theorem 6.5. If (A,Q
1

2 ) is controllable and (A,C) is detectable, then the
following statements are equivalent:

• ∃X̄ such that X̄ > gγ̄(X̄)

• ∃K̄, X̄ > 0 such that X̄ > φ(K̄, X̄)

• ∃Z̄ and 0 < Ȳ ≤ I such that

Ψγ̄(Y, Z) =


Y
√
γ̄(Y A+ ZC)

√
1 − γ̄Y A√

γ̄(A′Y + C ′Z ′) Y 0√
1 − γ̄A′Y 0 Y


 > 0.

Proof. (a)=⇒(b) If X̄ > gγ̄(X̄) exists, then X̄ > 0 by Lemma 6.1(g). Let
K̄ = KX̄ . Then X̄ > gγ̄(X̄) = φ(K̄, X̄) which proves the statement.
(b)=⇒(a) Clearly X̄ > φ(K̄, X̄) ≥ gγ̄(X̄) which proves the statement.
(b)⇐⇒(c) Let F = A+KC, then:

X > (1 − γ̄)AXA′ + γ̄FXF ′ +Q+ γ̄KRK ′

is equivalent to [
X − (1 − γ̄)AXA′ √

γ̄F√
γ̄F ′ X−1

]
> 0,

where we used the Schur complement decomposition and the fact that X −
(1 − γ̄)AXA′ ≥ γ̄FXF ′ + Q + γ̄KRK ′ ≥ Q > 0. Using one more time
the Schur complement decomposition on the first element of the matrix we
obtain

Θ =




X
√
γ̄F

√
1 − γ̄A√

γ̄F ′ X−1 0√
1 − γ̄A′ 0 X−1


 > 0.
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This is equivalent to

γ̄ =



X−1 0 0

0 I 0
0 0 I


Θ



X−1 0 0

0 I 0
0 0 I


 > 0

=




X−1 √
γ̄X−1F

√
1 − γ̄X−1A√

γ̄F ′X−1 X−1 0√
1 − γ̄A′X−1 0 X−1


 > 0.

Let us consider the change of variable Y = X−1 > 0 and Z = X−1K, in
which case the previous LMI is equivalent to:

Ψ(Y, Z) =

=




Y
√
γ̄(Y A+ ZC)

√
1 − γ̄Y A√

γ̄(A′Y + C ′Z ′) Y 0√
1 − γ̄A′Y 0 Y


 > 0.

Since Ψ(αY, αK) = αΨ(Y,K), then Y can be restricted to Y ≤ I, which
completes the theorem.

Combining theorems 6.3 and 6.5 we immediately have the following corol-
lary

Corollary 6.5.1. The upper bound γmax is given by the solution of the
following optimization problem,

γmax = argminγ̄Ψγ̄(Y, Z) > 0, 0 ≤ Y ≤ I.

This is a quasi-convex optimization problem in the variables (γ̄, Y, Z)
and the solution can be obtained by iterating LMI feasibility problems and
using bisection for the variable γ̄, as shown in [?].

The lower bound S̄ for the mean covariance matrix can be easily obtained
via standard Lyapunov Equation solvers. The upper bound V̄ can be found
by iterating the MARE or by solving a semidefinite programming (SDP)
problem as shown in the following theorem.

Theorem 6.6. If γ̄ > γmax, then the matrix V̄ = gγ̄(V̄ ) is given by:

1. V̄ = limt→∞ Vt; Vt+1 = gγ̄(Vt) where V0 ≥ 0

2.

argmaxV Trace(V )

subject to

[
AV A′ − V +Q

√
γ̄AV C ′

√
γ̄CV A′ CV C ′ +R

]
≥ 0, V ≥ 0

Proof. (a) It follows directly from Theorem 6.1.
(b) It can be obtained by using the Schur complement decomposition on

the equation V ≤ gγ̄(V ). Clearly the solution V̄ = gγ̄(V̄ ) belongs to the
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feasible set of the optimization problem. We now show that the solution
of the optimization problem is the fixed point of the MARE. Suppose it is
not, i.e., V̂ solves the optimization problem but V̂ 6= gγ̄(V̂ ). Since V̂ is a

feasible point of the optimization problem, then V̂ < gγ̄(V̂ ) =
ˆ̂
V . However,

this implies that Trace(V̂ ) < Trace(
ˆ̂
V ), which contradicts the hypothesis

of optimality of matrix V̂ . Therefore V̂ = gγ̄(V̂ ) and this concludes the
theorem.

6.5 Special Cases and Examples

In this section we present some special cases in which upper and lower
bounds on the critical value γc coincide, and give some examples. From
Theorem 6.1, it follows that if there exists a K̃ such that F is the zero matrix,
then the convergence condition of the MARE is for γ̄ > γc = 1−1/α2, where
α = maxi |σi|, and σi are the eigenvalues of A.

• C is invertible. In this case a choice of K = −AC−1 makes F = 0.
Note that the scalar case also falls under this category. Figure (2)
shows a plot of the steady state of the upper and lower bounds versus γ̄
in the scalar case. The discrete time LTI system used in this simulation
has A = −1.25, C = 1, with vt and wt having zero mean and variance
R = 2.5 and Q = 1, respectively. For this system we have γc = 0.36.
The transition clearly appears in the figure, where we see that the
steady state value of both upper and lower bound tends to infinity as
γ̄ approaches γc. The dashed line shows the lower bound, the solid
line the upper bound, and the dash-dot line shows the asymptote.

• A has a single unstable eigenvalue. In this case, regardless of the
dimension of C (and as long as the pair (A,C) is detectable), we can
use Kalman decomposition to bring to zero the unstable part of F and
thereby obtain tight bounds. Figure (3) shows a plot for the system

A =




1.25 1 0
0 0.9 7
0 0 0.6


, C =

(
1 0 2

)

with vt and wt having zero mean and variance R = 2.5 and Q =
20 · I3×3, respectively. This time, the asymptotic value for trace of
upper and lower bound is plotted versus γ̄. Once again γc = 0.36.

In general F cannot always be made zero and we have shown that while a
lower bound on γc can be written in closed form, an upper bound on γc is the
result of a LMI. Figure (4) shows an example where upper and lower bounds
have different convergence conditions. The system used for this simulation

is A =

(
1.25 0
1 1.1

)
, C =

(
1 1

)
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Figure 6.2: Example of transition to instability in the scalar case. The dashed line
shows the asymptotic value of the lower bound (S̄), the solid line the asymptotic
value of the upper bound (V̄ ), and the dash-dot line shows the asymptote (γc).

with vt and wt having zero mean and variance R = 2.5 and Q = 20 · I2×2,
respectively.

Finally, in Figure (5) we report results of another experiment, plotting the
state estimation error for the scalar system used above at two similar values
of γ̄, one being below and one above the critical value. We note a dramatic
change in the error at γc ≈ 0.36. The figure on the left shows the estimation
error with γ̄ = 0.3. The figure on the right shows the estimation error for
the same system evolution with γ̄ = 0.4. In the first case the estimation
error grows dramatically, making it practically useless for control purposes.
In the second case, a small increase in γ̄ reduces the estimation error by
approximately three orders of magnitude.
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Figure 6.3: Example of transition to instability with a single unstable eigenvalue
in the MIMO case. The dashed line shows the asymptotic value of the trace of
lower bound (S̄), the solid line the asymptotic value of trace of the upper bound
(V̄ ), and the dash-dot line shows the asymptote (γc).

6.6 Static versus dynamic Kalman gain

In this section we compare the performance of filtering with static and dy-
namic gain for a scalar discrete system. For the static estimator we follow
the jump linear system approach of [?]. The scalar static estimator case has
been also worked out in [?].

Consider the dynamic state estimator

x̂dt+1 =Ax̂dt + γtK
d
t (yt − ŷt)

Kd
t =APtC

′(CPtC
′ +R)−1

Pt+1 =APtA
′ +Q− γtK

d
t CPtA

′ (6.23)

where the Kalman gain Kd
t is time-varying. Also consider the static state

estimator

x̂st+1 = Ax̂dt + γtKs(yt − ŷt) (6.24)
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Figure 6.4: Transition to instability in the general case, with arbitrary A and C.
In this case lower and upper bounds do not have the same asymptote.

where the estimator gain Ks is constant. If no data arrives, i.e. γt = 0, both
estimators simply propagate the state estimate of the previous time-step.

The performance of the dynamic state estimator (6.23) has been analyzed
in the previous sections. The performance of static state estimator (6.24),
instead, can be readily obtained using jump linear system theory [?, ?]. To

do so, let us consider the estimator error est+1
∆
= xt+1 − x̂st+1. Substituting

Equations (6.1) for xt+1 and (6.24) for x̂st+1, we obtain the dynamics of the
estimation error:

est+1 = (A− γtKsC)est + vt + γtKswt. (6.25)

Using the same notation of Chapter 6 in Nilsson [?], where he considers the
general system:

zk+1 = Φ(rk)zk + Γ(rk)ek,

the system (6.25) can be seen as jump linear system switching between two
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Figure 6.5: Estimation error for γ̄ below (left) and above (right) the critical value

states rk ∈ {1, 2} given by:

Φ(1) =A−KsC Γ(1) = [1 Ks]

Φ(2) =A Γ(2) = [1 0],

where the noise covariance E[eke
′
k] = Re, the transition probability matrix

Qπ and the steady state probability distribution π∞ are given by:

Re =

[
Q 0
0 R

]
, Qπ =

[
γ̄ 1 − γ̄
γ̄ 1 − γ̄

]
, π∞ =

[
γ̄ 1 − γ̄

]
.

Following the methodology proposed in Nilsson [?] is possible to show that
the system above is mean square stable, i.e. limt→∞ E[(est )

′est ] = 0 if and
only if the transition probability is

γ̄ < γ̄s =
1

1 −
(
1 − KsC

A

)2
(

1 − 1

A2

)
. (6.26)
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If the system is mean square stable, the steady state error covariance P s∞ =
limt→∞ E[est (e

s
t )

′] is given by:

P s∞ =
Q+K2

sR

1 − γ̄(A−KsC)2 − (1 − γ̄)A2
. (6.27)

Calculations to obtain Equations (6.26) and (6.27) are tedious but straight-
forward, therefore they are omitted.

It is immediately evident that the critical transition probability γ̄s of
the estimator (6.24) using a static gain is always greater than the critical
transition probability γc of the estimator (6.23) which adopts a dynamic
gain, in fact

γ̄s = γc
1

1 −
(
1 − KsC

A

)2

and the two probabilities are equal only when Ks = A
C .

A natural choice for the static estimator gain Ks is the steady state
Kalman gainKSS of the closed loop system (r = 1), which is always different
from A

C . For the scalar system considered in the previous section, where
A = −1.5, C = 1, Q = 1, R = 2.5, this is given by KSS = −0.70, while
the gain for largest mean square stability range is Ks = A

C = −1.25. In the
special case when the arrival probability is known, another natural choice
for the estimator gain K is obtained by substituting the error covariance
solution of P̄ = gγ̄(P̄ ) into the equation for the Kalman filter gain Kγ̄ =
AP̄C ′(CP̄C ′ + R)−1. For example, assuming γ̄ = 0.6, then P̄ = 7.32 and
Kγ̄ = −0.93. Figure 6.6 shows all of these cases, comparing them with
the upper bound on the state error covariance V̄ of the dynamic estimator
(6.23) that can be computed as indicated in Theorem 6. The steady state
error covariance of the static predictor for the three different gains is always
greater then our upper bound V̄ . This is not surprising, since the dynamic
estimator is optimal over all possible estimators as shown in Section II. Note
that the static predictor with static gain Kγ̄ (designed for γ̄ = 0.6) achieves
the same state error covariance predicted by our upper bound for the optimal
dynamic filter when γ̄ = 0.6. However, the empirical error state covariance
is on average better than the static filter, as shown in Figure 6.7. This is
to be expected, since the solution of MARE gives only an upper bound of
the true expected state covariance of the time-varying filter. Moreover, it is
worth stressing that if the arrival probability is different from the one used
to design the static gain, the performance of the static filter will degrade
considerably, while the time-varying filter will still perform optimally since
it does not require knowledge of γ̄. From this example, it seems that the
upper bound for the dynamic estimator V̄ gives en estimate of the minimum
steady state covariance that can be achieved with a static estimator for any
given arrival probability if the static gain Ks is chosen optimally. Then
the MARE could be used to find the minimum steady state covariance and
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Figure 6.6: Error covariance bound V̄ for dynamic predictor obtained from our
theory and steady state error covariance for three natural static predictors obtained
from JLS theory.

then the corresponding steady state modified Kalman gain, thus providing
a useful tool for optimal static estimator design. Future work will explore
this possibility.

6.7 Appendix A

In order to give complete proofs of our main theorems, we need to prove
some preliminary lemmas. The first one shows some useful properties of the
MARE.

Lemma 6.1. Let the operator

φ(K,X) = (1 − γ̄)(AXA′ +Q) + γ̄(FXF ′ + V ) (6.28)

where F = A+KC, V = Q+KRK ′. Assume X ∈ S = {S ∈ R
n×n|S ≥ 0},

R > 0, Q ≥ 0, and (A,Q
1

2 ) is controllable. Then the following facts are true:

1. With KX = −AXC ′ (CXC ′ +R)−1, gγ̄(X) = φ(KX , X)
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Figure 6.7: Empirical state error covariance of our time-varying filter and the
linear minimum mean square error estimator (LMMSEE) [?] obtained by using the
optimal static kalman gain Kγ̄ . The curves are obtained by averaging 10000 Monte
Carlo simulations for t = 1, . . . , 300, with the values of the input noise (vt, wt) and
the arrival sequence γt generated randomly. Both filters were compared under the
same conditions.

2. gγ̄(X) = minK φ(K,X) ≤ φ(K,X), ∀K

3. If X ≤ Y , then gγ̄(X) ≤ gγ̄(Y )

4. If γ̄1 ≤ γ̄2 then gγ̄1
(X) ≥ gγ̄2

(X)

5. If α ∈ [0, 1], then
gγ̄(αX + (1 − α)Y ) ≥ αgγ̄(X) + (1 − α)gγ̄(Y )

6. gγ̄(X) ≥ (1 − γ̄)AXA′ +Q

7. If X̄ ≥ gγ̄(X̄), then X̄ > 0

8. If X is a random variable, then
(1 − γ̄)AE[X]A′ +Q ≤ E[gγ̄(X)] ≤ gγ̄(E[X])
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Proof. (a) Define FX = A+KXC, and observe that

FXXC
′ +KXR= (A+KXC)XC ′ +KXR

=AXC ′ +KX(CXC ′ +R)

= 0.

Next, we have

gγ̄(X) = (1 − γ̄)(AXA′ +Q) + γ̄(AXA′ +Q−AXC ′
(
CXC ′ +R

)−1
CXA′)

= (1 − γ̄)(AXA′ +Q) + γ̄(AXA′ +Q+KXCXA
′)

= (1 − γ̄)(AXA′ +Q) + γ̄(FXXA
′ +Q)

= (1 − γ̄)(AXA′ +Q) + γ̄(FXXA
′ +Q) + (FXXC

′ +KXR)K ′

=φ(KX , X)

(b) Let ψ(K,X) = (A+KC)X(A+KC)′ +KRK ′ +Q. Note that

argminKφ(K,X) = argminKFXF
′ + V = argminKψ(X,K).

Since X,R ≥ 0, φ(K,X) is quadratic and convex in the variableK, therefore

the minimizer can be found by solving ∂ψ(K,X)
∂K = 0, which gives:

2(A+KC)XC ′ + 2KR = 0 =⇒ K = −AXC ′
(
CXC ′ +R

)−1
.

Since the minimizer corresponds to KX defined above, the fact follows from
fact (1)

(c) Note that φ(K,X) is affine in X. Suppose X ≤ Y . Then

gγ̄(X) = φ(KX , X) ≤ φ(KY , X) ≤ φ(KY , Y ) = gγ̄(Y ).

This completes the proof.
(d) Note that AXC ′(CXC ′ +R)−1CXA ≥ 0. Then

gγ̄1
(X) =AXA′ +Q− γ̄1AXC

′(CXC ′ +R)−1CXA

≥AXA′ +Q− γ̄2AXC
′(CXC ′ +R)−1CXA

= gγ̄2
(X)

(e) Let Z = αX + (1 − α)Y where α ∈ [0, 1]. Then we have

gγ̄(Z) =φ(KZ , Z)

=α(A+KZ C)X(A+KZ C)′ + (1 − α)(A+KZ C)Y (A+KZ C)′ +

+(α+ 1 − α)(KZ R K ′
Z +Q)

=αφ(KZ , X) + (1 − α)φ(KZ , Y )

≥αφ(KX , X) + (1 − α)φ(KY , Y )

=αgγ̄(X) + (1 − α)gγ̄(Y ).
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(f) Note that FXXF
′
X ≥ 0 and KRK ′ ≥ 0 for all K and X. Then

gγ̄(X) =φ(KX , X) =

= (1 − γ̄)(AXA′ +Q) + γ̄(FXXF
′
X +KXRK

′
X +Q)

≥ (1 − γ̄)(AXA′ +Q) + γ̄Q = (1 − γ̄)AXA′ +Q.

(g)First observe that X̄ ≥ gλ(X̄) ≥ 0. Thus, to prove that X̄ > 0, we
only need to establish that X̄ is nonsingular. Suppose 0 6= v ∈ N (X̄), i.e.
X̄v = 0. Then

0 = v′X̄v ≥ v′gλ(X̄)v

= (1 − λ)v′(AX̄A′ +Q)v + λv′(FX̄F ′ +Q)v

Positive semi-definiteness of X̄ and Q implies that all the terms in the sum
must be zero for the inequality to hold. Consequently we have

v′AX̄A′v = 0 =⇒ X̄A′v = 0 =⇒ A′v ∈ N (X̄)

and
v′Qv = 0 =⇒ Qv = 0

As a result, the null space N (X̄) is A′-invariant. Therefore, N (X̄) contains
an eigenvector of A′, i.e. there exists u 6= 0 such that X̄u = 0 and A′u = σu.
As before, we conclude that Qu=0. This implies (using the Popov-Belevich-
Hautus(PBH) test) that the pair (A,Q1/2) is not controllable, contradicting
the hypothesis. Thus, N (X̄) is empty, proving that X̄ > 0.

(h) Using fact (f) and linearity of expectation we have

E[gγ̄(X)] ≥ E[(1 − γ̄)AXA′ +Q] = (1 − γ̄)AE[X]A′ +Q.

Fact (e) implies that the operator gγ̄() is concave, therefore by Jensen’s
Inequality we have:

E[gγ̄(X)] ≤ gγ̄(E[X]).

Lemma 6.2. Let Xt+1 = h(Xt) and Yt+1 = h(Yt). If h(X) is a monotoni-
cally increasing function then:

X1 ≥ X0 ⇒ Xt+1 ≥ Xt, ∀t ≥ 0
X1 ≤ X0 ⇒ Xt+1 ≤ Xt, ∀t ≥ 0
X0 ≤ Y0 ⇒ Xt ≤ Yt, ∀t ≥ 0

Proof. This lemma can be readily proved by induction. It is true for t = 0,
since X1 ≥ X0 by definition. Now assume that Xt+1 ≥ Xt, then Xt+2 =
h(Xt+1) ≥ h(Xt) = Xt+1 because of monotonicity of h(·). The proof for the
other two cases is analogous.

It is important to note that while in the scalar case X ∈ R either h(X) ≤
X or h(X) ≥ X; in the matrix case X ∈ R

n×n, it is not generally true that
either h(X) ≥ X or h(X) ≤ X. This is the source of the major technical
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difficulty for the proof of convergence of sequences in higher dimensions. In
this case convergence of a sequence {Xt}∞0 is obtained by finding two other
sequences, {Yt}∞0 , {Zt}∞0 that bound Xt, i.e., Yt ≤ Xt ≤ Zt,∀t, and then by
showing that these two sequences converge to the same point.

The next two Lemmas show that when the MARE has a solution P̄ , this
solution is also stable, i.e., every sequence based on the difference Riccati
equation Pt+1 = gγ̄(Pt) converges to P̄ for all initial positive semidefinite
conditions P0 ≥ 0.

Lemma 6.3. Define the linear operator

L(Y ) = (1 − γ̄)(AY A′) + γ̄(FY F ′)

Suppose there exists Y > 0 such that Y > L(Y ).

1. For all W ≥ 0,
lim
k→∞

Lk(W ) = 0

2. Let U ≥ 0 and consider the linear system

Yk+1 = L(Yk) + U initialized at Y0.

Then, the sequence Yk is bounded.

Proof. (a) First observe that 0 ≤ L(Y ) for all 0 ≤ Y . Also, X ≤ Y implies
L(X) ≤ L(Y ). Choose 0 ≤ r < 1 such that L(Y ) < rY . Choose 0 ≤ m such
that W ≤ mY . Then,

0 ≤ Lk(W ) ≤ mLk(Y ) < mrkY .

The assertion follows when we take the limit r → ∞, on noticing that
0 ≤ r < 1.

(b) The solution of the linear iteration is

Yk =Lk(Y0) +
k−1∑

t=0

Lt(U)

≤
(
mY0

rk +

k−1∑

t=0

mUr
t

)
Y

≤
(
mY0

rk +
mU

1 − r

)
Y

≤
(
mY0

+
mU

1 − r

)
Y ,

proving the claim.

Lemma 6.4. Consider the operator φ(K,X) defined in Equation (6.28).
Suppose there exists a matrix K and a positive definite matrix P such that

P > 0 and P > φ(K,P ).
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Then, for any P0, the sequence Pt = gtγ̄(P0) is bounded, i.e. there exists
MP0

≥ 0 dependent of P0 such that

Pt ≤M for all t.

Proof. First define the matrices F = A+KC and consider the linear oper-
ator

L(Y ) = (1 − γ̄)(AY A′) + γ̄(FY F
′
)

Observe that

P > φ(K,P ) = L(P ) +Q+ γ̄KRK
′ ≥ L(P ).

Thus, L meets the condition of Lemma 6.3. Finally, using fact (b) in Lemma
6.1 we have

Pt+1 = gγ̄(Pt) ≤ φ(K,Pt) = LPt +Q+ γ̄KRK
′
= L(Pt) + U.

Since U = γ̄KRK
′
+Q ≥ 0, using Lemma 6.3, we conclude that the sequence

Pt is bounded.

We are now ready to give proofs for Theorems 1-4.

Proof of Theorem 6.1

(a) We first show that the modified Riccati difference equation initialized at
Q0 = 0 converges. Let Qk = gkγ̄(0). Note that 0 = Q0 ≤ Q1. It follows from
Lemma 6.1(c) that

Q1 = gγ̄(Q0) ≤ gγ̄(Q1) = Q2.

A simple inductive argument establishes that

0 = Q0 ≤ Q1 ≤ Q2 ≤ · · · ≤MQ0
.

Here, we have used Lemma 6.4 to bound the trajectory. We now have
a monotone non-decreasing sequence of matrices bounded above. It is a
simple matter to show that the sequence converges, i.e.

lim
k→∞

Qk = P .

Also, we see that P is a fixed point of the modified Riccati iteration:

P = gγ̄(P ),

which establishes that it is a positive semi-definite solution of the MARE.
Next, we show that the Riccati iteration initialized at R0 ≥ P also con-

verges, and to the same limit P . First define the matrices

K = −APC ′
(
CPC ′ +R

)−1
, F = A+KC

and consider the linear operator

L̂(Y ) = (1 − γ̄)(AY A′) + γ̄(FY F
′
).
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Observe that

P = gγ̄(P ) = L(P ) +Q+KRK
′
> L̂(P ).

Thus, L̂ meets the condition of Lemma 6.3. Consequently, for all Y ≥ 0,

lim
k→∞

L̂k(Y ) = 0.

Now suppose R0 ≥ P . Then,

R1 = gγ̄(R0) ≥ gγ̄(P ) = P .

A simple inductive argument establishes that

Rk ≥ P for all k.

Observe that

0 ≤ (Rk+1 − P )= gγ̄(Rk) − gγ̄(P )

=φ(KRk
, Rk) − φ(KP , P )

≤φ(KP , Rk) − φ(KP , P )

= (1 − γ̄)A(Rk − P )A′ + γ̄FP (Rk − P )F ′
P

= L̂(Rk − P ).

Then, 0 ≤ limk→∞(Rk+1 − P ) ≤ 0, proving the claim.
We now establish that the Riccati iteration converges to P for all initial

conditions P0 ≥ 0. Define Q0 = 0 and R0 = P0 + P . Consider three Riccati
iterations, initialized at Q0, P0, and R0. Note that

Q0 ≤ P0 ≤ R0.

It then follows from Lemma 6.2 that

Qk ≤ Pk ≤ Rk for all k.

We have already established that the Riccati equations Pk and Rk converge
to P . As a result, we have

P = lim
k→∞

Pk ≤ lim
k→∞

Qk ≤ lim
k→∞

Rk = P ,

proving the claim.
(b) Finally, we establish that the MARE has a unique positive semi-

definite solution. To this end, consider P̂ = gγ̄(P̂ ) and the Riccati iteration

initialized at P0 = P̂ . This yields the constant sequence

P̂ , P̂ , · · ·
However, we have shown that every Riccati iteration converges to P . Thus
P = P̂ .
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Proof of Theorem 6.2

First we note that the two cases expressed by the theorem are indeed pos-
sible. If γ̄ = 1 the modified Riccati difference equation reduces to the
standard Riccati difference equation, which is known to converge to a fixed
point, under the theorem’s hypotheses. Hence, the covariance matrix is al-
ways bounded in this case, for any initial condition P0 ≥ 0. If γ̄ = 0 then
we reduce to open loop prediction, and if the matrix A is unstable, then the
covariance matrix diverges for some initial condition P0 ≥ 0. Next, we show
the existence of a single point of transition between the two cases. Fix a
0 < γ̄1 ≤ 1 such that Eγ̄1

[Pt] is bounded for any initial condition P0 ≥ 0.
Then, for any γ̄2 ≥ γ̄1 Eγ̄2

[Pt] is also bounded for all P0 ≥ 0. In fact we have

Eγ̄1
[Pt+1] = Eγ̄1

[APtA
′ +Q− γt+1APtC

′(CPtC
′ +R)−1CPtA]

= E[APtA
′ +Q− γ̄1APtC

′(CPtC
′ +R)−1CPtA]

= E[gγ̄1
(Pt)]

≥E[gγ̄2
(Pt)]

= Eγ̄2
[Pt+1],

where we exploited fact (d) of Lemma 6.1 to write the above inequality .
We can now choose

γc = {inf γ̄∗ : γ̄ > γ̄∗ ⇒ Eγ̄ [Pt]is bounded, for all P0 ≥ 0},
completing the proof.

Proof of Theorem 6.3

Define the Lyapunov operator m(X) = ÃXÃ′ + Q where Ã =
√

1 − γ̄A.

If (A,Q
1

2 ) is controllable, also (Ã,Q
1

2 ) is controllable. Therefore, it is well

known that Ŝ = m(Ŝ) has a unique strictly positive definite solution Ŝ > 0
if and only if maxi |σi(Ã)| < 1, i.e.

√
1 − γ̄ maxi |σi(A)| < 1, from which

follows γmin = 1 − 1
α2 . If maxi |σi(Ã)| ≥ 1 it is also a well known fact

that there is no positive semidefinite fixed point to the Lyapunov equation
Ŝ = m(Ŝ), since (Ã,Q

1

2 ) is controllable.
Let us consider the difference equation St+1 = m(St), S0 = 0. It is clear

that S0 = 0 ≤ Q = S1. Since the operator m() is monotonic increasing, by
Lemma 6.2 it follows that the sequence {St}∞0 is monotonically increasing,
i.e. St+1 ≥ St for all t. If γ̄ < γmin this sequence does not converge to a
finite matrix S̄, otherwise by continuity of the operatorm we would have S̄ =
m(S̄), which is not possible. Since it is easy to show that a monotonically
increasing sequence St that does not converge is also unbounded, then we
have

lim
t→∞

St = ∞.

Let us consider now the mean covariance matrix E[Pt] initialized at
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E[P0] ≥ 0. Clearly 0 = S0 ≤ E[P0]. Moreover it is also true that St ≤ E[Pt]
implies:

St+1 = (1 − γ̄)AStA
′ +Q

≤ (1 − γ̄)AE[Pt]A
′ +Q

≤E[gγ̄(Pt)]

= E[Pt+1],

where we used fact (h) from Lemma 6.1. By induction, it is easy to show
that

St ≤ E[Pt] ∀t, ∀E[P0] ≥ 0 =⇒ lim
t→∞

E[Pt] ≥ lim
t→∞

St = ∞.

This implies that for any initial condition E[Pt] is unbounded for any γ̄ <
γmin, therefore γmin ≤ γc, which proves the first part of the Theorem.

Now consider the sequence Vt+1 = gγ̄(Vt), V0 = E[P0] ≥ 0. Clearly
E[Pt] ≤ Vt implies:

E[Pt+1] = E[gγ̄(Pt)]

≤ gγ̄(E[Pt])

≤ [gγ̄(Vt)]

=Vt+1,

where we used facts (c) and (h) from Lemma 6.1. Then a simple induction
argument shows that Vt ≥ E[Pt] for all t. Let us consider the case γ̄ > γmax,

therefore there exists X̂ such that X̂ ≥ gγ̄(X̂). By Lemma 6.1(g) X̄ > 0,
therefore all hypotheses of Lemma 6.3 are satisfied, which implies that

E[Pt] ≤ Vt ≤MV0
∀t.

This shows that γc ≤ γmax and concludes the proof of the Theorem.

Proof of Theorem 6.4

Let us consider the sequences St+1 = (1− γ̄)AStA
′ +Q, S0 = 0 and Vt+1 =

gγ̄(Vt), V0 = E[P0] ≥ 0. Using the same induction arguments in Theorem
6.3 it is easy to show that

St ≤ E[Pt] ≤ Vt ∀t.
From Theorem 6.1 it also follows that limt→∞ Vt = V̄ , where V̄ = gγ̄(V ).
As shown before the sequence St is monotonically increasing. Also it is
bounded since St ≤ Vt ≤M . Therefore limt→∞ St = S̄, and by continuity
S̄ = (1 − γ̄)AS̄A′ +Q, which is a Lyapunov equation. Since

√
1 − γ̄A is

stable and (A,Q
1

2 ) is controllable, then the solution of the Lyapunov equa-
tion is strictly positive definite, i.e. S̄ > 0. Adding all the results together
we get

0 < S̄ = lim
t→∞

St ≤ lim
t→∞

E[Pt] ≤ lim
t→∞

Vt = V̄ ,
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which concludes the proof.

6.8 Packet-Based Control

Outline:

• Problem setup

• Communication protocols and information patterns

• TCP-Based Control

• UDP-Based Control

• Receding-Horizon networked control and actuation buffers

• Generalization to multi-channel

• Nonlinear estensions

6.9 Introduction

Today, an increasing number of applications demand remote control of plants
over unreliable networks. The recent development of sensor web technol-
ogy [?] enables the development of wireless sensor networks that can be
immediately used for estimation and control of dynamical systems. In these
systems, issues of communication delay, data loss, and time-synchronization
play critical roles. Communication and control become very tightly coupled
and these two issues cannot be addressed independent of one another during
the design and analysis stages of development. Consider, for example, the
problem of navigating a fleet of vehicles using observations from a sensor
web. Wireless nodes collect their sensor measurements and send them to
a computing unit. This unit, in turn, generates estimates of the state of
each vehicle and computes inputs that are then delivered, using the same
wireless channel, to the actuators onboard the vehicles. Due to the unrelia-
bility of the wireless channel, both observations underlying the estimate and
control packets sent to each vehicle can be lost or delayed while travelling
across the network. It needs to be determined exactly how much data loss
a control loop can tolerate to reliably perform the navigation task. What’s
more, specific communication protocols need to be designed to satisfy this
constraint. The goal of this chapter is to provide the first steps in meet-
ing these requirements by examining the basic system-theoretic implications
of using unreliable networks for control. This requires a generalization of
classical control techniques that explicitly takes into account the stochastic
nature of the communication channel.
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Figure 6.8: Overview of the system. We study the statistical convergence
properties of the expected state covariance of the discrete time LQG control system,
where both the observation and the control signal, transmitted over an unreliable
communication channel, can be lost at each time step with probability 1 − γ̄ and
1 − ν̄ respectively.

Packet networks communication channels typically use one of two kinds
of protocols: Transmission Control (TCP) or User Datagram (UDP). In the
first case there is acknowledgement of received packets, while in the second
case no confirmation feedback is provided on the communication link. In
this chapter, we study the effect of data losses due to the unreliability of the
network links under these two protocols. We generalize the Linear Quadratic
Gaussian (LQG) optimal control problem to these problems by modeling
the arrival of both observations and control packets as random processes
whose parameters are related to the characteristics of the communication
channel. Accordingly, two independent Bernoulli processes are considered,
with parameters γ and ν, that govern packet losses between the sensors and
the estimation-control unit, and between the latter and the actuation points
(see Figure 6.8).

In our analysis, the distinction between the two classes of protocols re-
sides exclusively in the availability of packet acknowledgements. Adopting
the framework proposed by Imer et al. [?], we will refer therefore to TCP-
like protocols if packet acknowledgements are available and to UDP-like
protocols otherwise. We summarize our contributions as follows. For the
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TCP-like case the classic separation principle holds, and consequently the
controller and estimator can be designed independently. Moreover, the op-
timal controller is a linear function of the state. In sharp contrast, for the
UDP-like case, a counter-example demonstrates that the optimal controller
is in general non-linear. In the special case when the state is fully observ-
able and the observation noise is zero, the optimal controller is indeed linear.
We explicitly note that a similar, but slightly less general special case was
previously analyzed in [?], where both observation and process noise are
assumed to be zero and the input coefficient matrix to be invertible.

Our final set of results relate to convergence in the infinite horizon. Here,
our previous results on estimation with missing observation packets [?] [?]
are extended to the control case. We show the existence of a critical domain
of values for the parameters of the Bernoulli arrival processes, ν and γ, out-
side which a transition to instability occurs and the optimal controller fails
to stabilize the system. In particular, we show that under TCP-like proto-
cols the critical arrival probabilities for the control and observation channel
are independent of each other. This is another consequence of the fact that
the separation principle holds for these protocols. In contrast, under UDP-
like protocols the critical arrival probabilities for the control and observation
channels are coupled. Here, the stability domain and performance of the op-
timal controller degrade considerably as compared with TCP-like protocols
as shown in Figure 6.9.

Finally, we wish to mention some closely related research. The study of
the stability of dynamical systems where components are connected asyn-
chronously via communication channels has received considerable attention
in the past few years and our contribution can be put in the context of
the previous literature. In [?] and [?], the authors proposed to place an
estimator, i.e. a Kalman filter, at the sensor side of the link without as-
suming any statistical model for the data loss process. In [?], Smith et al.
considered a suboptimal but computationally efficient estimator that can
be applied when the arrival process is modeled as a Markov chain, which
is more general than a Bernoulli process. Other work includes Nilsson et
al. [?][?] who present the LQG optimal regulator with bounded delays be-
tween sensors and controller, and between the controller and the actuator.
In this work, bounds for the critical probability values are not provided.
Additionally, there is no analytical solution for the optimal controller. The
case where dropped measurements are replaced by zeros is considered by
Hadjicostis and Touri [?], but only in the scalar case. Other approaches
include using the last received sample for control [?], or designing a dropout
compensator [?], which combines estimation and control in a single process.
However, the former approach does not consider optimal control and the
latter is limited to scalar systems. Yu et al. [?] studied the design of an
optimal controller with a single control channel and deterministic dropout
rates. Seiler et al. [?] considered Bernoulli packet losses only between the
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Figure 6.9: Region of stability for UDP-like and TCP-like optimal control rel-
ative to measurement packet arrival probability γ, and the control packet arrival
probability ν.

plant and the controller, and posed the controller design as an H∞ optimiza-
tion problem. Other authors [?] [?] [?] [?] model networked control systems
with missing packets as Markovian jump linear systems (MJLSs), however
this approach gives suboptimal controllers since the estimators are station-
ary. Finally, Elia [?][?] proposed to model the plant and the controller as
deterministic time invariant discrete-time systems connected to zero-mean
stochastic structured uncertainty. The variance of the stochastic perturba-
tion is a function of the Bernoulli parameters, and the controller design is
posed as an optimization problem to maximize mean-square stability of the
closed loop system. This approach allows analysis of Multiple Input Multiple
Output (MIMO) systems with many different controller and receiver com-
pensation schemes [?], however, it does not include process and observation
noise and the controller is restricted to be time-invariant, hence suboptimal.
There is also extensive literature, inspired by Shannon’s results on the max-
imum bit-rate that an imperfect channel can reliably carry. Here the goal
is to determine the minimum bit-rate that is needed to stabilize a system
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through feedback [?] [?] [?] [?] [?] [?] [?] [?] [?] [?]. This approach is some-
what different from ours since in a packet-based communication network,
such as ATMs, Ethernet and Bluetooth, bits are grouped into packets and
are considered as a single entity. Nonetheless there are several similarities
that are not yet fully explored.

This work considers the alternative approach where the external com-
pensator feeding the controller is the optimal time varying Kalman gain.
Moreover, this approach considers the general Multiple Input Multiple Out-
put (MIMO) case, and gives some necessary and sufficient conditions for
closed loop stability. The work of [?] is most closely related to ours. How-
ever, we consider the more general case when the matrix C is not the identity
and there is noise in the observation and in the process. In addition, we also
give stronger necessary and sufficient conditions for existence of solution for
the infinite horizon LQG.

The remainder of this chapter is organized as follows. Section 2 provides
a mathematical formulation of the problems we consider. Section 3 offers
some preliminary results. Section 4 illustrates the TCP-like case, while the
UDP-like case is studied in section 5. Finally, conclusions and directions for
future work are offered in section 6.

6.10 Problem formulation

Consider the following linear stochastic system with intermittent observation
and control packets:

xk+1 =Axk +Buk + wk (6.29)

uak = νku
c
k (6.30)

yk = γkCxk + vk, (6.31)

where uak is the control input to the actuator, uck is the desired control input
computed by the controller, (x0, wk, vk) are Gaussian, uncorrelated, white,
with mean (x̄0, 0, 0) and covariance (P0, Q,R) respectively, and (γk, νk) are
i.i.d. Bernoulli random variables with P (γk = 1) = γ̄ and P (νk = 1) = ν̄.
The stochastic variable νk models the loss packets between the controller and
the actuator: if the packet is correctly delivered then uak = uck, otherwise
if it is lost then the actuator does nothing, i.e. uak = 0. This compensa-
tion scheme is summarized by Equation (6.30). This modeling choice is not
unique: for example if the control packet uck is lost, then the actuator could
use the previous control value, i.e. uak = uak−1. However, the latter control
compensation is slightly more involved to analyze and it is left as future
work. The stochastic variable γk models the packet loss between the sensor
and the controller: if the packet is delivered then yk = Cxk+vk, otherwise if
it is lost then the controller reads pure noise, i.e. yk = vk. This observation
model is summarized by Equation (6.31). A different observation formal-
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ism was proposed in [?], where the missing observation was modeled as an
observation for which the measurement noise had infinite covariance. It is
possible to show that both models are equivalent, but the one considered
here has the advantage to give rise to simpler analysis. This arises from the
fact that when no packet is delivered, then the optimal estimator does not
use the observation yk at all, therefore its value is irrelevant.

Let us define the following information sets:

Ik =

{
Fk ∆

= {yk,γk,νk−1}, TCP-like

Gk ∆
= {yk,γk}, UDP-like

(6.32)

where yk = (yk, yk−1, . . . , y1), γ
k = (γk, γk−1, . . . , γ1), and ν

k = (νk, νk−1, . . . , ν1).
Consider also the following cost function:

JN (uN−1, x̄0, P0) = E

[
x′NWNxN +

N−1∑

k=0

(x′kWkxk + νku
′
kUkuk) | uN−1, x̄0, P0

]

(6.33)
where uN−1 = (uN−1, uN−2, . . . , u1). Note that we are weighting the input
only if it is successfully received at the plant. In fact, if it is not received,
the plant applies zero input and therefore there is no energy expenditure.

We now look for a control input sequence u∗N−1 as a function of the ad-
missible information set Ik, i.e. uk = gk(Ik), that minimizes the functional
defined in Equation (6.33), i.e.

J∗
N (x̄0, P0)

∆
= min

uk=gk(Ik)
JN (uN−1, x̄0, P0), (6.34)

where Ik = {Fk,Gk} is one of the sets defined in Equation (6.32). The
set F corresponds to the information provided under an acknowledgement-
based communication protocols (TCP-like) in which successful or unsuccess-
ful packet delivery at the receiver is acknowledged to the sender within the
same sampling time period. The set G corresponds to the information avail-
able at the controller under communication protocols in which the sender
receives no feedback about the delivery of the transmitted packet to the
receiver (UDP-like). The UDP-like schemes are simpler to implement than
the TCP-like schemes from a communication standpoint. Moreover UDP-
like protocols includes broadcasting which you cannot do with TCP-like.
However the price to pay is a less rich set of information. The goal of this
chapter is to design optimal LQG controllers and to estimate their perfor-
mance for each of these classes of protocols for a general discrete-time linear
stochastic system.
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6.11 Mathematical Preliminaries

Before proceeding, let us define the following variables:

x̂k|k
∆
= E[xk | Ik],

ek|k
∆
= xk − x̂k|k,

Pk|k
∆
= E[ek|ke

′
k|k | Ik].

(6.35)

Derivations below will make use of the following facts:

Lemma 6.5. The following facts are true [?]:

1. E [(xk − x̂k)x̂
′
k | Ik] = E

[
ek|kx̂

′
k | Ik

]
= 0

2. E [x′kSxk | Ik] = x̂′kSx̂k + trace
(
SPk|k

)
∀S ≥ 0

3. E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] ,∀g(·).

Proof. (a) It follows directly from the definition. In fact:

E
[
(xk − x̂k)x̂

′
k | Ik

]
= E

[
xkx̂

′
k − x̂kx̂

′
k | Ik

]

= E [xk | Ik] x̂′k − x̂kx̂
′
k

= 0

(b) Using standard algebraic operations and the previous fact we have:

E
[
x′kSxk |Ik

]
= E

[
(xk − x̂k + x̂k)

′S(xk − x̂k + x̂k) |Ik
]

= x̂′kSx̂k + E
[
(xk − x̂k)

′S(xk − x̂k)
]
+ 2E

[
x̂′kS(xk − x̂k) | Ik

]

= x̂′kSx̂k + 2trace(SE[(xk − x̂k)x̂
′
k |Ik]) + trace(SE[(xk − x̂k)(xk − x̂k)

′ |Ik])
= x̂′kSx̂k + trace{SPk|k}

(c) Let g() any measurable function, (X,Y, Z) be any random vectors,
and p their probability distribution, then

EY,Z [g(X,Y, Z) | X] =

∫

Z

∫

Y
g(X,Y, Z)p(Y, Z|X)dY dZ

=

∫

Z

∫

Y
g(X,Y, Z)p(Y |Z,X)p(Z|X)dY dZ

=

∫

Z

[∫

Y
g(X,Y, Z)p(Y |Z,X)dY

]
p(Z|X)dZ

= EZ [ EY [g(X,Y, Z) | Z,X] | X]

where we used the Bayes’ Rule. Since by hypothesis Ik ⊆ Ik+1, then fact
(c) follows from the above equality by substituting Ik = X and Ik+1 =
(X,Z).

We now make the following computations that will be useful when de-
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riving the equation for the optimal LQG controller.

E[x′k+1Sxk+1 | Ik] = E[(Axk + νkBuk + wk)
′S(Axk + νkBuk + wk) | Ik]

= E[x′kA
′SAxk+ν

2
ku

′
kB

′SBuk+w
′
kSwk+2νku

′
kB

′SAxk+2(Axk + νkBuk)wk|Ik]
= E[x′kA

′SAxk|Fk] + ν̄u′kB
′SBuk + 2ν̄u′kB

′SAE[xk|Ik] + trace(SE[wkw
′
k | Fk])

= E[x′kA
′SAxk | Ik] + ν̄u′kB

′SBuk + 2ν̄u′kB
′SA x̂k|k + trace(SQ) (6.36)

where both the independence of νk, wk, xk, and the zero-mean property of wk
are exploited. The previous expectation holds true for both the information
sets, i.e. Ik = Fk or Ik = Gk. Also

E[e′k|kTek|k | Ik] = trace(TE[ek|ke
′
k|k | Ik])

= trace(TPk|k), ∀T ≥ 0.

6.12 LQG control for TCP-like protocols

First, equations for the optimal estimator are derived. They will be needed
to solve the LQG controller design problem, as it will be shown later.

Estimator Design

Equations for optimal estimator are derived using similar arguments used
for the standard Kalman filtering equations. The innovation step is given
by:

x̂k+1|k
∆
= E[xk+1|νk,Fk] = E[Axk + νkBuk + wk|νk,Fk]
=AE[xk|Fk] + νkBuk = Ax̂k|k + νkBuk (6.37)

ek+1|k
∆
=xk+1 − x̂k+1|k

=Axk + νkBuk + wk − (Ax̂+ νkBuk)

=Aek|k + wk (6.38)

Pk+1|k
∆
= E[ek+1|ke

′
k+1|k |νk,Fk]

= E

[(
Aek|k + wk

) (
Aek|k + wk

)′ |νk,Fk
]

=AE[ek|ke
′
k|k|Fk]A′ + E[wkw

′
k]

=APk|kA
′ +Q, (6.39)

where the independence of wk and Fk, and the requirement that uk is a
deterministic function of Fk, are used. Since yk+1, γk+1, wk and Fk are
independent, the correction step is given by:
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x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (6.40)

ek+1|k+1
∆
=xk+1 − x̂k+1|k+1

=xk+1 −
(
x̂k+1|k + γk+1Kk+1(Cxk+1 + vk+1 − Cx̂k+1|k)

)

= (I − γk+1Kk+1C)ek+1|k − γk+1Kk+1vk+1 (6.41)

Pk+1|k+1 =Pk+1|k − γk+1Kk+1CPk+1|k

=Pk+1|k − γk+1Pk+1|kC
′(CPk+1|kC

′ +R)−1CPk+1|k (6.42)

Kk+1
∆
=Pk+1|kC

′(CPk+1|kC
′ +R)−1, (6.43)

where we simply applied the standard derivation for the time varying Kalman
filter using the following time varying system matrices: Ak = A, Ck = γkC,
and Cov(vk) = R.

Controller design

Derivation of the optimal feedback control law and the corresponding value
for the objective function will follow the dynamic programming approach
based on the cost-to-go iterative procedure.

Define the optimal value function Vk(xk) as follows:

VN (xN )
∆
= E[x′NWNxN | FN ]

Vk(xk)
∆
= minuk

E[x′kWkxk + νku
′
kUkuk + Vk+1(xk+1)|Fk].

(6.44)

where k = N − 1, . . . , 1. Using dynamic programming theory [?], one can
show that J∗

N = V0(x0). Under TCP-like protocols the following lemma
holds true:

Lemma 6.6. The value function Vk(xk) defined in Equations (6.44) for the
system dynamics of Equations (6.29)-(6.29) under TCP-like protocols can
be written as:

Vk(xk) = E[ x′kSkxk | Fk] + ck, k = N, . . . , 0 (6.45)

where the matrix Sk and the scalar ck can be computed recursively as follows:

Sk =A′Sk+1A+Wk − ν̄A′Sk+1B(B′Sk+1B + Uk)
−1B′Sk+1A (6.46)

ck = trace
(
(A′Sk+1A+Wk − Sk)Pk|k

)
+ trace(Sk+1Q) + E[ck+1 | Fk](6.47)

with initial values SN = WN and cN = 0. Moreover the optimal control
input is given by:

uk = −(B′Sk+1B + Uk)
−1B′Sk+1A x̂k|k = Lk x̂k|k. (6.48)

Proof. The proof follows an induction argument. The claim is certainly true
for k = N with the choice of parameters SN = WN and cN = 0. Suppose now
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that the claim is true for k+1, i.e. Vk+1(xk+1) = E[ x′k+1Sk+1xk+1 | Fk+1]+
ck+1. The value function at time step k is the following:

Vk(xk) = min
uk

E[x′kWkxk + νku
′
kUkuk + Vk+1(xk+1) | Fk]

= min
uk

E[x′kWkxk + νku
′
kUkuk + E[x′k+1Sk+1xk+1 + ck+1 | Fk+1] |Fk]

= min
uk

E[x′kWkxk + νku
′
kUkuk + x′k+1Sk+1xk+1 + ck+1|Fk] (6.49)

= E[x′kWkxk + x′kA
′Sk+1Axk | Fk] + trace(Sk+1Q) + E[ck+1 | Fk] +

+ν̄ min
uk

(
u′k(Uk +B′Sk+1B)uk + 2u′kB

′Sk+1A x̂k|k

)

where we used Lemma 1(c) to get the third equality, and Equation (6.36)
to obtain the last equality. The value function is a quadratic function of the
input, therefore the minimizer can be simply obtained by solving ∂Vk

∂uk
= 0,

which gives Equation (6.48). The optimal feedback is thus a simple linear
function of the estimated state. If we substitute the minimizer back into
Equation (6.49) we get:

Vk(xk) = E[x′kWkxk + x′kA
′Sk+1Axk | Ik] + trace(Sk+1Q) + E[ck+1 | Ik] −

−ν̄x̂′k|kA′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1Ax̂k|k (6.50)

= E[x′kWkxk + x′kA
′Sk+1Axk − ν̄x′kA

′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] + ν̄ trace(A′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1 Pk|k)

where we used Lemma 1(b). Therefore, the claim given by Equation (6.45)
is satisfied also for time step k for all xk if and only if the Equations (6.46)
and (6.47) are satisfied.

Since J∗
N (x̄0, P0) = V0(x0), from the lemma it follows that the cost func-

tion for the optimal LQG using TCP-like protocols is given by:

J∗
N = x̄′0S0x̄0+trace(S0P0)+

N−1∑

k=0

trace((A′Sk+1A+Wk−Sk)Eγ [Pk|k]+Sk+1Q),

(6.51)
where we used the fact E[x′0S0x0] = x̄′0S0x̄0 + trace(S0P0), and Eγ [·] explic-
itly indicates that the expectation is calculated with respect to the arrival
sequence {γk}.

It is important to remark that the error covariance matrices {Pk|k}Nk=0
are stochastic since they depend on the sequence {γk}. Moreover, since the
matrix Pk+1|k+1 is a nonlinear function of the previous time step matrix co-
variance Pk|k, as can be observed from Equations (6.39) and (6.43), the exact
expected value of these matrices, Eγ [Pk|k], cannot be computed analytically,
as shown in [?]. However, they can be bounded by computable deterministic
quantities, as shown in [?] from which we can derive the following lemma:
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Lemma 6.7 ([?]). The expected error covariance matrix Eγ [Pk|k] satisfies
the following bounds:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k ∀k ≥ 0, (6.52)

where the matrices P̂k|k and P̃k|k can be computed as follows:

P̂k+1|k =AP̂k|k−1A
′ +Q− γ̄AP̂k|k−1C

′(CP̂k|k−1C
′ +R)−1CP̂k|k−1A

′(6.53)

P̂k|k =̂Pk|k−1 − γ̄P̂k|k−1C
′(CP̂k|k−1C

′ +R)−1CP̂k|k−1 (6.54)

P̃k+1|k =(1 − γ̄)AP̃k|k−1A
′ +Q (6.55)

P̃k|k =(1 − γ̄)P̃k|k−1 (6.56)

where the initial conditions are P̂0|0 = P̃0|0 = P0.

Proof. The proof is based on the observation that the matrices Pk+1|k and
Pk|k are concave and monotonic functions of Pk|k−1. The proof is given in
[?] and is thus omitted.

From this lemma it follows that also the minimum achievable cost J∗
N ,

given by Equation (6.51), cannot be computed analytically, but can bounded
as follows:

JminN ≤ J∗
N ≤ JmaxN (6.57)

JmaxN = x̄′0S0x̄0+trace(S0P0)+
N−1∑

k=0

trace(Sk+1Q))+
N−1∑

k=0

trace
(
(A′Sk+1A+Wk − Sk)P̂k|k

)

(6.58)

JminN = x̄′0S0x̄0+trace(S0P0)+
N−1∑

k=0

trace(Sk+1Q)+
N−1∑

k=0

trace
(
(A′Sk+1A+Wk − Sk)P̃k|k

)

(6.59)

Finite and Infinite Horizon LQG control

The results derived in the previous sections can be summarized in the fol-
lowing theorem:

Theorem 6.7. Consider the system (6.29)-(6.31) and consider the problem
of minimizing the cost function (6.33) within the class of admissible policies
uk = f(Fk), where Fk is the information available under TCP-like schemes,
given in Equation (6.32). Then:

1. The separation principle still holds for TCP-like communication, since the
optimal estimator, given by Equations (6.37),(6.39),(6.40),(6.42) and (6.43),
is independent of the control input uk.

2. The optimal estimator gain Kk is time-varying and stochastic since it de-
pends on the past observation arrival sequence {γj}kj=1.
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3. The optimal control input, given by Equations (6.48) and (6.46) with initial
condition SN = WN , is a linear function of the estimated state x̂k|k, i.e.
uk = Lkx̂k|k, and is independent of the process sequences {νk, γk}.

Proof. The proof follows from the results given in the previous sections.

The infinite horizon LQG can be obtained by taking the limit for N →
+∞ of the previous equations. However, as explained above, the matrices
{Pk|k} depend nonlinearly on the specific realization of the observation se-
quence {γk}, therefore the expected error covariance matrices Eγ [Pk|k] and
the minimal cost J∗

N cannot be computed analytically and do not seem to
have limit [?]. Differently from standard LQG optimal regulator [?], the
estimator gain does not converge to a steady state value, but is strongly
time-varying due to its dependence on the arrival process {γk}. Moreover,
while the standard LQG optimal regulator always stabilizes the original sys-
tem, in the case of observation and control packet losses, the stability can be
lost if the arrival probabilities ν̄, γ̄ are below a certain threshold. This ob-
servation come from the study of existence of solution for a Modified Riccati
Algebraic Equation (MARE), S = Π(S,A,B,W,U, ν), which was introduced
by [?] and studied in [?], [?] and [?], where the nonlinear operator Π(·) is
defined as follows:

Π(S,A,B,Q,R, ν)
∆
= A′SA+W − ν A′SB(B′SB + U)−1B′SA (6.60)

In particular, Equation (6.46), i.e. Sk+1 = Π(Sk, A,B,W,U, ν), is the dual
of the estimator equation presented in [?], i.e. Pk+1 = Π(Pk, A

′, C ′, Q,R, γ).
The results about the MARE are summarized in the following lemma

Lemma 6.8. Consider the modified Riccati equation defined in Equation (6.60).

Let A be unstable, (A,B) be controllable, and (A,W
1

2 ) be observable. Then:

1. The MARE has a unique strictly positive definite solution S∞ if and only if
ν > νc, where νc is the critical arrival probability defined as:

νc
∆
= inf

ν
{0 ≤ ν ≤ 1, S ≥ 0) |S = Π(S,A,B,W,U, ν)}.

2. The critical probability νc satisfy the following analytical bounds:

pmin ≤ νc ≤ pmax

pmin
∆
= 1 − 1

maxi |λu
i (A)|2

pmax
∆
= 1 − 1

Q

i
|λu

i (A)|2

where λui (A) are the unstable eigenvalues of A. Moreover, νc = pmin when
B is square and invertible, and νc = pmax when B is rank one.

3. The critical probability can be numerically computed via the solution of the
following quasi-convex LMIs optimization problem:
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νc = argminν̄Ψν(Y, Z) > 0, 0 ≤ Y ≤ I.

Ψν(Y, Z) =




Y
√
ν(Y A′ + ZB′)

√
1 − νY A′

√
ν(AY +BZ ′) Y 0√

1 − νAY 0 Y




4. If ν > νc, then limk→+∞ Sk = S∞ for all initial conditions S0 ≥ 0, where

Sk+1 = Π(Sk, A,B,W,U, ν)

.

Proof. The proof of facts (a),(c), and (d) can be found in [?]. The proof
νc = pmin when B is square and invertible can be found in [?], and the proof
νc = pmax when B is rank one in [?].

In [?] statistical analysis of the optimal estimator was given, which we
report here for convenience:

Theorem 6.8 ([?]). Consider the system (6.29)-(6.31) and the optimal esti-
mator under TCP-like protocols, given by Equations (6.37),(6.39),(6.40),(6.42)

and (6.43). Assume that (A,Q
1

2 ) is controllable, (A,C) is observable, and
A is unstable. Then there exists a critical observation arrival probability γc,
such that the expectation of estimator error covariance is bounded if and
only if the observation arrival probability is greater than the critical arrival
probability, i.e.

Eγ [Pk|k] ≤M ∀k iff γ̄ > γc.

where M is a positive definite matrix possibly dependent on P0. Moreover, it
is possible to compute a lower and an upper bound for the critical observation
arrival probability γc, i.e.:

pmin ≤ γc ≤ γmax ≤ pmax

, where:

γmax
∆
= inf

γ
{0 ≤ γ ≤ 1, P ≥ 0) |P = Π(P,A′, C ′, Q,R, γ)},

where pmin and pmax are defined in Lemma 6.8.

Proof. The proof can be found in [?] and is therefore omitted.

Using the previous theorem and the results from the previous section, we
can prove the following theorem for the infinite horizon optimal LQG under
TCP-like protocols:

Theorem 6.9. Consider the same system as defined in the previous theorem
with the following additional hypothesis: WN = Wk = W and Uk = U .
Moreover, let (A,B) and (A,Q

1

2 ) be controllable, and let (A,C) and (A,W
1

2 )
be observable. Moreover, suppose that ν̄ > νc and γ̄ > γmax, where νc and
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γmax are defined in Lemma 6.8 and in Theorem 6.8, respectively. Then we
have:

1. The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (6.61)

2. The infinite horizon optimal estimator gain Kk, given by Equation (6.43), is
stochastic and time-varying since it depends on the past observation arrival
sequence {γj}kj=1.

3. The expected minimum cost can be bounded by two deterministic sequences:

1

N
JminN ≤ 1

N
J∗
N ≤ 1

N
JmaxN (6.62)

where JminN , JmaxN converge to the following values:

Jmax∞
∆
= lim
N→+∞

1

N
JmaxN

= trace((A′S∞A+W − S∞)(P̂∞ − γ̄P̂∞C
′(CP̂∞C

′ +R)−1CP̂∞)) + trace(S∞Q)

Jmin∞
∆
= lim
N→+∞

1

N
JminN

= (1 − γ̄)trace
(
(A′S∞A+W − S∞)P̃∞

)
+ trace(S∞Q),

and the matrices S∞, P∞, P∞ are the positive definite solutions of the fol-
lowing equations:

S∞ =A′S∞A+W − ν̄ A′S∞B(B′S∞B + U)−1B′S∞A

P∞ =AP∞A
′ +Q− γ̄ AP∞C

′(CP∞C
′ +R)−1CP∞A

′

P∞ = (1 − γ̄)AP∞A
′ +Q

Proof. (a) Since by hypothesis ν̄ > νc, from Lemma 6.8(d) follows that
limk→+∞ Sk = S∞. Therefore Equation (6.61) follows from Equation (6.48).

(b) This follows from the dependence on the arrival sequence {γk} of the
optimal state estimator given by Equations (6.37),(6.39),(6.40),(6.42) and
(6.43). Since ν̄ > νc

(c) Equation (6.53) can be written in terms of the MARE as:

P̂k+1|k = Π(P̂k|k−1, A
′, C ′, Q,R, γ)

, therefore since γ̄ > γmax from Lemma 6.8(d) it follows that limk→+∞ P̂k|k−1 =

P∞, where P∞ is the solution of the MARE P∞ = Π(P∞, A
′, C ′, Q,R, γ).

Also limk→+∞ P̃k|k−1 = P∞, where P̃k|k−1 is defined in Equation (6.55) and

P∞ is the solution of the Lyapunov equation P̂∞ = ÃP̂∞Ã
′ +Q, where Ã =√

1 − γ̄A. Such solution clearly exists since
√

1 − γ̄ < 1
pmin

= 1
maxi |λu

i (A)|

and thus the matrix Ã is strictly stable. From Equations (6.54) and (6.56)
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it follows that limk→+∞ P̂k|k = P∞ − γ̄P∞C
′(CP∞C

′ + R)−1CP∞ and

limk→+∞ P̃k|k = (1 − γ̄)P∞. Also limk→+∞ Sk+1 = limk→+∞ Sk = S∞. Fi-
nally from Equations (6.57) - (6.59) and the previous observations follow
the claim.

6.13 LQG control for UDP-like protocols

In this section equations for the optimal estimator and controller design
for the case of communication protocols that do not provide any kind of
acknowledgment of successful packet delivery (UDP-like). This case corre-
sponds to the information set Gk, as defined in Equation (6.32). Some of the
derivations are analogous to the previous section and are therefore skipped.

Estimator Design

We derive the equations for the optimal estimator using similar arguments
to the standard Kalman filtering equations. The innovation step is given
by:

x̂k+1|k
∆
= E[xk+1|Gk] = E[Axk + νkBuk + wk|Gk]
=AE[xk|Gk] + E[νk]Buk

=Ax̂k|k + ν̄Buk (6.63)

ek+1|k
∆
=xk+1 − x̂k+1|k

=Axk + νkBuk + wk − (Ax̂k|k + ν̄Buk)

=Aek|k + (νk − ν)Buk + wk (6.64)

Pk+1|k
∆
= E[ek+1|ke

′
k+1|k |Gk]

=AE[ek|ke
′
k|k|Gk]A′ + E[(νk − ν)2]Buku

′
kB

′ + E[wkw
′
k]

=APk|kA
′ + ν̄(1 − ν̄)Buku

′
kB

′ +Q, (6.65)

where we used the independence and zero-mean of wk, (νk− ν̄), and Gk, and
the fact that uk is a deterministic function of the information set Gk. Note
how under UDP-like communication, differently from TCP-like, the error
covariance Pk+1|k depends explicitly on the control input uk. This is the
main difference with control feedback systems under TCP-like protocols.

The correction step is the same as for the TCP case:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k)

Pk+1|k+1 =Pk+1|k − γk+1Kk+1CPk+1|k, (6.66)

Kk+1
∆
=Pk+1|kC

′(CPk+1|kC
′ +R)−1, (6.67)
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where again we considered a time varying system with Ak = A and Ck = γkC
as we did for the optimal estimator under TCP-like protocols.

Controller design: General case

In this section, we show that the optimal LQG controller, under UDP-like
communication protocols, is in general not a linear function of the state
estimate, and that the estimator and controller design cannot be separated
anymore. To show this, we construct a counter-example considering a simple
scalar system and we proceed using the dynamic programming approach.
Let us consider the scalar system where A = 1, B = 1, C = 1,WN = Wk =
1, Uk = 0, R = 1, Q = 0. Similarly to the TCP case, we define the value
function, Vk(xk), as in Equations (6.44) where we just need to substitute
the information set Fk with Gk. For k = N , the value function is given by
VN (xN ) = E[x′NWNxN | GN ] = E[x2

N | GN ]. For k = N − 1 we have:

VN−1(xN−1)= min
uN−1

E[x2
N−1 + VN (xN ) | GN−1]

= min
uN−1

E[x2
N−1 + x2

N | GN−1]

= min
uN−1

E[x2
N−1 + (xN−1 + νN−1uN−1)

2 | GN−1]

= min
uN−1

(E[2x2
N−1|GN−1] + E[ν2

N−1]u
2
N−1 + 2uN−1E[νN−1]E[xN−1|GN−1])

= min
uN−1

(E[2x2
N−1|GN−1] + ν̄u2

N−1 + 2ν̄uN−1x̂N−1|N−1),

where we used the independence of νN−1 and GN−1, and the fact that uN−1 is
a deterministic function of the information set GN−1. The cost is a quadratic
function of the input uN−1, therefore the minimizer can be simply obtained

by finding ∂VN−1

∂uN−1
= 0, which is given by u∗N−1 = −x̂N−1|N−1. If we substitute

back u∗N−1 into the value function we have:

VN−1(xN−1) = E[2x2
N−1|GN−1] − ν̄x̂2

N−1|N−1

= E[(2 − ν̄)x2
N−1|GN−1] + ν̄PN−1|N−1
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where we used Lemma 6.5(b). Before proceeding note that:

PN−1|N−1 =PN−1|N−2 − γN−1

P 2
N−1|N−2

PN−1|N−2 + 1

=PN−1|N−2 − γN−1

(
PN−1|N−2 − 1 +

1

PN−1|N−2 + 1

)

= (1 − γN−1)
(
PN−2|N−2 + ν̄(1 − ν̄)u2

N−2

)
+ γN−1 +

+γN−1
1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

E[PN−1|N−1|GN−2] = (1 − γ̄)
(
PN−2|N−2 + ν̄(1 − ν̄)u2

N−2

)
+ γ̄ + γ̄

1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

E[x2
N−1|GN−2] = E[(xN−2 + νN−2uN−2)

2|GN−2]

= E[x2
N−2|GN−2] + 2E[νN−2]E[xN−2|GN−2]uN−2 + E[νN−2]u

2
N−2

= E[x2
N−2|GN−2] + 2ν̄x̂N−2|N−2uN−2 + ν̄u2

N−2,

where we used Equations (6.65)-(6.67), and the fact that uN−2 and PN−2|N−2

are a deterministic function of the information set GN−2. Using the previous
equations we proceed to compute the value function for k = N − 2:

VN−2(xN−2)= min
uN−2

E[x2
N−2 + VN−1(xN−1) | GN−2]

= min
uN−2

E[x2
N−2 + (2 − ν̄)x2

N−1 + ν̄PN−1|N−1 | GN−2]

= (3 − ν̄)E[x2
N−2|GN−2] + ν̄(1 − γ̄)PN−2|N−2 + ν̄γ̄ +

+ min
uN−1

(
2ν̄(2 − ν̄)x̂N−2|N−2uN−2 + ν̄(2 − ν̄)u2

N−2 +

+ ν̄2(1 − ν̄)(1 − γ̄)u2
N−2 + ν̄γ̄

1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

)

The first three terms inside the round parenthesis are convex quadratic
functions of the control input uN−2, however the last term is not. Therefore,
the minimizer u∗N−2 is, in general, a non-linear function of the information
set Gk. The nonlinearity of the optimal controller arises from the fact that
the correction error covariance matrix Pk+1|k+1 is a non-linear function of the
innovation error covariance Pk+1|k, as it can be seen in Equations (6.66) and
(6.67). The only case when Pk+1|k+1 is linear in Pk+1|k is when measurement
noise covarianceR = 0 and the observation matrix C is square and invertible,
from which follows that the optimal control is linear in the estimated states.
However it is important to remark that the separation principle still does not
hold even for this special case, since the control input affects the estimator
error covariance.

We can summarize these results in the following theorem:

Theorem 6.10. Let us consider the stochastic system defined in Equa-
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tions (6.29) with horizon N ≥ 2. Then:

1. The separation principle does not hold since the estimator error covariance
depends on the control input, as shown in Equation (6.65).

2. The optimal control feedback uk = g∗k(Gk) that minimizes the cost functional
defined in Equation (6.33) under UDP-like protocols is, in general, a non-
linear function of information set Gk.

3. The optimal control feedback uk = g∗k(Gk) is a linear function of the esti-
mated state x̂k|k if and only if the matrix C is invertible and there is no
measurement noise.

The next section will compute explicitly the optimal control for the spe-
cial case and will give necessary and sufficient conditions for stability and
performance of the infinite horizon scenario.

Special Case: R=0 and C invertible

Without loss of generality we can assume C = I, since the linear transfor-
mation z = Cx would give an equivalent system where the matrix C is the
identity. Let us now consider the case when there is no measurement noise,
i.e. R = 0. These assumption mean that it is possible to measure the state
xk when a packet is delivered. In this case the estimator Equations (6.65)-
(6.67) simplify as follows:

Kk+1 =I (6.68)

Pk+1|k+1 =(1 − γk+1)Pk+1|k

=(1 − γk+1)(A
′Pk|kA+Q+ ν̄(1 − ν̄)Buku

′
kB

′) (6.69)

E[Pk+1|k+1|Gk] =(1 − γ̄)(A′Pk|kA+Q+ ν̄(1 − ν̄)Buku
′
kB

′) (6.70)

where in the last equation we used independence of γk+1 and Gk, and we
used the fact that Pk|k is a deterministic function of Gk.

Similarly to what done in the analysis of TCP-like optimal control, we
claim that the value function V ∗

k (xk) can be written as follows:

Vk(xk) = x̂′k|kSkx̂k|k + trace(TkPk|k) + trace(DkQ) (6.71)

for k = N, . . . , 0. This is clearly true for k = N , in fact we have:

VN (xN ) = E[x′NWNxN |GN ] = x̂′N |NWN x̂N |N + trace(WNPN |N )

where we used Lemma 6.5(b), therefore the statement is satisfied by SN =
WN , TN = WN , DN = 0. Note that Equation (6.71) can be rewritten as
follows:

Vk(xk) = E[x′kSkxk|Gk] + trace
(
(Tk − Sk)Pk|k

)
+ trace(DkQ)

where we used once again Lemma 6.5(b). Moreover, to simplify notation we

define Hk
∆
= (Tk−Sk). Let us suppose that Equation (6.71) is true for k+1



6.13. LQG CONTROL FOR UDP-LIKE PROTOCOLS 6-43

and let us show by induction it holds true for k:

Vk(xk) = min
uk

E[x′
kWkxk + νku

′
kUkuk + Vk+1(xk+1) | Gk]

= min
uk

`

E[x′
kWkxk + νku

′
kUkuk + x

′
k+1Sk+1xk+1 + trace(Hk+1Pk+1|k+1) + trace(Dk+1Q) | Gk]

´

= E[x′
k(Wk+A

′
Sk+1A)xk|Gk]+trace(Sk+1Q)+(1−γ̄)trace(Hk+1(A

′
Pk|kA+Q))+trace(Dk+1Q)+

+min
uk

“

ν̄u
′
kUkuk+ν̄u

′
kB

′
Sk+1Buk+2ν̄u

′
kB

′
Sk+1Ax̂k|k+ν̄(1−ν̄)(1−γ̄)trace(Hk+1Buku

′
kB

′)
”

= E[x′
k(Wk+A

′
Sk+1A)xk|Gk]+trace

`

(Dk+1+(1−γ̄)Hk+1)Q
´

+(1−γ̄)trace(AHk+1A
′
Pk|k) +

+trace(Sk+1Q)+ν̄ min
uk

“

u
′
k

`

Uk+B
′(Sk+1+(1−ν̄)(1−γ̄)Hk+1)B

´

uk+2u
′
kB

′
Sk+1Ax̂k|k

”

= x̂
′
k|k(Wk + A

′
Sk+1A)x̂k|k + trace

`

(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q
´

+

+trace
“

(Wk + γ̄A
′
Sk+1A + (1 − γ̄)ATk+1A

′)Pk|k

´

+

+ν̄ min
uk

“

u
′
k

`

Uk + B
′((1 − ᾱ)Sk+1 + ᾱTk+1)B

´

uk + 2u
′
kB

′
Sk+1Ax̂k|k

”

,

where we defined ᾱ = (1−ν̄)(1−γ̄), we used Lemma 6.5(c) to get the second
equality, and Equations (6.36) and (6.70) to get the last equality. Since the
quantity inside the big round parenthesis a convex quadratic function, the
minimizer is the solution of ∂Vk

∂uk
= 0 which is given by:

u∗k =−
(
Uk +B′

(
(1 − ᾱ)Sk+1 + ᾱTk+1

)
B
)−1

B′Sk+1A x̂k|k (6.72)

=Lk x̂k|k (6.73)

which is linear function of the estimated state x̂k|k. Substituting back into
the value function we get:

Vk(xk)= x̂′k|k(Wk +A′Sk+1A)x̂k|k + trace
(
(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk +A′Sk+1A+ (1 − γ̄)ATk+1A

′)Pk|k
)
− ν̄x̂′k|kA

′Sk+1BLkx̂k|k

= x̂′k|k(Wk + γ̄A′Sk+1A− ν̄x̂′k|kA
′Sk+1BLk)x̂k|k + trace

(
(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk +A′Sk+1A+ (1 − γ̄)ATk+1A

′)Pk|k
)
,

where we used Lemma 6.5(b) in the last equality. From the last equation
we see that the value function can be written as in Equation (6.71) if and
only if the following equations are satisfied:

Sk =A′Sk+1A+Wk − ν̄A′Sk+1B
(
Uk +B′ ((1 − ᾱ)Sk+1 + ᾱTk+1)B

)−1
B′Sk+1A

= ΦS
γ,ν(Sk+1, Tk+1) (6.74)

Tk = (1 − γ̄)A′Tk+1A+ γ̄A′Sk+1A+Wk

= ΦT
γ,ν(Sk+1, Tk+1) (6.75)

Dk = (1 − γ̄)Tk+1 + γ̄Sk+1 +Dk+1 (6.76)

The optimal minimal cost for the finite horizon, J∗
N = V0(x0) is then
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given by:

J∗
N = x′0S0x0 + trace(S0P0) +

N∑

k=1

trace
((

(1 − γ̄)Tk + γ̄Sk
)
Q
)

(6.77)

For the infinite horizon optimal controller, necessary and sufficient con-

dition for the average minimal cost J∞
∆
= limN→+∞

1
N J

∗
N to be finite is

that the coupled iterative Equations (6.74) and (6.75) should converge to
a finite value S∞ and T∞ as N → +∞. In the work of Imer et al. [?]
similar equations were derived for the optimal LQG control under UDP for
the same framework with the additional conditions Q = 0 and B square and
invertible. They find necessary and sufficient conditions for those equations
to converge. Unfortunately, these conditions do not hold for the general case
when B in not square. This is a very frequent situation in control systems,
where in general we simply have (A,B) controllable.

Theorem 6.11. Also, assume that the pair (A,W 1/2) is observable. Con-
sider the following operator:

Υ(S, T, L) = A′SA+W+2ν̄A′SBL+ν̄L′
(
U+B′

(
(1−ᾱ)S+ᾱT

)
B
)
L (6.78)

Then the following claims are equivalent:

1. There exist a matrix L̃ and positive definite matrices S̃ and T̃ such that:

S̃ > 0, T̃ > 0, S̃ = Υ(S̃, T̃ , L̃), T̃ = ΦT (S̃, T̃ )

2. Consider the sequences:

Sk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk)

where the operators ΦS(·),ΦT (·) are defined in Equations (6.74) and (6.75).
For any initial condition S0, T0 ≥ 0 we have

lim
k→∞

Sk = S∞, lim
k→∞

Tk = T∞

and S∞, T∞ are the unique positive definite solution of the following equa-
tions

S∞ > 0, T∞ > 0, S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞)

The convergence of Equations (6.74) and (6.75) depend on the control
and observation arrival probabilities γ̄, ν̄. General analytical conditions for
convergence are not available, but some necessary and sufficient conditions
can be found.

Lemma 6.9. Let us consider the fixed points of Equations (6.74) and (6.75),
i.e. S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥ 0. Let A be unstable. A
necessary condition for existence of solution is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (6.79)
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where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the matrix A.

Lemma 6.10. Let us consider the fixed points of Equations (6.74) and
(6.75), i.e. S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥ 0. Let A be un-
stable, (A,W 1/2) observable and B square and invertible. Then a sufficient
condition for existence of solution is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (6.80)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the matrix A.
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Figure 6.10: Region of convergence for UDP-like and TCP-like optimal control
in the scalar case. The bounds are tight in the scalar case. The thin solid line
corresponds to the boundary of the stability region for a dead-beat controller under
UDP-like protocols as given by [?], which is much more restrictive than what can
be achieved with optimal UDP controllers.

A graphical representation of the stability bounds are shown in Figure
6.10, where we considered a scalar system with parameters |A| = 1.1, which
gives the critical probability pmin = 1 − 1/|A|2 = 1.173 as defined in Theo-
rem 6.8. The critical arrival probabilities for TCP-like optimal control are
γc = νc = pmin. The boundary for the stability region of optimal con-
trol under UDP-like protocols given in Lemma 6.10 can be written also as

ν̄ > γ̄(A2−1)
γ̄(2A2−1)+1−A2 for γ̄ > pmin. It is important to remark that the sta-

bility region of optimal control under UDP-like protocols is larger than the
stability region obtained using a dead-beat controller proposed in [?], i.e.
uk = −γkB−1Ayk = −γkB−1Axk, which is given by γ̄ν̄ > 1 − 1/|A|2 and
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graphically shown in Figure 6.10 . This is not surprising since the dead-beat
controller is rather aggressive and requires a large gain L, which increases
the estimator error covariance in Equation (6.70). Indeed, as shown in the
constructive proof of Lemma 6.10, controllers with similar structure but
smaller gains, i.e. uk = −ηγkB−1Ayk = −ηγkB−1Axk where η < 1, have a
larger region of stability.

We can summarize the results of this section in the following theorem

Theorem 6.12. Consider the system (6.29)-(6.31) and consider the prob-
lem of minimizing the cost function (6.33) within the class of admissible
policies uk = f(Gk), where Gk is the information available under TCP-like
schemes, given in Equation (6.32). Assume also that R = 0 and C is square
and invertible. Then:

1. The optimal estimator gain is constant and in particular Kk = I if C = I.

2. The infinite horizon optimal control exists if and only if there exists posi-
tive definite matrices S∞, T∞ > 0 such that S∞ = ΦS(S∞, T∞) and T∞ =
ΦT (S∞, T∞), where ΦS and ΦS are defined in Equations (6.74) and (6.75).

3. The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′(ᾱT∞ + (1 − ᾱ)S∞)B + U)−1B′S∞A (6.81)

4. A necessary condition for existence of S∞, T∞ > 0 is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (6.82)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the matrix A. This

condition is also sufficient if B is square and invertible.

5. The expected minimum cost converges:

J∗
∞ = lim

k→∞

1

N
J∗
N = trace

(
(1 − γ̄)T∞ + γ̄S∞)Q

)
(6.83)

In the scenario considered in this section when R = 0 and C is invertible,
it is possible to directly compare the performance of optimal control under
TCP-like and UDP-like protocols in terms of the infinite horizon cost J∗

∞.
Let us consider for example the scalar system with the following parame-
ters A = 1.1, B = C = Q = W = U = 1, R = 0. For simplicity also consider
symmetric communication channels for sensor reading and control inputs,
i.e. ν̄ = γ̄. Using results from Theorem 6.9 and Theorem 6.12 we can
compute the infinite horizon cost using optimal controllers under UDP-like
and an upper bound on the cost under TCP-like communication protocols,
which are shown in Fig. 6.11. As expected optimal control performance
under TCP-like is better than UDP-like, however the two curves are com-
parable for moderate packet loss. Although the TCP-like curve is only an
upper bound of the true expected cost, it has been observed to be rather
close to the empirical cost [?]. The observation that TCP-like and UDP-like
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Figure 6.11: Exact infinite horizon cost using optimal LQG control under UDP-
like and upper bound under TCP-like communication protocols in the scalar case.

optimal control performances seem remarkably close is extremely valuable
since UDP-like protocols are much simpler to implement than TCP-like.

6.14 Appendix

Lemma 6.11. Let S, T ∈ M = {M ∈ R
n×n|M ≥ 0}. Consider the opera-

tors ΦS(S, T ), and ΦT (S, T ) as defined in Equations (6.74) and (6.75), and
consider the sequences Sk+1 = ΦS(Sk, Tk) and Tk+1 = ΦT (Sk, Tk). Consider

L∗
S,T = −

(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B
)−1

B′SA. operators
Then the following facts are true:

1.

Υ(S, T, L) =(1−
ν̄

1 − ᾱ
)A′

SA+W+
ν̄

1 − ᾱ

`

A+(1−ᾱ)BL
´′

S
`

A+(1−ᾱ)BL
´

+ν̄L
′
UL+ν̄ᾱL

′
B

′
TBL

2. ΦS(S, T ) = minL Υ(S, T, L)

3. 0 ≤ Υ(S, T, L∗
S,T ) = ΦS(S, T ) ≤ Υ(S, T, L) ∀L

4. If Sk+1 > Sk and Tk+1 > Tk, then Sk+2 > Sk+1 and Tk+2 > Tk+1.

5. If the pair (A,W 1/2) is observable and S = ΦS(S, T ) and T = ΦT (S, T ),
then S > 0 and T > 0.

Proof. Fact (a) can be easily checked by direct substitution.
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(b) If U is invertible then it is easy to verify by substitution that

Υ(S, T, L)= ΦS(S, T ) + ν̄(L− L∗
S,T )′

(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B
)
(L− L∗

S,T )

≥ΦS(S, T )

(c) The non-negativeness follows from the observation that Υ(S, T, L) is

a sum of positive semi-definite matrices. In fact (1 − ν̄
1−ᾱ) = γ̄(1−ν̄)

ν̄+γ̄(1−ν̄) ≥ 0

and 0 ≤ ᾱ ≤ 1.
The equality Υ(S, T, L∗

S,T ) = ΦS(S, T ) can be verified by direct substitution.

The last inequality follows directly from Fact (b).
(d)

Sk+2 = ΦS(Sk+1, Tk+1) = Υ(Sk+1, Tk+1, L
∗
Sk+1,Tk+1

)

≥ Υ(Sk, Tk, L
∗
Sk+1,Tk+1

) ≥ Υ(Sk, Tk, L
∗
Sk,Tk

)

= ΦS(Sk, Tk) = Sk+1

Tk+2 = ΦT (Sk+1, Tk+1) ≥ ΦT (Sk, Tk) = Tk+1

(e) First observe that S = ΦS(S, T ) ≥ 0 and T = ΦT (S, T ) ≥ 0. Thus, to
prove that S, T > 0, we only need to establish that S, T are nonsingular.
Suppose they are singular, the there exist vectors 0 6= vs ∈ N (S) and
0 6= vt ∈ N (T ), i.e. Svs = 0 and Tvt = 0, where N (·) indicates the null
space. Then

0 = v′sSvs = v′sΦ
S(S, T )vs = v′sΥ(S, T, L∗

S,T )vs
= (1 − ν̄

1−ᾱ)v′sA
′SAvs + v′sWvs + ⋆

where ⋆ indicates other terms. Since all the terms are positive semi-definite
matrices, this implies that all the term must be zero:

v′sA
′SAvs = 0 =⇒ SAvs = 0 =⇒ Avs ∈ N (S)

v′sWvs = 0 =⇒W 1/2vs = 0

As a result, the null space N (S) is A-invariant. Therefore, N (S) contains
an eigenvector of A, i.e. there exists u 6= 0 such that Su = 0 and Au = σu.
As before, we conclude that Wu=0. This implies (using the PBH test) that
the pair (A,W 1/2) is not observable, contradicting the hypothesis. Thus,
N (S) is empty, proving that S > 0. The same argument can be used to
prove that also T > 0.

Proof of Theorem 6.11

(a)⇒(b) The main idea of the proof consists in the proving of the conver-
gence of several monotonic sequences. Consider the sequences Vk+1 = Υ(Vk, Zk, L̃)
and Zk+1 = ΦT (Vk, Zk) with initial conditions V0 = Z0 = 0. It is easy to ver-
ify by substitution that V1 = W + ν̄L̃′UL̃ ≥ 0 = V0 and Z1 = W ≥ 0 = Z0.
Lemma 6.11(a) shows that the operator Υ(V,Z, L̃) is linear and monotoni-
cally increasing in V and Z, i.e.
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(Vk+1 ≥ Vk, Zk+1 ≥ Zk) ⇒ (Vk+2 ≥ Vk+1, Zk+2 ≥ Zk+1). Also the operator
ΦT (V,Z) is linear and monotonically increasing in V and Z. Since V1 ≥ V0

and Z1 ≥ Z0, using an induction argument we have that Vk+1 ≥ Vk, Zk+1 ≥
Zk for all time k, i.e. the sequences are monotonically increasing. These se-
quences are also bounded, in fact (V0 ≤ S̃), (Z0 ≤ T̃ ) ⇒ (V1 = Υ(0, 0, L̃) ≤
Υ(S̃, T̃ , L̃) = S̃), (Z1 = ΦT (0, 0) ≤ ΦT (S̃, T̃ ) = T̃ ) and the same argument
can be inductively used to show that Vk ≤ S̃ and Zk ≤ T̃ for all K. Con-
sider now the sequences Sk, Tk as defined in the theorem initialized with
S0 = T0 = 0. By direct substitution we find that S1 = W ≥ 0 = S0

and T1 = W ≥ 0 = T0. By Lemma 6.11(d) follows that the sequences
Sk, Tk are monotonically increasing. Moreover, by Lemma 6.11(c) it fol-
lows that (Sk ≤ Vk, Tk ≤ Zk) ⇒ (Sk+1 = ΦS(Sk, Tk) ≤ Υ(Sk, Tk, L̃) ≤
Υ(Vk, Zk, L̃) = Vk+1), Tk+1 = ΦT (Sk, Tk) ≤ ΦT (Vk, Zk) = Zk+1). Since this
is verified for k = 0, it inductively follows that (Sk ≤ Vk, Tk ≤ Zk) for
all k. Finally since Vk, Zk are bounded, we have that (Sk ≤ S̃, Tk ≤ T̃ .
Since Sk, Tk) are monotonically increasing and bounded, it follows that
limk→∞ Sk = S∞ and limk→∞ Tk = T∞, where S∞, T∞ are semi-definite
matrices. From this it easily follows that these matrices have the property
S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞). Definite positiveness of S∞ fol-
lows from Lemma 6.11(e) using the hypothesis that (A,W 1/2) is observable.
The same argument can be used to prove that T∞ > 0. Finally proof of
uniqueness of solution and convergence for all initial conditions S0, T0 can
be obtained similarly to Theorem 1 in [?] and it is therefore omitted.

(b)⇒(a)
This part follows easily by choosing L̃ = L∗

S∞,T∞

, where L∗ is defined

in Lemma 6.11. Using Lemma 6.11(c) we have S∞ = ΦS(S∞, T∞) =
Υ(S∞, T∞, L̃), therefore the statement is verified using S̃ = S∞ and T̃ = T∞.

Proof of Lemma 6.9

To prove the necessity condition, it is sufficient to show that there ex-
ist some initial conditions S0, T0 ≥ 0 for which the sequences Sk+1 =
ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk) are unbounded, i.e. limk→∞ Sk = limk→∞ Tk =
∞. To do so, suppose that at some time-step k we have Sk ≥ skvv

′ and
Tk ≥ tkvv

′, where sk, tk > 0, and v is the eigenvector corresponding to the
largest eigenvalue of A′, i.e. A′v = λmaxv and |λmax| = |A′| = |A|. Then we
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have:

Sk+1 = ΦS(Sk, Tk) ≥ ΦS(skvv
′, tkvv

′)

= min
L

Υ(skvv
′, tkvv

′, L)

= min
L

(
skA

′vv′A+W + 2skν̄A
′vv′BL+

+ν̄L′
(
U +B′

(
(1 − ᾱ)skvv

′ + ᾱtkvv
′
)
B
)
L
)

≥min
L

(
sk|A|2vv′ + 2skν̄λmaxvv

′BL+

+ν̄L′B′
(
(1 − ᾱ)skvv

′ + ᾱtkvv
′
)
BL
)

= min
L

(
sk|A|2vv′ −

|A|2ν̄s2k
ξk

vv′ +

+ν̄ξk(λmaxs
2
kI +

1

ξk
BL)′vv′(λmaxs

2
kI +

1

ξk
BL)

)

≥ sk|A|2vv′ −
|A|2ν̄s2k

(1 − ᾱ)sk + ᾱtk
vv′

= |A|2sk
(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
vv′

= sk+1vv
′

where I is the identity matrix and ξk = (1 − ᾱ)sk + ᾱtk. Similarly we have:

Tk+1 =ΦT (Sk, Tk) ≥ ΦT (skvv
′, tkvv

′)

= (1 − γ̄)tkA
′vv′A+ γ̄skA

′vv′A+W

≥ (1 − γ̄)tk|A2|vv′ + γ̄sk|A|2vv′
= |A|2

(
(1 − γ̄)tk + γ̄sk)

)
vv′

= tk+1vv
′

We can summarize the previous results as follows:

(Sk≥skvv′, Tk ≥ tkvv
′) ⇒ (Sk+1 ≥ sk+1vv

′, Tk+1 ≥ tk+1vv
′)

sk+1=φ
s(sk, tk) = |A|2sk

(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
,

tk+1=φ
t(sk, tk) = |A|2

(
(1 − γ̄)tk + γ̄sk)

)

Let us define the following sequences:

Sk+1=Φ
S(Sk, Tk), Tk+1 = ΦT (Sk, Tk), S0 = T0 = vv′

sk+1=φ
s(sk, tk), tk+1 = φt(sk, tk), s0 = t0 = 1

S̃k=skvv
′, T̃k = tkvv

′
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From the previous derivations, we have that Sk ≥ S̃k, Tk ≥ T̃k for all time k.
Therefore, it is sufficient to find when the scalar sequences sk, tk diverges to
find the necessary conditions. It should be evident also that the operators
φs(s, t), φt(s, t) are monotonic in their arguments. Also, it should be clear
that the only fixed points of s = φs(s, t), t = φt(s, t) are s = t = 0. Therefore
we should find when the origin is an unstable equilibrium point, since in this
case limk→∞ sk, tk = ∞. Note that t = φt(s, t) can be written as:

t= ΦT (s, t) = (1 − γ̄)|A|2t+ γ̄|A|2s

=ψ(s) =
γ̄|A|2s

1 − (1 − γ̄)|A|2

with the additional assumption 1 − (1 − γ̄)A2 > 0. A necessary con-
dition for the stability of the origin is that the origin of restricted map
zk+1 = φ(zk, ψ(zk)) is stable. The restricted map is given by:

zk+1 = |A|2zk


1 − ν̄

zk

(1 − ᾱ)zk + ᾱ γ̄|A|2

1−(1−γ̄)A2 zk




= |A|2

1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2

1−(1−γ̄)A2


 zk

= |A|2
(

1 − ν̄(1 − (1 − γ̄)|A|2)
γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2

)
zk

=

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)
zk

This is a linear map and it is stable only if the term inside the parenthesis
is smaller than unity, i.e.

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)
< 1

γ̄(1 − ν̄)|A|2< γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
|A|2(γ̄ + ν̄ − 2γ̄ν̄)< γ̄ + ν̄ − γ̄ν̄

which concludes the lemma.

Proof of Lemma 6.10

The proof is constructive. In fact, we find a control feedback gain L̃ that
satisfies the conditions stated in Theorem 6.11(a). Let L̃ = −ηB−1A where
η > 0 is a positive scalar that is to be determined. Also consider S = sI, T =
tI, where I is the identity matrix and s, t > 0 are positive scalars. Then we
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have

Υ(sI, tI, L̃) =A′sA+W − 2ν̄ηA′sA+ ν̄A′B−′

UB−1A+

+ν̄η2A′
(
(1 − ᾱ)s+ ᾱt

)
A

≤ |A|2
(
s− 2ν̄sη + ν̄

(
(1 − ᾱ)s+ ᾱt

)
η2
)
I + wI

=ϕs(s, t, η)I (6.84)

ΦT (sI, tI) = γ̄A′sA+ (1 − γ̄)A′tA+W

≤
(
γ̄|A|2s+ (1 − γ̄)|A|2t

)
I + wI

≤ϕt(s, t)I (6.85)

where w = |W + ν̄A′B−′

UB−1A| > 0 and I is the identity matrix. Let us
consider the following scalar operators and sequences:

ϕs(s, t, η)= |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s+ ν̄ᾱη2t+ w

ϕt(s, t)= γ̄|A|2s+ (1 − γ̄)|A|2t+ w

sk+1=ϕ
s(sk, tk, η), tk+1 = ϕt(sk, tk), s0 = t0 = 0

The operators are clearly monotonically increasing in s, t, and since s1 =
ϕs(s0, t0, η) = w ≥ s0 and t1 = ϕt(s0, t0) = w ≥ t0, it follows that the se-
quences sk, tk are monotonically increasing. If these sequences are bounded,
then they must converge to s̃, t̃. Therefore sk, tk are bounded if and only if
there exist s̃, t̃ > 0 such that s̃ = ϕs(s̃, t̃, η) and t̃ = ϕt(s̃, t̃). Let us find the
fixed points:

t̃=ϕt(s̃, t̃) ⇒

t̃=
γ̄|A|2

1 − (1 − γ̄)|A|2 s̃+ wt

where wt
∆
= w

1−(1−γ̄)|A|2 > 0, and we must have 1 − (1 − γ̄)|A|2 > 0 to

guarantee that t̃ > 0. Substituting back into the operator ϕs we have:

s̃= |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s̃+ ν̄ᾱη2 γ̄|A|2
1 − (1 − γ̄)|A|2 s̃+

+ν̄ᾱη2wt + w

= |A|2
(

1 − 2ν̄η + ν̄
(
(1 − ᾱ) +

γ̄ᾱ|A|2
1 − (1 − γ̄)|A|2

)
η2

)
s̃+ w(η)

= |A|2
(

1 − 2ν̄η + ν̄
γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2

1 − (1 − γ̄)|A|2 η2

)
s̃+ w(η)

= a(η)s̃+ w(η)

where w(η)
∆
= ν̄ᾱη2wt + w > 0. For a positive solution s̃ to exist, we

must have a(η) < 1. Since a(η) is a convex function of the free parameter
η, we can try to increase the basin of existence of solutions by choosing
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η∗ = argminηa(η), which can be found by solving da
dη (η

∗) = 0 and is given
by:

η∗ =
1 − (1 − γ̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2

Therefore a sufficient condition for existence of solutions are given by:

a(η∗)< 1

|A|2
(

1 − ν̄
1 − (1 − γ̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)
< 1

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)
< 1

which is the same bound for the necessary condition of convergence in
Lemma 6.9.

If this condition is satisfied then limk→∞ sk = s̃ and limk→∞ tk = t̃. Let
us consider now the sequences S̄k = skI, T̄k = tkI, Sk+1 = Υ(Sk, Tk, L̃) and
Tk+1 = ΦT (Sk, Tk), where L̃ = −η∗B−1A, S0 = T0 = 0, and sk, tk where de-
fined above. These sequences are all monotonically increasing. From Equa-
tions (6.84) and (6.85) it follows that (Sk ≤ skI, Tk ≤ tkI) ⇒ (Sk+1 =≤ sk+1I, Tk+1 ≤ tkI).
Since this is verified for k = 0 we can claim that Sk < s̃I and Tk < t̃I for
all k. Since Sk, Tk are monotonically increasing and bounded, then they
must converge to positive semi-definite matrices S̃, T̃ ≥ 0 which solve the
equations S̃ = Υ(S̃, T̃ , L̃) and T̃ = ΦT (S̃, T̃ ). Since, by hypothesis, the
pair (A,W 1/2) is observable, using similar arguments of Lemma 6.11(e), it
is possible to show that S̃, T̃ > 0. Therefore S̃, T̃ , L̃ satisfy the conditions of
statement (a) Theorem 6.11, from which if follows statement (b) of the same
theorem. This implies that the sufficient conditions derived here guarantee
the claim of the lemma.

6.15 Introduction

In the second part of the chapter, we will consider the two block design with
an analog erasure channel inside the control loop. As discussed earlier, the
analog erasure model (also referred to as the packet erasure or packet loss
model) can be described as follows. The channel operates in discrete time
steps. At every time step, the channel accepts as input a finite dimensional
real vector r(k). The value of the output of the channel y(k) is chosen
according to an erasure process. At every time step, the erasure process
assumes either the value T or the value R. If the value at time k is T ,
y(k + 1) = r(k) and a successful transmission is said to have occurred.
Otherwise, y(k + 1) = φ and an erasure event, or a packet loss, is said
to have occurred at time k. The symbol φ denotes that the receiver does
not receive any data; however, the receiver is aware that an erasure event
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has occurred at that time. Note that we have assumed that the channel
introduces a constant delay of one time step.

While an analog erasure model has an infinite capacity in an information
theoretic sense, it is often a useful representation for the cases when the
communication protocols allow for large data packets to be transmitted at
every time step. For instance, the minimum size of an ethernet data packet
is 72 bytes. This is much more space for carrying information than usually
required inside a control loop. If the data packets allow for transmission of
control and sensing data to a high fidelity, the quantization effects are often
ignored and an analog erasure model adopted.

To begin with, consider a set-up in which the linear time invariant process
evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k),

where the state x(k) ∈ Rn, the control variable u(k) ∈ Rm and w(k) is
process noise considered to be white and Gaussian with zero mean and
covariance Rw > 0. The initial condition x(0) is assumed to be Gaussian
with zero mean and covariance P (0). The process is observed using a sensor
of the form

y(k) = Cx(k) + v(k),

where v(k) is measurement noise that is again white Gaussian with zero
mean and covariance Rv > 0. We suppose all the sources of randomness
in the system (initial condition, process and measurement noise, and the
erasure process for the channels) to be independent. The inputs are chosen
to minimize the cost

JLQG = E

[
K∑

k=1

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (K + 1)P (K + 1)x(K + 1)

]
,

where the expectation at time k is taken with respect to the future values
of the packet erasure events, the initial condition, and the measurement and
process noises. Further, the matrices P (K+1), Q and R are all assumed to
be positive definite. The pair (A,B) is assumed to be controllable, and the
pair (A,C) is assumed to be observable.

As with the one-block design, we can consider two cases:

1. When there is only one channel in the control loop, present between
the sensor and the controller. Such a situation can arise, e.g., when
the controller is co-located with the process and the sensor is remote,
or the controller has access to large transmission power.

2. When there are two channels present. In addition to the sensor-
controller channel, there is an additional channel between the con-
troller and the actuator. In this case, it is also important to specify the
action that the actuator takes when it does not receive a packet. The
action depends on the amount of processing, memory and information
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about the process that is assumed to be available at the actuator. We
consider the simplest choice, which is to apply zero control input if no
packet was received. Other actions by the actuator can be treated in
a similar fashion.

For most of the following discussion we assume that the erasures on the two
channels occur in an i.i.d. fashion, independently of each other. However,
erasures according to a Markov model, or correlated across the channels can
be easily considered.

Two block design

As discussed earlier, two block design involves designing both an encoder
at the input of a channel, and a decoder at the output to minimize the
estimation / control cost. Note that the decoder for the sensor-controller
channel and the encoder for the controller-actuator channel are merely the
controller.

To begin with, we will consider only the sensor-controller channel to
be present. To proceed, we must define the class of encoders that we will
consider. The information theoretic capacity of an analog erasure channel
is infinite. Thus, the only constraints we impose on the encoder are that
the transmitted vector is some causal (possibly time-varying) function of the
measurements available to the encoder until time k and that the dimension
of the vector is finite. We will sometimes refer to the encoder as an encoding
algorithm. For the controller-actuator channel, the choice of decoder will
depend on the knowledge and processing available at the actuator. We will
consider the case of this channel being present briefly towards the end.

At every time step k, the encoder at the sensor calculates a vector

s(k) = f
(
k, {y(j)}kj=0

)
and transmits it. Note that we have not assumed

that the encoder has access to any acknowledgements from the decoder
about which transmissions have been successful. However, we will show
that the presence of such acknowledgements does not improve the optimal
performance achievable by a suitable encoder.

Denote by I(k) the information set that the decoder can utilize to cal-
culate the control at time k. As an example, if no erasures were happening,
I(k) = {y(0), y(1), · · · , y(k − 1)}. More generally, given any packet erasure
pattern, we can define a time stamp ts(k) at every time step k such that
the erasures did not allow any information transmitted by the encoder after
time ts(k) to reach the decoder. Without loss of generality, we can restrict
attention to information-set feedback controllers. For a given information
set I(.), denote the minimal value of the cost JLQG that can be achieved
with the optimal controller design by J⋆LQG(I), and the smallest sigma al-

gebra generated by the information set as I(.). If two information sets I1(.)
and I2(.) are such that I1(k) ⊆ I2(k), we have J⋆LQG(I2) ≤ J⋆LQG(I1).
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Consider an algorithm A1 in which at every time step k, the sensor trans-
mits all measurements y(0), y(1), · · · , y(k) to the decoder. Note that this
algorithm is not a valid encoding algorithm since the dimension of the trans-
mitted vector is not bounded, as k increases. However, with this algorithm,
for any drop sequence, the decoder has access to an information set of the
form Imax(k) = {y(0), y(1), · · · , y(ts(k))}, where ts(k) ≤ k − 1 is the time
stamp defined above. This is the maximal information set that the decoder
can have access to with any algorithm, in the sense that I(k) ⊆ Imax(k), for
any other algorithm that yields the information set I(k). Thus, one way
to achieve the optimal value of the cost function is to utilize an algorithm
that makes Imax(k) available to the sensor at every time k along with a con-
troller that optimally utilizes this set. Further, one such encoder algorithm
is A1. However, as discussed above, A1 is not a valid encoding algorithm.
Surprisingly, as shown below, we can achieve the same performance with an
algorithm that transmits a vector with finite dimension.

We begin with the following separation principle when the decoder has
access to the maximal information set. Denote by α̂(k|β(k)) the minimum
mean squared error (MMSE) estimate of the random variable α(k) based on
the information β(k).

Theorem 6.13 (Separation Principle with Maximal Information Set). Con-
sider the control problem as defined above, when the decoder has access to
the maximal information set Imax(k) at every time step. Then, the optimal
control input is given by

u(k) = ûLQ

(
k|Imax(k), {u(j)}k−1

j=0

)
,

where uLQ(k) is the optimal LQ control law.

The proof of this result is similar to the standard separation principle
(see, e.g., [?, Chapter 9]) and is omitted here. For our setting, the impor-

tance of this result lies in the fact that it recognizes that ûLQ

(
k|Imax(k), {u(j)}k−1

j=0

)

(or, in turn, x̂LQ

(
k|Imax(k), {u(j)}k−1

j=0

)
) is a sufficient statistic to calculate

the control input that achieves the minimum possible cost for any encoding
algorithm. Utilizing the fact that the optimal MMSE estimate of x(k) is
linear in the effects of the maximal information set and the previous control
inputs, we can identify the quantity that the encoder should transmit that
depends only on the measurements. We have the following result.

Theorem 6.14 (Separation of the Effect of the Control Inputs). The quan-

tity x̂LQ

(
k|Imax(k), {u(j)}k−1

j=0

)
can be calculated as

x̂LQ

(
k|Imax(k), {u(j)}k−1

j=0

)
= x̄LQ (k|Imax(k)) + ψ(k),

where x̄LQ (k|Imax(k)) depends only on Imax(k) but not on the control in-
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puts and ψ(k) depends only on the control inputs {u(j)}k−1
j=0 . Further both

x̄LQ (k|Imax(k)) and ψ(k) can be calculated recursively.

Proof. The proof follows readily from noting that x̂LQ

(
k|Imax(k), {u(j)}k−1

j=0

)

can be obtained from the Kalman filter which is affine in both measurements
and control inputs. We can identify

x̄LQ (k|Imax(k)) = Ak−ts(k)−1x̆(ts(k) + 1|ts(k))

ψ(k) = Ak−ts(k)−1ψ̆(ts(k) + 1) +

k−ts(k)−2∑

i=0

AiBu(k − i− 1),

where x̆(j + 1|j) evolves as

M−1(j|j) = M−1(j|j − 1) + CTR−1
v C

M−1(j|j)x̆(j|j) = M−1(j|j − 1)x̆(j|j − 1) + CTR−1
v y(j)

M(j|j − 1) = AM(j − 1|j − 1)AT +Rw

x̆(j|j − 1) = Ax̆(j − 1|j − 1),

with the initial conditions x̆(0| − 1) = 0 and M(0| − 1) = Π(0), and ψ̆(j)
evolves as

ψ̆(j) = Bu(j − 1) + Γ(j − 1)ψ̆(j − 1)

Γ(j) = AM−1(j − 1|j − 1)M(j − 1|j − 2),

with the initial condition ψ̆(0) = 0.

Now consider the following algorithm A2. At every time step k, the en-
coder calculates and transmits the quantity x̆(k|k) using the algorithm in the
above proof. The decoder calculates the quantity ψ(k). If the transmission
is successful, the decoder calculates

x̂LQ

(
k + 1|Imax(k + 1), {u(j)}kj=0

)
= x̄LQ (k + 1|Imax(k + 1)) + ψ(k)

= Ax̆(k|k) + ψ(k).

If the transmission is unsuccessful, the decoder calculates

x̂LQ

(
k + 1|Imax(k + 1), {u(j)}kj=0

)
= Ak−ts(k)x̄LQ (k + 1|Imax(ts(k) + 1))+ψ(k),

where the quantity x̄LQ (k + 1|Imax(ts(k) + 1))) is stored in the memory
from the last successful transmission (note that only the last successful trans-
mission needs to be stored). Using the Theorems 6.13 and 6.14 clearly allows
us to state the following result.

Theorem 6.15 (Optimality of the Algorithm A2). Algorithm A2 is optimal
in the sense that it allows the controller to calculate the control input u(k)
that minimizes JLQG.
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Proof. At every time step, the algorithm A2 makes x̂LQ

(
k + 1|Imax(k + 1), {u(j)}kj=0

)

available to the controller. Thus, the controller can calculate the same con-
trol input as with the algorithm A1 which together with an LQ controller
yields the minimum value of JLQG.

Note that the optimal algorithm is non-linear (in particular, it is a
switched linear system). This is not unexpected, in view of the non-classical
information pattern in the problem.

Remarks

• Boundedness of the Transmitted Quantity: It should be emphasized
that the quantity x̆(k|k) that the encoder transmits is not the estimate of
x(k) (or the state of some hypothetical open loop process) based only on
the measurements y(0), · · · , y(k). In particular under the constraint on the
erasure probability that we derive later, the state x(k) is stable and hence
the measurements y(k) are bounded. Thus, the quantity x̆(k|k) is bounded.
This can also be seen from the recursive filter used in the proof of Theo-
rem 6.14. If the closed loop system x(k) is unstable due to high erasure
probabilities, x̆(k|k) would, of course, not be bounded. However, the opti-
mality result implies that the system cannot be stabilized by transmitting
any other bounded quantity (such as measurements).

• Optimality for any Erasure Pattern and the ‘Washing Away’ Effect:
The optimality of the algorithm required no assumption about the erasure
statistics. The optimality result holds for an arbitrary erasure sequence,
and at every time step (not merely in an average sense). Moreover, any
successful transmission ‘washes away’ the effect of the previous erasures in
the sense that it ensures that the control input is identical to the case as if
all previous transmissions were successful.

• Presence of Delays: We assumed that the communication channel in-
troduces a constant delay of one time step. However, the same algorithm
continues to remain optimal even if the channel introduces larger (or even
time-varying) delays, as long as there is the provision of a time stamp from
the encoder regarding the time it transmits any vector. The decoder uses
the packet it receives at any time step only if it was transmitted later than
the quantity it has stored from the previous time steps. If this is not true
due to packet re-ordering, the decoder continues to use the quantity stored
from previous time steps. Further, if the delays are finite, the stability con-
ditions derived below remain unchanged. Infinite delays are equivalent to
packet erasures, and can be handled by using the same framework.

Stability and Performance: Both the stability and performance of
the system with this optimal coding algorithm in place can be analyzed by
assuming specific models for the erasure process. For pedagogical ease, we
adopt the i.i.d. erasure model, with an erasure occurring at any time step
with probability p. Due to the separation principle, to obtain the stability
conditions, we need to consider the conditions under which the LQ control
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cost for the system, and the covariance of the estimation error between the
state of the process x(k) and the estimate at the controller x̂(k) remain
bounded, as time k increases. Under the controllability and observability
assumptions the LQ cost remains bounded, if the control value does. Define
the estimation error and its covariance as

e(k) = x(k) − x̂(k)

P (k) = E
[
e(k)eT (k)

]
,

where the expectation is taken with respect to the process and measurement
noises, and the initial condition (but not the erasure process). Due to the
‘washing away’ effect of the algorithm, the error of the estimate at the
decoder evolves as

e(k + 1) =

{
ē(k + 1) no erasure

Ae(k) erasure event,

where ē(k) is the error between x(k) and the estimate of x(k) given all control
inputs {u(j)}k−1

j=0 and measurements {y(j)}k−1
j=0 . Thus, the error covariance

evolves as

P (k + 1) =

{
M(k + 1) with probability 1 − p

AP (k)AT +Rw with probability p,

where M(k) is the covariance of the error ē(k). Thus, we obtain

E[P (k + 1)] = (1 − p)M(k + 1) + pRw + pAE[P (k)]AT ,

where the extra expectation for the error covariance is taken over the era-
sure process in the channel. Since the system is observable, M(k) converges
exponentially to a steady state value M⋆. Thus, the necessary and sufficient
condition for the convergence of the above discrete algebraic Lyapunov re-
cursion is

pρ(A)2 < 1,

where ρ(A) is the spectral radius ofA. Due to the optimality of the algorithm
considered above, this condition is necessary for stability of the system with
any causal encoding algorithm. In particular, for the strategy of simply
transmitting the latest measurement from the sensor as considered in the one
block design, this condition turns out to be necessary for stability (though
not sufficient for a general process model). For achieving stability with this
condition, we require an encoding strategy, such as the recursive algorithm
provided above.

This analysis can be generalized to more general erasure models. For
example, for a Gilbert-Eliot type channel model, the necessary and sufficient
condition for stability is given by

q00ρ(A)2 < 1,
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where q00 is the conditional probability of an erasure event at time k + 1,
provided an erasure occurs at time k. In addition, by calculating the terms
E[P (k)] and the LQ control cost of the system with full state information,
the performance JLQG can also be calculated through the separation prin-
ciple proved above. The value of the cost function thus achieved provides
a lower bound to the value of the cost function achievable using any other
encoding or control algorithm, for the same probability of erasure. An al-
ternative viewpoint is to consider the encoding algorithm above as a means
for transmitting data with lesser frequency to achieve the same level of per-
formance, than, e.g., transmitting measurements to the controller.

Higher Order Moments: It can be seen that the treatment above can
be extended to consider the stability of higher order moments of the esti-
mation error, or the state value. In fact, the entire steady state probability
distribution function of the estimation error can be calculated.

Extensions and Open Questions

The above framework was explained for a very simple set-up of an LQG
problem. It is natural to consider its generalization to other models by re-
moving various assumptions. We consider some of these assumptions below.
We also point out some of the open questions.

• Channel between Controller and Actuator: The encoding algorithm
presented above continues to remain optimal when a channel is present be-
tween the controller and the actuator (as considered in Figure ??), as long
as there is a provision for acknowledgement from actuator to controller for
any successful transmission, and the protocol that the actuator follows in
case of an erasure is known at the controller. This is because these two
assumptions are enough for the separation principle to hold. If no such ac-
knowledgement is available, the control input begins to have a dual effect
and the optimal algorithm is still unknown. Moreover, the problem of de-
signing the optimal encoder for the controller-actuator channel can also be
considered. This design will intimately depend on the information that is
assumed to be known at the actuator (e.g., the cost function, the system
matrices and so on). Algorithms that optimize the cost function for such
information sets are largely unknown. A simpler version of the problem
would involve either

• analyzing the stability and performance gains for given encoding and
decoding algorithms employed by the controller and the actuator re-
spectively, or,

• considering algorithms that are stability optimal, in the sense of de-
signing recursive algorithms that achieve the largest stability region
for any possible causal encoding algorithm.

Both these directions have seen research activity. For the first direction,
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algorithms typically involve transmitting some future control inputs at every
time step, or the actuator using some linear combination of past control
inputs if an erasure occurs. The second direction has identified the stability
conditions that are necessary for any causal algorithm. Moreover, recursive
designs that can achieve stability when these conditions are satisfied have
also been identified. Surprisingly, the design is in the form of a universal
actuator that does not require access to the model of the plant. Even if such
knowledge were available, the stability conditions do not change. Thus, the
design is stability optimal.

• Presence of a Communication Network: So far we have concentrated
on the case when the sensor and the controller are connected using a sin-
gle communication channel. A typical scenario, particularly in a wireless
context, would instead involve a communication network with multiple such
channels. If no encoding algorithm is implemented, and every node in the
network (including the sensor) transmits simply the measurements, the net-
work can be replaced by a giant erasure channel with the equivalent erasure
probability being some measure of the reliability of the network. However,
the performance degrades rapidly as the network size increases. If encoding
is permitted, such an equivalence breaks down. The optimal algorithm is
an extension of the single channel case, and is provided in [?]. The stability
and performance calculations are considerably more involved. However, the
stability condition has an interesting interpretation in terms of the capacity
for fluid networks. The necessary and sufficient condition for stability can
be expressed as the inequality

pmax-cutρ(A)2 < 1,

where pmax-cut is the max-cut probability calculated in a manner similar to
the min-cut capacity of fluid networks. We construct cut-sets by dividing the
nodes in the network into two sets with one set containing the sensor, and
the other the controller. For each cut-set, we calculate the cut-set erasure
probability by multiplying the erasure probabilities of all the channels from
the set containing the sensor to the set containing the controller. The maxi-
mum such cut-set erasure probability (over all possible cut-sets) denotes the
max-cut probability of the network. The improvement in the performance
and stability region of the system by using the encoding algorithm increases
drastically with the size and the complexity of the network.

• Multiple Sensors: Another direction in which the above framework
can be extended is to consider multiple sensors observing the same process.
As with the case with one sensor, one can identify the necessary stability
conditions and a lower bound for the achievable cost function with any causal
coding algorithm. These stability conditions are also sufficient and recursive
algorithms for achieving stability when these conditions are satisfied have
been identified. These conditions are a natural extension of the stability
conditions for the single sensor case. As an example, for the case of two
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sensors described by sensing matrices C1 and C2 that transmit data to the
controller across erasure channels for which erasure events are i.i.d. with
probabilities p1 and p2 respectively, the stability conditions are given by the
set

p2ρ(A1)
2 < 1

p1ρ(A2)
2 < 1

p1p2ρ(A)2 < 1,

where ρ(Ai) denotes the spectral radius of the unobservable part of the
system matrix A, when the pair (A,Ci) is represented in the observability
canonical form. However, the problem of identifying distributed encoding
algorithms to be followed at each sensor for achieving the lower bounds on
the achieved cost function remains largely open. This problem is related to
the track fusion problem that considers identifying algorithms for optimal
fusion of information from multiple sensors that interact intermittently (e.g.,
see [?]). That transmitting estimates based on local data from each sensor
is not optimal is long known. While algorithms that achieve a performance
close to the lower bound of the cost function have been identified, a complete
solution is not available.

• Inclusion of More Communication Effects: Our discussion has focussed
on modeling the loss of data transmitted over the channel. In our discussion
of the optimal encoding algorithms, we also briefly considered the possibil-
ity of data being delayed or received out of order. An important direction
for future work is to consider other effects due to communication channels.
Both from a theoretical perspective, and for many applications such as un-
derwater systems, an important effect is to impose a limit on the number
of bits that can be communicated for every successful transmission. Some
recent work [?, ?] has considered the analog digital channel in which the
channel supports n bits per time step and transmits them with a certain
probability p at every time step. Stability conditions for such a channel
have been identified and are a natural combination of the stability con-
ditions for the analog erasure channel above and the ones for a noiseless
digital channel, as considered elsewhere in the book. The performance of
optimal encoding algorithms and the optimal performance that is achievable
remain unknown. Another channel effect that has largely been ignored is
the addition of channel noise to the data received successfully.

• More General Performance Criteria: Our treatment focussed on a
particular performance measure - a quadratic cost, and the stability notions
emanating from that measure. Other cost functions may be relevant in
applications. Thus the cost function may be related to target tracking,
measures such as H2 or H∞ [?], or some combination of communication
and control costs. The analysis and optimal encoding algorithms for such
measures are expected to differ significantly. An an example, for target
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tracking, the properties of the reference signal that needs to be tracked
can be expected to play a significant role. Similarly, for H∞ related costs,
the sufficient statistic, and hence the encoding algorithms to transmit it,
may be vastly different than the LQG case. Finally, a distributed control
problem with multiple processes, sensors and actuators is a natural direction
to consider.

• More General Plant Dynamics: The final direction is to consider plant
dynamics that are more general than the linear model that we have consid-
ered. Moving to models such as jump linear systems, hybrid systems, and
general non-linear systems will provide new challenges and results. As an
example, for non-linear plants concepts such as spectral radius no longer
hold. Thus, the analysis techniques are likely to be different and measures
such as Lyapunov exponents and the Lipschitz constant for the dynamics
will likely become important.





Chapter 7
Information Flow and Consensus

In this chapter we move from the problem of estimation and control of a
single system across a communications channel to the challenge of sensing,
estimation and control of a multi-agent system, with the information avail-
able to the agents represented by a graph of interconnections. We begin
with a review of the relevant concepts in graph theory, focused on the use
of algebraic techniques to characterize the properties of the interconnection
structure. We then apply these concepts to study the problem of a group of
agents reaching consensus on a shared property of the system.

7.1 Graph Theory

In this section we give a brief overview of the field of graph theory, focused
on some of the algebraic methods that characterize the properties of the
graph in terms of a set of matrices associated with it. These techniques will
be very important for helping understand the interactions between dynamic
agents across a graph, including the consensus problem in this chapter and
the distributed estimation and control problems in the subsequent chapters.
More detailed treatments are available in a number of textbooks, including
Diestel [?], Godsil and Royle [?], and Horn and Johnson [?]. This section is
based in part on a set of course notes originally developed by Reza Olfati-
Saber [?].

Basic Definitions

We define a directed graph as a pair G = (V, E) consisting of a set of vertices
V and a set of edges E ⊆ V × V. We represent a vertex (or node) as an
element vi ∈ V and an edge (or link) as a connection between two vertices,
eij = (vi, vj) ∈ E . We write |V| for the number of vertices in the graph, also
known as the order of the graph. qAn edge has an orientation given by the
ordering of the vertices, so the edge eij is distinct from the edge eji. We call
vi the head of the edge and vj the tail. A directed graph is also referred to
as a digraph.

We say that two vertices vi and vj are adjacent if there exists and edge
e = (vi, vj) and vertex vj is called a neighbor of vi. We write Ni = set
of all neighbors of vi and we say that a graph G is complete if all vertices
are adjacent to each other. We define the out-degree of a vertex vi, written
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Figure 7.1: A graph with 6 vertices.

degout(Vi), as the number of edges whose head is vi. Similarly, the in-degree
of a vertex vi, degin(vi) is the number of edges with tail vi.

Example 7.1 6 node graph

Consider a graph given by the vertices V = {1, 2, 3, 4, 5, 6} and a set of edges

E = {(1, 6), (2, 1), (2, 3), (2, 6), (6, 2), (3, 4),

(3, 6), (4, 3), (4, 5), (5, 1), (6, 1), (6, 2), (6, 4)},
as shown in Figure 7.1. Node 1 has an in-degree of 3 and an out-degree of
1. Its neighbor set is given by N1 = {v6}. Node 2 has an in-degree of 1 and
an out-degree of 3. Its neighbor set is given by N2 = {v1, v2, v6}. ∇

In many instances the orientation of the edges in a graph will not matter
and we can ignore the ordering of the verticies in an edge eij = (vi, vj).
Formally, we will consider a graph to be undirected if eij ∈ E implies that
eji ∈ E . In these cases it will often be easier to simply say that the graph
is undirected and consider an edge eij to be equivalent to an edge eji. For
an undirected graph the indegree and outdegree are the same, so we simply
refer to the degree of a vertex. An undirected graph is regular (or k-regular)
if all vertices of a graph have the same degree k. A directed graph is balanced
if the out-degree is equal to the in-degree at each vertex.

Example 7.2

Figure 7.3 shows three examples of graphs. ∇

Connectedness of Graphs

A key set of properties of a graph have to do with whether there exists paths
that connect its nodes. Formally, a path is a subgraph π = (V, Eπ) ⊂ G with
distinct vertices V = {v1, v2, . . . , vm} and

Eπ := {(v1, v2), (v2, v3), . . . , (vm−1, vm)}.
The length of π is defined as |Eπ| = m−1. A cycle (or m-cycle) C = (V, EC)
is a path (of length m) with an extra edge (vm, v1) ∈ E . We define the
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(a) (b)

(c)

Figure 7.2: Examples of graphs with different properties.

(a) (b) (c)

Figure 7.3: Examples of graphs with different properties.

distance between two vertices v and w as the length of the shortest path
between them.

An undirected graph G is called connected if there exists a path π between
any two distinct vertices of G. For a connected graph G, the length of the
maximum distance between two vertices is called the diameter of G. A graph
with no cycles is called acyclic. A tree is a connected acyclic graph.

A digraph is called strongly connected if there exists a directed path π
between any two distinct vertices of G. A digraph is called weakly connected
if there exists an undirected path between any two distinct vertices of G.

Example 7.3

Figure ?? shows examples of graphs and their connectedness properties.
∇

Matrices Associated with a Graph

In order to characterize the properties of a graph, we will use matrices to
represent the structure of the graph. The properties of these matrices can
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then be related back to the properties of the graph.
The adjacency matrix A = [aij ] ∈ R

n×n of a graph G of order n is given
by:

aij :=

{
1 if (vi, vj) ∈ E
0 otherwise

The degree matrix of a graph as a diagonal n× n (n = |V|) matrix

∆ = diag{degout(vi)}
with diagonal elements equal to the out-degree of each vertex and zero ev-
erywhere else. The Laplacian matrix L of a graph is defined as

L = ∆ −A

. It follows from the definition that the row sums of the Laplacian are all 0.

Example 7.4 6 node graph

Consider the graph shown in Example ??. The adjancy matrix and Lapla-
cian are given by

A =




0 0 0 0 0 1
1 0 1 0 0 1
0 0 0 1 0 1
0 0 1 0 1 0
1 0 0 0 0 0
1 1 0 1 0 0



, L =




1 0 0 0 0 −1
−1 3 −1 0 0 −1
0 0 2 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 0 1 0
−1 −1 0 −1 0 3



.

∇

Periodic Graphics and Weighted Graphs

A graph with the property that the set of all cycle lengths has a common
divisor k > 1 is called k-periodic. A graph without cycles is said to be
acyclic.

A weighted graph is graph (V, E) together with a map ϕ : E → R that
assigns a real number wij = ϕ(eij) called a weight to an edge eij = (vi, vj) ∈
E . The set of all weights associated with E is denoted by W. A weighted
graph can be represented as a triplet G = (V, E ,W).

In some applications it is natural to “normalize” the Laplacian by the
outdegree. We define the weighted Laplacian as

L̃ := ∆−1L = I − Ã = I − ∆−1A

, where Ã = ∆−1A (weighted adjacency matrix).

Example 7.5 Weighted Laplacian for formation graph

Consider the graph in Figure 7.4. The weighted Laplacian is given by
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Figure 7.4: Formation control graph.

L =




1 −1
2 0 0 0 −1

2
−1

2 1 −1
2 0 0 0

0 0 1 0 −1
2 −1

2
0 0 −1 1 0 0
0 0 −1

2 −1
2 1 0

0 −1 0 0 0 1




∇

Gershgorin Disk Theorem

Theorem 7.1 (Gershgorin Disk Theorem). Let A = [aij ] ∈ R
n×n and define

the deleted absolute row sums of A as

ri :=
n∑

j=1,j 6=i

|aij | (7.1)

Then all the eigenvalues of A are located in the union of n disks

G(A) :=

n⋃

i=1

Gi(A), with Gi(A) := {z ∈ C : |z − aii| ≤ ri} (7.2)

Furthermore, if a union of k of these n disks forms a connected region that
is disjoint from all the remaining n − k disks, then there are precisely k
eigenvalues of A in this region.

Sketch of proof. Let λ be an eigenvalue of A and let v be a corresponding
eigenvector. Choose i such that |vi| = maxj |vj > 0. Since v is an eigenvec-
tor,

λvi =
∑

i

Aijvj =⇒ (λ− aii)vi =
∑

i6=j

Aijvj

Now divide by vi 6= 0 and take the absolute value to obtain

|λ− aii| = |
∑

j 6=i

aijvj | ≤
∑

j 6=i

|aij | = ri
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Figure 7.5: Graphical description of the Gershgorin disk theorem.

We can use the Gershgorin disk theorem to reason about the eigenvalues
of the Laplacian and the weighted Laplacian.

Proposition 7.2. Let L be the Laplacian matrix of a digraph G with max-
imum vertex out–degree of dmax > 0. Then all the eigenvalues of A = −L
are located in a disk

B(G) := {s ∈ C : |s+ dmax| ≤ dmax} (7.3)

that is located in the closed LHP of s-plane and is tangent to the imaginary
axis at s = 0.

Proposition 7.3. Let L̃ be the weighted Laplacian matrix of a digraph G.
Then all the eigenvalues of A = −L are located inside a disk of radius 1 that
is located in the closed LHP of s-plane and is tangent to the imaginary axis
at s = 0.

Another property of the Laplacian is that its rank determines the con-
nectivity of the graph.

Theorem 7.4 (Olfati-Saber). Let G = (V, E ,W ) be a weighted digraph of
order n with Laplacian L. If G is strongly connected, then rank(L) = n− 1.

The proof for the directed case can be found in standard textbooks on
graph theory, such as those listed at the beginning of this section.. The
proof for the undirected case is available in [OSM04]. Note that for directed
graphs, we require that G be strongly connected; the converse statement is
not true.

Perron-Frobenius Theory

The spectrum of a matrix A is defined as spec(A) = {λ1, . . . , λn}, where λi,
i = 1, . . . , n are the eigenvalues of A. The distance to the largest eigenvalue
ρ(A) = |λn| = maxk |λk| is called the spectral radius of A.
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(a) (b)

(c)

Figure 7.6: Irreducibility of a graph.

Theorem 7.5 (Perron’s Theorem, 1907). If A ∈ R
n×n is a positive matrix

(A > 0), then

1. ρ(A) > 0;
2. r = ρ(A) is an eigenvalue of A;
3. There exists a positive vector x > 0 such that Ax = ρ(A)x;
4. |λ| < ρ(A) for every eigenvalue λ 6= ρ(A) of A, i.e. ρ(A) is the unique

eigenvalue of maximum modulus; and
5. [ρ(A)−1A]m → R as m→ +∞ where R = xyT , Ax = ρ(A)x, AT y = ρ(A)y,

x > 0, y > 0, and xT y = 1.

Theorem 7.6 (Perron’s Theorem for Non–Negative Matrices). If A ∈ R
n×n

is a non-negative matrix (A ≥ 0), then ρ(A) is an eigenvalue of A and there
is a non–negative vector x ≥ 0, x 6= 0, such that Ax = ρ(A)x.

A directed graph is irreducible if, given any two vertices, there exists a
path from the first vertex to the second. (Irreducible = strongly connected)
A matrix is irreducible if it is not similar to a block upper triangular matrix
via a permutation. A digraph is irreducible if and only if its adjacency
matrix is irreducible.

Example 7.6

Consider the graph in Figure 7.6. ∇
Theorem 7.7 (Frobenius). Let A ∈ R

n×n and suppose that A is irreducible
and non-negative. Then

1. ρ(A) > 0;
2. r = ρ(A) is an eigenvalue of A;
3. There is a positive vector x > 0 such that Ax = ρ(A)x;
4. r = ρ(A) is an algebraically simple eigenvalue of A; and
5. If A has h eigenvalues of modulus r, then these eigenvalues are all distinct

roots of λh − rh = 0.

Using the Perron and Frobenius theorems, we can study additional prop-
erties of the Laplacian matrix of a graph. In particular, it can be shown
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Figure 7.7: Spectra of the Laplacian for classes of graphs.

that If G is strongly connected, the zero eigenvalue of L is simple. If G is
aperiodic, all nonzero eigenvalues lie in the interior of the Gershgorin disk.
If G is k-periodic, L has k evenly spaced eigenvalues on the boundary of the
Gershgorin disk.

Theorem 7.8 (Variant of Courant-Fischer). Let A ∈ R
n×n be a Hermitian

matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and let w1 be the eigenvector of
A associated with the eigenvalue λ1. Then

λ2 = min
x 6= 0, x ∈ C

n,
x⊥w1

x∗Ax

x∗x
= min

x∗x = 1,
x⊥w1

x∗Ax (7.4)

Proof. Since A is Hermitian matrix, it is unitary diagonalizable (see The-
orem ??), i.e. A = UΛU∗ where Λ = diag(λ1, λ2, . . . , λn). Let U =
[w1|w2| · · · |wn] (wk is the kth column of U). Then

x∗Ax = x∗UΛU∗x = (U∗x)∗Λ(U∗x)

=
n∑

i=1

λi|(U∗x)i|2 =
n∑

i=1

λi|w∗
i x|2 =

n∑

i=2

λi|w∗
i x|2 (x⊥w1)

≥ λ2

n∑

i=2

|w∗
i x|2 = λ2

n∑

i=1

|w∗
i x|2 (x⊥w1) = λ2

n∑

i=1

|(U∗x)i|2

= λ2(x
∗UU∗x) = λ2x

∗x

(7.5)

Thus, for x⊥w1 and x 6= 0

x∗Ax ≥ λ2x
∗x

where the equality is achieved with x = w2.

The second eigenvalue of the Laplacian λ2 is called the algebraic connec-
tivity of L.
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(a) (b)

Figure 7.8: Cyclic separability.

Cyclically Separable Graphs

Definition 7.1 (Cyclic separability). A digraph G = (V, E) is cyclically
separable if and only if there exists a partition of the set of edges E = ∪nc

k=1Ek
such that each partition Ek corresponds to either the edges of a cycle of the
graph, or a pair of directed edges ij and ji that constitute an undirected
edge. A graph that is not cyclically separable is called cyclically inseparable.

Lemma 7.1. Let L be the Laplacian matrix of a cyclically separable digraph
G and set u = −Lx, x ∈ R

n. Then
∑n

i=1 ui = 0,∀x ∈ R
n and 1 = (1, . . . , 1)T

is the left eigenvector of L.

Proof. The proof follows from the fact that by definition of cyclic separabil-
ity. We have

−
n∑

i=1

ui =
∑

ij∈E

(xj − xi) =

nc∑

k=1

∑

ij∈Ek

(xj − xi) = 0

because the inner sum is zero over the edges of cycles and undirected edges
of the graph.

Example 7.7 Cyclic separability

∇

Let G = (V, E) be a digraph. We say G is balanced if and only if the
in–degree and out–degree of all vertices of G are equal, i.e.

degout(vi) = degin(vi), ∀vi ∈ V (7.6)

Let G be a digraph with a weighted adjacency matrix A = [aij ] ∈ R
n×n

that has the property aii = 0. Then, G is balanced if and only if wl = 1.

Theorem 7.9. A digraph is cyclically separable if and only if it is balanced.

Proof. Assume the graph is cyclically separable. Then any arbitrary vertex
vi of the graph belongs to a finite number of cycles and/or undirected edges.
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The main property of a cycle is that corresponding to any directed edge
arriving at a vertex, there is one edge leaving that vertex and therefore the
in–degree and out-degree of any vertex are equal, i.e. the graph is balanced.

Now, let us assume that the graph is balanced, we show that it is cycli-
cally separable. Suppose the opposite holds, meaning that the graph is
not cyclically separable. Then there exists a directed edge (vk, vl) of the
graph which does not belong to any cycles and/or undirected edges. Set
xi = 0,∀i 6= l and let xl = 1. Define u = −Lx, we have ui = 0,∀i 6= k and
uk = xl − xk = 1 (notice that ul = 0 since k is not an out–neighbor of l).
Thus

∑n
i=1 ui = 1Tu = 1 6= 0. But we know that 1 eigenvector of L for

any balanced graph, thus 1Tu = −1TLx = 0,∀x. This is a contradiction
which means every directed edge of a balanced graph belongs to a cycle or
an undirected edge, i.e. the graph is cyclically separable.

7.2 Consensus algorithms

The consensus problem involves a group of agents reaching an agreement on a
decision in a decentralized problem. In this sectoin we describe one approach
to solving this problem, with the agents communicating on a graph.

Average Consensus

Consider a collection ofN agents that communicate along a set of undirected
links described by a graph G. Each agent has a state xi with initial value
xi(0) and together they wish to determine the average of the initial states
Ave(x0) = 1/N

∑
xi0.

The agents implement the following consensus algorithm:

xik+1 = ǫ
∑

j∈Ni

(xjk − xik) = −ǫ|Ni|(xik − Ave(xNi

k ))

which is equivalent to the dynamical system

xk+1 == −ǫLxk.

Proposition 7.10. If the graph is connected, there exists an ǫ such that the
state of the agents converges to x∗i = Ave(x0) exponentially fast.

• Proposition 1 implies that the spectra of L controls the stability (and
convergence) of the consensus protocol.

• To (partially) prove this theorem, we need to show that the eigenvalues
of L are all positive.

ẋ = −Lx L = ∆ −A
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Note first that the subspaced spanned by 1 = (1, 1, . . . , 1)T is an invari-
ant subspace since L · 1 = 0 Assume that there are no other eigenvectors
with eigenvalue 0. Hence it suffices to look at the convergence on the com-
plementary subspace 1⊥.

Let δ be the disagreement vector

δ = x− Ave(x(0))1

and take the square of the norm of δ as a Lyapunov function candidate, i.e.
define

V (δ) = ‖δ‖2 = δT δ (7.7)

Differentiating V (δ) along the solution of δ̇ = −Lδ, we obtain

V̇ (δ) = −2δTLδ < 0, ∀δ 6= 0, (7.8)

where we have used the fact that G is connected and hence has only 1
zero eigenvalue (along 1). Thus, δ = 0 is globally asymptotically stable
and δ → 0 as t → +∞, i.e. x∗ = limt→+∞ x(t) = α01 because α(t) =
α0 = Ave(x(0)),∀t > 0. In other words, the average–consensus is globally
asymptotically achieved.

For an undirected graph with Laplacian L, the rate of convergence for
the consensus protocol is bounded by the second smallest eigenvalue λ2

Corollary 7.10.1. Consider a network of integrators with a directed in-
formation flow G and vertices that apply the consensus protocol. Then,
α = Ave(x) is an invariant quantity if and only if G is balanced.

Remarks.

• Balanced graphs generalized undirected graphs and retain many key
properties

Consensus on Directed Graphs

Consensus over Communication Channels

Consensus for Idempotent Functions

7.3 Effects of Information Topology

7.4 Applications of Consensus

7.5 Further Reading

Exercises





Chapter 8
Distributed Estimation

In this chapter we consider the problem of state estimation in which we have
a collection of sensors that are distributed across a network. We begin by
exploring the problem of aggregating data from a decentralized network of
sensors, either at a centralized node or across a fully connected network,
where the goal is to minimize either communication or computation and the
graph structure does not play a central role. We then consider more general
distributed estimation problem where the graph is not completely connected,
so that different agents on the network have different information at different
times. We next investigate the case where the information can be lost as it
is sent around the network, requiring the use of more advanced methods
of design and analysis to accommodate the network dynamics. Finally,
we provide some general remarks about when the estimation problem can
be separated from the control problem, allow us to separately solve the
(optimal) estimation problem. The next chapter looks in more detail at
the distributed control problem, where we wish to design a feedback control
system across a graph to solve a given task.

8.1 Decentralized Sensor Fusion

Note: The goal of this section is going to be to summary the “classical”
results in distributed sensor fusion, focused mainly on the information form.
[RMM, 19 Jun 09]

Consider a single process with multiple sensors connected together across
a network, as shown in Figure 8.1. We assume that the system being ob-
served has dynamics

x[k + 1] = Ax[k] +Bu+ w,

where X ∈ R
n represents the state, u ∈ R

p represents the (deterministic)
input, W ∈ R

q represents process disturbances, Y ∈ R
q represents the

system output and W ∈ R
q represents measurement noise. We would like

to form an estimation of the state x̂, either at each sensor or at the central
hub.

The approach we take to solve this problem depends on the structure
of the information pattern. If a centralized hub is available, all sensors can
send data to the hub and a centralized Kalman filter can be used to compute
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Figure 8.1: Schematic diagram of a distributed sensing system. The system
on the left represents the system being observed. Multiple sensors take measure-
ments and communication with each other across a communications network. A
(optional) centralized hub collections information across the network.

Figure 8.2: Sensor fusion

the estimate. An alternative, which is more efficient in some settings [?], is
to have some of the information processing done at the sensor nodes. To
see how this can be done, we reformulate the Kalman filter in an alternative
form.

Consider the situation described in Figure 8.2, where we have an in-
put/output dynamical system with multiple sensors capable of taking mea-
surements. The problem of sensor fusion involves deciding how to best com-
bine the measurements from the individual sensors in order to accurately
estimate the process state X. Since different sensors may have different
noise characteristics, evidently we should combine the sensors in a way that
places more weight on sensors with lower noise. In addition, in some situa-
tions we may have different sensors available at different times, so that not
all information is available on each measurement update.

To gain more insight into how the sensor data are combined, we in-
vestigate the functional form of L[k|k]. Suppose that each sensor takes a
measurement of the form

Y i = CiX + V i, i = 1, . . . , q,

where the superscript i corresponds to the specific sensor. Let V i be a zero
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mean, white noise process with covariance σ2
i = RV i(0). It follows from

Lemma ?? that
L[k|k] = P [k|k]CTR−1

W .

First note that if P [k|k] is small, indicating that our estimate of X is close
to the actual value (in the MMSE sense), then L[k|k] will be small due to
the leading P [k|k] term. Furthermore, the characteristics of the individual
sensors are contained in the different σ2

i terms, which only appears in RW .
Expanding the gain matrix, we have

L[k|k] = P [k|k]CTR−1
W , R−1

W =




1/σ2
1

. . .

1/σ2
q


 .

We see from the form of R−1
W that each sensor is inversely weighted by

its covariance. Thus noisy sensors (σ2
i ≫ 1) will have a small weight and

require averaging over many iterations before their data can affect the state
estimate. Conversely, if σ2

i ≪ 1, the data is “trusted” and is used with
higher weight in each iteration.
An alternative formulation of the Kalman filter is to make use of the in-

verse of the covariance matrix, called the information matrix, to represent
the error of the estimate. It turns out that writing the state estimator in
this form has several advantages both conceptually and when implementing
distributed computations. This form of the Kalman filter is known as the
information filter.

We begin by defining the information matrix I and the weighted state
estimate Ẑ:

I[k|k] = P−1[k|k], Ẑ[k|k] = P−1[k|k]X̂[k|k].
We also make use of the following quantities, which appear in the Kalman
filter equations:

Ωi[k|k] = (Ci)TR−1
W i [k|k]Ci, Ψi[k|k] = (Ci)TR−1

W i [k|k]CiX̂[k|k].
Using these quantities, we can rewrite the Kalman filter equations as

Prediction Correction

I[k|k−1] =
(
AI−1[k−1|k−1]AT +RW

)−1
, I[k|k] = I[k|k−1] +

q∑

i=1

Ωi[k|k],

Ẑ[k|k−1] = I[k|k−1]AI−1[k−1|k−1]Ẑ[k−1|k−1] +Bu[k−1], Ẑ[k|k] = Ẑ[k|k−1] +

q∑

i=1

Ψi[k|k].

Note that these equations are in a particularly simple form, with the infor-
mation matrix being updated by each sensor’s Ωi and similarly the state
estimate being updated by each sensors Ψi.
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(a)

Plots
(b)

Figure 8.3: Distributed estimation on a graph.

Remarks:

1. Information form allows simple addition for correction step. Intuition:
add information through additional data.

2. Sensor fusion: information content = inverse covariance (for each sen-
sor)

3. Variable rate: incorporate new information whenever it arrives. No
data =⇒ no information =⇒ prediction update only.

Another classical information pattern is that of a fully connected network.
In this case, everyone can send either measurements to each other and we
can reconstruct the state using local Kalman (or information) filters.

8.2 Distributed estimation on a graph

A more general case occurs when the information is distributed along a
graph, as shown in Figure 8.3. Suppose that we have no central hub and we
want each sensor to converge to a single global estimate. For simplicity we
first consider the static system case, in which all nodes should converge to
the optimal estimate

x̂∞ =
N∑

j=1

R−1
j yj .

As our starting point, we make use of the consensus algorithms described
in Section ??. The basic algorithm is as follows:

• Each node measures yi

• Each node initializes its state to x(0) = R−1
i yi, where Ri is the covari-

ance associated with sensor i

• Run the consensus protocol, which implies that each node converges
to the optimal estimate.
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From the results on consensus filters, it can be shown that the convergence
rate is bounded by e−λ2t, where λ2 is the second smallest eigenvalue of
the graph Laplacian.. Many extensions to this basic algorithm are possi-
ble, including the case of time-varying communication graphs, delays and
intermittent communications.

The static algorithm can be extended to the case of a dynamic system in
several different ways:

• Fixed graph, ala Durrant-Whyte et al

– Communication measurements and run full KF

– Communication local estimate + covariance and account for du-
plication [?]

– Doesn’t handle dropped packets, changing communications graph

• “Microfilter architecture” (Olfati-Saber)

– Need CF to convert quickly (compared to KF dynamics) and
track measurements

– Resulting filter is approximate (may not be optimal prior to con-
vergence), but handles packet delays, etc (inherited from CF
properties).

– ??? sending measurements plus covariance matrices (if Ri(k) not
constant)

• Consensus on estimates

Proposition 8.1 (Olfati-Saber). In the absence of noise, x̂i → x.

Proof.

Remarks:
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1. Can write in discrete time

2. Only approximate KF; lose optimality during transient

3. Can handle varying graph, packet loss, time delay, etc

4. Only requires sensing estimates; Pi is local error covariance (doesn’t
account for neighbor covariance)

Final remarks (on distributed estimation):

1. Distributed KF on a fixed graph (star, completely connected, undi-
rected) is well understood. Basically manipulate the information filter.

2. Alternative approach: use consensus filter on measurements or esti-
mates. Lose optimality, but can handle network effects.

8.3 Distributed Estimation with Packet Loss

We now consider what happens if the graph describing the flow of informa-
tion around the network is not along a fixed graph. We consider a number
of cases, starting with the case in which we can only use a subset of the
links on a network at a given time, and then moving to more complicated
situations in which the network can drop packets in an unknown way.

8.4 Combining Estimation and Control

In many applications we wish to make use of our estimate of the state of a
system for the purposes of controlling the behavior of the system. In this
case, the system state depends on the action of the controller, which itself
depends on the estimate of the state. In traditional control systems, it can
be shown that a separation principle applies, in which we can design the
controller assuming we measure the exact state and design the estimator
without taking the specific form of the feedback controller into account. In
this section we summarize the situations in which we can similar separation
principles in distributed estimation principles. We defer the analysis and
design of the distributed controllers to the next chapter.

8.5 Further Reading

The early literature on distributed estimation (and control) focused on ex-
tending optimal estimation techniques in which the information distribution
network was either completely connected [?, ?] or hierarchical [?]. A key
question was how to incorporate data taken from a number of sensors into
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either a centralized node or a (completely connected) set of agents. Much
of the early work was focused on the problem of target tracing across a dis-
tributed geographical area. A fairly general version of these decentralized
estimation results that made use of the information form of the Kalman
filter was presented by Rao et al. [?].





Chapter 9
Distributed Control

Outline:

• Problem discription: centralized, decentralized, distributed, coupled

• Stability and performance of networked systems (Fax stability criterion
+ sensitivity analysis by Z. Jin and S. Tonetti)

• (Sub) Optimal distributed control

• Spatially invariant systems (Dulerud, D’Andrea et al + Rotkowitz,
Lall)

9.1 Introduction

9.2 Stability and performance of interconnected systems

9.3 Stability of interconnected sytems

Note: Plan to describe the stability conditions from Alex Fax that show how
graph topology interacts with dynamics. Other possible things to include:

• Signal flow graphs (useful for computing sensitivity functions, ala Ste-
fania)

• Formula for characteristic equation for the graph Laplacian (from
H̊akan)

[RMM, 19 Jun 09]

Suppose that each agent’s dynamics are governed by

ẋi = Axi +Bui

yi = Cxi
(9.1)

Fax [FM04] considers a control law in which each system attempts to stabi-
lize itself relative to its neighbors. This is accomplished by constructing an
error for each system that is a weighted combination of the relative outputs
of the neighbors:

ei =
∑

j∈N i

αij(y
j − yi) (9.2)
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where αij is the relative weight. For simplicity, we consider uniform weight-
ing here, so that αij = 1/|N i| where |N i| is the number of neighbors of node
i. The results are easily extended to the more general case.

Given the error (9.2), we apply a compensator that attempts to stabilize
the overall system. For simplicity, we assume here that the stabilizer is given
by a constant gain

ui = Kei, (9.3)

with K ∈ R
m×m representing the compensation (gain) matrix. In practice,

one can use a dynamic compensator to improve performance, but for analysis
purposes we can just assume these dynamics are included in the system
dynamics (9.1).

The interconnectedness of the system, represented by the neighbor sets
Ni can be studied using tools from graph theory. In particular, for the the
case of uniform weighting of the errors, it turns out that the combined error
vector e ∈ R

N ·m can be written as

e = (L̄⊗ I)x (9.4)

where ⊗ represents the Kronecker product and L̄ is the weighted Laplacian
associated with the (directed) graph that models the neighbors of each node.
The weighted Laplacian is a standard object in graph theory and can be
defined as

L̄ = D−1(D −A)

where D is a diagonal matrix whose entries are the out-degree of each node
and A is the adjacency matrix for the graph (see [FM04] for more detail).
Using this framework, Fax showed the following:

Theorem 9.1. A local controller K stabilizes the formation dynamics in
equation (9.1) with error (9.4) and gain K if and only if it stabilizes the set
of N systems given by

ẋ = Ax+B · λi · (Ky)
y = Cx

(9.5)

where {λi} are the eigenvalues of the weighted graph Laplacian L̄.

Proof. We make use of the following notational conventions:

• Â = IN ⊗A: block diagonal matrix with A as elements
• A(n) = A⊗ In: replace elemnts of A with aijIn

• For X ∈ R
r×s and Y ∈ R

N×N , X̂Y(s) = Ŷ X(r)

Let T be a Schur transformation for L, so that U = T−1LT is upper
triangular. Transform the (stacked) process states as x̃ = T(n)x and the
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Figure 9.1: Interpretation of Theorem 1. The left figure shows the graph repre-
sentation of the interconnected system and the right figure shows the corresponding
Nyquist test. The addition of the dashed line to the graph moves the negative,
inverse eigenvalues of L̄ from the positions marked by circles to those marked by
crosses.

(stacked) controller states as ξ̃ = T(n)ξ. The resulting dynamics become

d

dt

[
x̃

ξ̃

]
=

[
Â+ B̂K̂ĈU(n) B̂Ĥ

ĜĈU(n) F

] [
x̃

ξ̃

]
.

This system is upper triangular, and so stability is determined by the ele-
ments on the (block) diagonal:

d

dt

[
x̃j
ξ̃j

]
=

[
A+BKCλj BH

GCλj F

] [
x̃

ξ̃

]
.

This is equivalent to coupling the process and controller with a gain λi.

This theorem has a very natural interpretation in terms of the Nyquist
plot of dynamical system. In the standard Nyquist criterion, one checks for
stability of a feedback system by plotting the open loop frequency response
of the system in the complex plane and checking for net encirclements of the
−1 point. The conditions in Theorem 1 correspond to replacing the −1 point
with −1/λi for each eigenvalue λi of L̄. This interpretation is illustrated in
Figure 9.1. The results can easily be extended to consider weightings that
are nonuniform.

Theorem 9.1 illustrates how the dynamics of the system, as represented
by equation (9.1), interacts with the information flow of the system, as
represented by the graph Laplacian. In particular, we see that it is the
eigenvalues of the Laplacian that are critical for determining stability of
the overall system. Additional results in this framework allow tuning of
the information flow (considered as both sensed and communicated signals)
to improve the transient response of the system [FM04]. Extensions in a
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stochastic setting [?, OSM04] allow analysis of interconnected systems whose
dynamics are not identical and where the graph topology changes over time.

9.4 (Sub-) Optimal Control

9.5 Spatially Invariant Systems
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